Rechercher

Chapitre 4. Managing LVM logical volumes

download PDF

A logical volume is a virtual, block storage device that a file system, database, or application can use. To create an LVM logical volume, the physical volumes (PVs) are combined into a volume group (VG). This creates a pool of disk space out of which LVM logical volumes (LVs) can be allocated.

4.1. Overview of logical volumes

An administrator can grow or shrink logical volumes without destroying data, unlike standard disk partitions. If the physical volumes in a volume group are on separate drives or RAID arrays, then administrators can also spread a logical volume across the storage devices.

You can lose data if you shrink a logical volume to a smaller capacity than the data on the volume requires. Further, some file systems are not capable of shrinking. To ensure maximum flexibility, create logical volumes to meet your current needs, and leave excess storage capacity unallocated. You can safely extend logical volumes to use unallocated space, depending on your needs.

Important

On AMD, Intel, ARM systems, and IBM Power Systems servers, the boot loader cannot read LVM volumes. You must make a standard, non-LVM disk partition for your /boot partition. On IBM Z, the zipl boot loader supports /boot on LVM logical volumes with linear mapping. By default, the installation process always creates the / and swap partitions within LVM volumes, with a separate /boot partition on a physical volume.

The following are the different types of logical volumes:

Linear volumes
A linear volume aggregates space from one or more physical volumes into one logical volume. For example, if you have two 60GB disks, you can create a 120GB logical volume. The physical storage is concatenated.
Striped logical volumes

When you write data to an LVM logical volume, the file system lays the data out across the underlying physical volumes. You can control the way the data is written to the physical volumes by creating a striped logical volume. For large sequential reads and writes, this can improve the efficiency of the data I/O.

Striping enhances performance by writing data to a predetermined number of physical volumes in round-robin fashion. With striping, I/O can be done in parallel. In some situations, this can result in near-linear performance gain for each additional physical volume in the stripe.

RAID logical volumes
LVM supports RAID levels 0, 1, 4, 5, 6, and 10. RAID logical volumes are not cluster-aware. When you create a RAID logical volume, LVM creates a metadata subvolume that is one extent in size for every data or parity subvolume in the array.
Thin-provisioned logical volumes (thin volumes)
Using thin-provisioned logical volumes, you can create logical volumes that are larger than the available physical storage. Creating a thinly provisioned set of volumes allows the system to allocate what you use instead of allocating the full amount of storage that is requested
Snapshot volumes
The LVM snapshot feature provides the ability to create virtual images of a device at a particular instant without causing a service interruption. When a change is made to the original device (the origin) after a snapshot is taken, the snapshot feature makes a copy of the changed data area as it was prior to the change so that it can reconstruct the state of the device.
Thin-provisioned snapshot volumes
Using thin-provisioned snapshot volumes, you can have more virtual devices to be stored on the same data volume. Thinly provisioned snapshots are useful because you are not copying all of the data that you are looking to capture at a given time.
Cache volumes
LVM supports the use of fast block devices, such as SSD drives as write-back or write-through caches for larger slower block devices. Users can create cache logical volumes to improve the performance of their existing logical volumes or create new cache logical volumes composed of a small and fast device coupled with a large and slow device.
Red Hat logoGithubRedditYoutubeTwitter

Apprendre

Essayez, achetez et vendez

Communautés

À propos de la documentation Red Hat

Nous aidons les utilisateurs de Red Hat à innover et à atteindre leurs objectifs grâce à nos produits et services avec un contenu auquel ils peuvent faire confiance.

Rendre l’open source plus inclusif

Red Hat s'engage à remplacer le langage problématique dans notre code, notre documentation et nos propriétés Web. Pour plus de détails, consultez leBlog Red Hat.

À propos de Red Hat

Nous proposons des solutions renforcées qui facilitent le travail des entreprises sur plusieurs plates-formes et environnements, du centre de données central à la périphérie du réseau.

© 2024 Red Hat, Inc.