搜索

2.2. 设置数据科学项目

download PDF

在开始前,请确定您登录到 Red Hat OpenShift AI,您可以看到仪表板:

启用仪表板

请注意,您可以在此处启动 Jupyter 笔记本,但它是一个以隔离方式运行的一次性笔记本。要实现数据科学项目,您必须创建一个数据科学项目。通过项目,您的团队可在独立命名空间中组织并合作资源。在一个项目中,您可以创建多个工作台,每个工作台都有自己的 Jupyter 笔记本环境,每个环境都有自己的数据连接和集群存储。另外,工作台还可以与管道和模型服务器共享模型和数据。

流程

  1. 在导航菜单中选择 Data Science Projects。本页列出了您可以访问的所有现有项目。在此页面中,您可以选择现有项目(若有)或创建新项目。

    Data Science 项目列表

    如果您已有一个要使用的活动项目,请立即选择它并跳到下一小节,使用数据连接来存储数据。否则,继续下一步。

  2. Create data Science 项目
  3. 输入显示名称和描述。根据显示名称,会自动生成资源名称,但如果您愿意,可以更改它。

    新的数据科学项目表单

验证

现在您可以看到其初始状态。单个标签页提供有关项目组件和项目访问权限的更多信息:

新的数据科学项目
  • 工作台是您开发和实验环境的实例。它们通常包含 IDE,如 JupyterLab、RStudio 和 Visual Studio Code。
  • 管道 包含在项目内执行的数据科学项目。
  • 通过 模型,您可以快速为实时推测提供受培训的模式。每个数据科学项目都有多个模型服务器。个模型服务器可以托管多个模型。
  • 集群存储是 一个持久性卷,用于保留您在工作台中处理的文件和数据。工作台可以访问一个或多个集群存储实例。
  • 数据连接 包含连接到数据源所需的配置参数,如 S3 对象存储桶。
  • 权限 定义哪些用户和组可以访问项目。
Red Hat logoGithubRedditYoutubeTwitter

学习

尝试、购买和销售

社区

关于红帽文档

通过我们的产品和服务,以及可以信赖的内容,帮助红帽用户创新并实现他们的目标。

让开源更具包容性

红帽致力于替换我们的代码、文档和 Web 属性中存在问题的语言。欲了解更多详情,请参阅红帽博客.

關於紅帽

我们提供强化的解决方案,使企业能够更轻松地跨平台和环境(从核心数据中心到网络边缘)工作。

© 2024 Red Hat, Inc.