Chapter 4. Working with nodes


4.1. Viewing and listing the nodes in your OpenShift Container Platform cluster

You can list all the nodes in your cluster to obtain information such as status, age, memory usage, and details about the nodes.

When you perform node management operations, the CLI interacts with node objects that are representations of actual node hosts. The master uses the information from node objects to validate nodes with health checks.

4.1.1. About listing all the nodes in a cluster

You can get detailed information on the nodes in the cluster.

  • The following command lists all nodes:

    $ oc get nodes
    
    NAME                   STATUS    ROLES     AGE       VERSION
    master.example.com     Ready     master    7h        v1.14.6+c4799753c
    node1.example.com      Ready     worker    7h        v1.14.6+c4799753c
    node2.example.com      Ready     worker    7h        v1.14.6+c4799753c
  • The -wide option provides additional information on all nodes.

    $ oc get nodes -o wide
  • The following command lists information about a single node:

    $ oc get node <node>

    The STATUS column in the output of these commands can show nodes with the following conditions:

    Table 4.1. Node Conditions
    ConditionDescription

    Ready

    The node reports its own readiness to the apiserver by returning True.

    NotReady

    One of the underlying components, such as the container runtime or network, is experiencing issues or is not yet configured.

    SchedulingDisabled

    Pods cannot be scheduled for placement on the node.

  • The following command provides more detailed information about a specific node, including the reason for the current condition:

    $ oc describe node <node>

    For example:

    $ oc describe node node1.example.com
    
    Name:               node1.example.com 1
    Roles:              worker 2
    Labels:             beta.kubernetes.io/arch=amd64   3
                        beta.kubernetes.io/instance-type=m4.large
                        beta.kubernetes.io/os=linux
                        failure-domain.beta.kubernetes.io/region=us-east-2
                        failure-domain.beta.kubernetes.io/zone=us-east-2a
                        kubernetes.io/hostname=ip-10-0-140-16
                        node-role.kubernetes.io/worker=
    Annotations:        cluster.k8s.io/machine: openshift-machine-api/ahardin-worker-us-east-2a-q5dzc  4
                        machineconfiguration.openshift.io/currentConfig: worker-309c228e8b3a92e2235edd544c62fea8
                        machineconfiguration.openshift.io/desiredConfig: worker-309c228e8b3a92e2235edd544c62fea8
                        machineconfiguration.openshift.io/state: Done
                        volumes.kubernetes.io/controller-managed-attach-detach: true
    CreationTimestamp:  Wed, 13 Feb 2019 11:05:57 -0500
    Taints:             <none>  5
    Unschedulable:      false
    Conditions:                 6
      Type             Status  LastHeartbeatTime                 LastTransitionTime                Reason                       Message
      ----             ------  -----------------                 ------------------                ------                       -------
      OutOfDisk        False   Wed, 13 Feb 2019 15:09:42 -0500   Wed, 13 Feb 2019 11:05:57 -0500   KubeletHasSufficientDisk     kubelet has sufficient disk space available
      MemoryPressure   False   Wed, 13 Feb 2019 15:09:42 -0500   Wed, 13 Feb 2019 11:05:57 -0500   KubeletHasSufficientMemory   kubelet has sufficient memory available
      DiskPressure     False   Wed, 13 Feb 2019 15:09:42 -0500   Wed, 13 Feb 2019 11:05:57 -0500   KubeletHasNoDiskPressure     kubelet has no disk pressure
      PIDPressure      False   Wed, 13 Feb 2019 15:09:42 -0500   Wed, 13 Feb 2019 11:05:57 -0500   KubeletHasSufficientPID      kubelet has sufficient PID available
      Ready            True    Wed, 13 Feb 2019 15:09:42 -0500   Wed, 13 Feb 2019 11:07:09 -0500   KubeletReady                 kubelet is posting ready status
    Addresses:   7
      InternalIP:   10.0.140.16
      InternalDNS:  ip-10-0-140-16.us-east-2.compute.internal
      Hostname:     ip-10-0-140-16.us-east-2.compute.internal
    Capacity:    8
     attachable-volumes-aws-ebs:  39
     cpu:                         2
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      8172516Ki
     pods:                        250
    Allocatable:
     attachable-volumes-aws-ebs:  39
     cpu:                         1500m
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      7558116Ki
     pods:                        250
    System Info:    9
     Machine ID:                              63787c9534c24fde9a0cde35c13f1f66
     System UUID:                             EC22BF97-A006-4A58-6AF8-0A38DEEA122A
     Boot ID:                                 f24ad37d-2594-46b4-8830-7f7555918325
     Kernel Version:                          3.10.0-957.5.1.el7.x86_64
     OS Image:                                Red Hat Enterprise Linux CoreOS 410.8.20190520.0 (Ootpa)
     Operating System:                        linux
     Architecture:                            amd64
     Container Runtime Version:               cri-o://1.13.9-1.rhaos4.1.gitd70609a.el8
     Kubelet Version:                         v1.14.6+c4799753c
     Kube-Proxy Version:                      v1.14.6+c4799753c
    PodCIDR:                                  10.128.4.0/24
    ProviderID:                               aws:///us-east-2a/i-04e87b31dc6b3e171
    Non-terminated Pods:                      (13 in total)  10
      Namespace                               Name                                   CPU Requests  CPU Limits  Memory Requests  Memory Limits
      ---------                               ----                                   ------------  ----------  ---------------  -------------
      openshift-cluster-node-tuning-operator  tuned-hdl5q                            0 (0%)        0 (0%)      0 (0%)           0 (0%)
      openshift-dns                           dns-default-l69zr                      0 (0%)        0 (0%)      0 (0%)           0 (0%)
      openshift-image-registry                node-ca-9hmcg                          0 (0%)        0 (0%)      0 (0%)           0 (0%)
      openshift-ingress                       router-default-76455c45c-c5ptv         0 (0%)        0 (0%)      0 (0%)           0 (0%)
      openshift-machine-config-operator       machine-config-daemon-cvqw9            20m (1%)      0 (0%)      50Mi (0%)        0 (0%)
      openshift-marketplace                   community-operators-f67fh              0 (0%)        0 (0%)      0 (0%)           0 (0%)
      openshift-monitoring                    alertmanager-main-0                    50m (3%)      50m (3%)    210Mi (2%)       10Mi (0%)
      openshift-monitoring                    grafana-78765ddcc7-hnjmm               100m (6%)     200m (13%)  100Mi (1%)       200Mi (2%)
      openshift-monitoring                    node-exporter-l7q8d                    10m (0%)      20m (1%)    20Mi (0%)        40Mi (0%)
      openshift-monitoring                    prometheus-adapter-75d769c874-hvb85    0 (0%)        0 (0%)      0 (0%)           0 (0%)
      openshift-multus                        multus-kw8w5                           0 (0%)        0 (0%)      0 (0%)           0 (0%)
      openshift-sdn                           ovs-t4dsn                              100m (6%)     0 (0%)      300Mi (4%)       0 (0%)
      openshift-sdn                           sdn-g79hg                              100m (6%)     0 (0%)      200Mi (2%)       0 (0%)
    Allocated resources:
      (Total limits may be over 100 percent, i.e., overcommitted.)
      Resource                    Requests     Limits
      --------                    --------     ------
      cpu                         380m (25%)   270m (18%)
      memory                      880Mi (11%)  250Mi (3%)
      attachable-volumes-aws-ebs  0            0
    Events:     11
      Type     Reason                   Age                From                      Message
      ----     ------                   ----               ----                      -------
      Normal   NodeHasSufficientPID     6d (x5 over 6d)    kubelet, m01.example.com  Node m01.example.com status is now: NodeHasSufficientPID
      Normal   NodeAllocatableEnforced  6d                 kubelet, m01.example.com  Updated Node Allocatable limit across pods
      Normal   NodeHasSufficientMemory  6d (x6 over 6d)    kubelet, m01.example.com  Node m01.example.com status is now: NodeHasSufficientMemory
      Normal   NodeHasNoDiskPressure    6d (x6 over 6d)    kubelet, m01.example.com  Node m01.example.com status is now: NodeHasNoDiskPressure
      Normal   NodeHasSufficientDisk    6d (x6 over 6d)    kubelet, m01.example.com  Node m01.example.com status is now: NodeHasSufficientDisk
      Normal   NodeHasSufficientPID     6d                 kubelet, m01.example.com  Node m01.example.com status is now: NodeHasSufficientPID
      Normal   Starting                 6d                 kubelet, m01.example.com  Starting kubelet.
     ...
    1
    The name of the node.
    2
    The role of the node, either master or worker.
    3
    The labels applied to the node.
    4
    The annotations applied to the node.
    5
    The taints applied to the node.
    6
    Node conditions.
    7
    The IP address and host name of the node.
    8
    The pod resources and allocatable resources.
    9
    Information about the node host.
    10
    The pods on the node.
    11
    The events reported by the node.

4.1.2. Listing pods on a node in your cluster

You can list all the pods on a specific node.

Procedure

  • To list all or selected pods on one or more nodes:

    $ oc describe node <node1> <node2>

    For example:

    $ oc describe node ip-10-0-128-218.ec2.internal
  • To list all or selected pods on selected nodes:

    $ oc describe --selector=<node_selector>
    $ oc describe -l=<pod_selector>

    For example:

    $ oc describe node  --selector=beta.kubernetes.io/os
    $ oc describe node -l node-role.kubernetes.io/worker

4.1.3. Viewing memory and CPU usage statistics on your nodes

You can display usage statistics about nodes, which provide the runtime environments for containers. These usage statistics include CPU, memory, and storage consumption.

Prerequisites

  • You must have cluster-reader permission to view the usage statistics.
  • Metrics must be installed to view the usage statistics.

Procedure

  • To view the usage statistics:

    $ oc adm top nodes
    
    NAME                                   CPU(cores)   CPU%      MEMORY(bytes)   MEMORY%
    ip-10-0-12-143.ec2.compute.internal    1503m        100%      4533Mi          61%
    ip-10-0-132-16.ec2.compute.internal    76m          5%        1391Mi          18%
    ip-10-0-140-137.ec2.compute.internal   398m         26%       2473Mi          33%
    ip-10-0-142-44.ec2.compute.internal    656m         43%       6119Mi          82%
    ip-10-0-146-165.ec2.compute.internal   188m         12%       3367Mi          45%
    ip-10-0-19-62.ec2.compute.internal     896m         59%       5754Mi          77%
    ip-10-0-44-193.ec2.compute.internal    632m         42%       5349Mi          72%
  • To view the usage statistics for nodes with labels:

    $ oc adm top node --selector=''

    You must choose the selector (label query) to filter on. Supports =, ==, and !=.

4.2. Working with nodes

As an administrator, you can perform a number of tasks to make your clusters more efficient.

4.2.1. Understanding how to evacuate pods on nodes

Evacuating pods allows you to migrate all or selected pods from a given node or nodes.

You can only evacuate pods backed by a replication controller. The replication controller creates new pods on other nodes and removes the existing pods from the specified node(s).

Bare pods, meaning those not backed by a replication controller, are unaffected by default. You can evacuate a subset of pods by specifying a pod-selector. Pod selectors are based on labels, so all the pods with the specified label will be evacuated.

Note

Nodes must first be marked unschedulable to perform pod evacuation.

$ oc adm cordon <node1>
NAME        STATUS                        ROLES     AGE       VERSION
<node1>     NotReady,SchedulingDisabled   worker   1d        v1.14.6+c4799753c

Use oc adm uncordon to mark the node as schedulable when done.

$ oc adm uncordon <node1>
  • The following command evacuates all or selected pods on one or more nodes:

    $ oc adm drain <node1> <node2> [--pod-selector=<pod_selector>]
  • The following command forces deletion of bare pods using the --force option. When set to true, deletion continues even if there are pods not managed by a replication controller, ReplicaSet, job, daemonset, or StatefulSet:

    $ oc adm drain <node1> <node2> --force=true
  • The following command sets a period of time in seconds for each pod to terminate gracefully, use --grace-period. If negative, the default value specified in the pod will be used:

    $ oc adm drain <node1> <node2> --grace-period=-1
  • The following command ignores DaemonSet-managed pods using the --ignore-daemonsets flag set to true:

    $ oc adm drain <node1> <node2> --ignore-daemonsets=true
  • The following command sets the length of time to wait before giving up using the --timeout flag. A value of 0 sets an infinite length of time:

    $ oc adm drain <node1> <node2> --timeout=5s
  • The following command deletes pods even if there are pods using emptyDir using the --delete-local-data flag set to true. Local data is deleted when the node is drained:

    $ oc adm drain <node1> <node2> --delete-local-data=true
  • The following command lists objects that will be migrated without actually performing the evacuation, using the --dry-run option set to true:

    $ oc adm drain <node1> <node2>  --dry-run=true

    Instead of specifying specific node names (for example, <node1> <node2>), you can use the --selector=<node_selector> option to evacuate pods on selected nodes.

4.2.2. Understanding how to update labels on nodes

You can update any label on a node.

Node labels are not persisted after a node is deleted even if the node is backed up by a Machine.

Note

Any change to a MachineSet is not applied to existing machines owned by the MachineSet. For example, labels edited or added to an existing MachineSet are not propagated to existing machines and Nodes associated with the MachineSet.

  • The following command adds or updates labels on a node:

    $ oc label node <node> <key_1>=<value_1> ... <key_n>=<value_n>

    For example:

    $ oc label nodes webconsole-7f7f6 unhealthy=true
  • The following command updates all pods in the namespace:

    $ oc label pods --all <key_1>=<value_1>

    For example:

    $ oc label pods --all status=unhealthy

4.2.3. Understanding how to mark nodes as unschedulable or schedulable

By default, healthy nodes with a Ready status are marked as schedulable, meaning that new pods are allowed for placement on the node. Manually marking a node as unschedulable blocks any new pods from being scheduled on the node. Existing pods on the node are not affected.

  • The following command marks a node or nodes as unschedulable:

    $ oc adm cordon <node>

    For example:

    $ oc adm cordon node1.example.com
    node/node1.example.com cordoned
    
    NAME                 LABELS                                        STATUS
    node1.example.com    kubernetes.io/hostname=node1.example.com      Ready,SchedulingDisabled
  • The following command marks a currently unschedulable node or nodes as schedulable:

    $ oc adm uncordon <node1>

    Alternatively, instead of specifying specific node names (for example, <node>), you can use the --selector=<node_selector> option to mark selected nodes as schedulable or unschedulable.

4.2.4. Configuring master nodes as schedulable

As of OpenShift Container Platform 4.2, you can configure master nodes to be schedulable, meaning that new Pods are allowed for placement on the master nodes. By default, master nodes are not schedulable. However, if your cluster does not contain any worker nodes, then master nodes are marked schedulable by default.

Important

In version 4.2, the ability to create a cluster that does not have worker nodes is available to only clusters that are deployed on bare metal as a technology preview. For all other cluster types, you can set the masters to be schedulable but must retain worker nodes.

You can allow or disallow master nodes to be schedulable by configuring the mastersSchedulable field.

Procedure

  1. Edit the schedulers.config.openshift.io resource.

    $ oc edit schedulers.config.openshift.io cluster
  2. Configure the mastersSchedulable field.

    apiVersion: config.openshift.io/v1
    kind: Scheduler
    metadata:
      creationTimestamp: "2019-09-10T03:04:05Z"
      generation: 1
      name: cluster
      resourceVersion: "433"
      selfLink: /apis/config.openshift.io/v1/schedulers/cluster
      uid: a636d30a-d377-11e9-88d4-0a60097bee62
    spec:
      mastersSchedulable: false 1
      policy:
        name: ""
    status: {}
    1
    Set to true to allow master nodes to be schedulable, or false to disallow master nodes to be schedulable.
  3. Save the file to apply the changes.

4.2.5. Deleting nodes

4.2.5.1. Deleting nodes from a cluster

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the Pods that exist on the node are not deleted. Any bare Pods not backed by a replication controller become inaccessible to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other available nodes. You must delete local manifest Pods.

Procedure

To delete a node from the OpenShift Container Platform cluster, edit the appropriate MachineSet:

Note

If you are running cluster on bare metal, you cannot delete a node by editing MachineSets. MachineSets are only available when a cluster is integrated with a cloud provider. Instead you must unschedule and drain the node before manually deleting it.

  1. View the MachineSets that are in the cluster:

    $ oc get machinesets -n openshift-machine-api

    The MachineSets are listed in the form of <clusterid>-worker-<aws-region-az>.

  2. Scale the MachineSet:

    $ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

For more information on scaling your cluster using a MachineSet, see Manually scaling a MachineSet.

4.2.5.2. Deleting nodes from a bare metal cluster

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the Pods that exist on the node are not deleted. Any bare Pods not backed by a replication controller become inaccessible to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other available nodes. You must delete local manifest Pods.

Procedure

Delete a node from a OpenShift Container Platform cluster running on bare metal by completing the following steps:

  1. Mark the node as unschedulable:

    $ oc adm cordon <node_name>
  2. Drain all Pods on your node:

    $ oc adm drain <node_name> --force=true
  3. Delete your node from the cluster:

    $ oc adm delete node <node_name>

Although the node object is now deleted from the cluster, it can still rejoin the cluster after reboot or if the kubelet service is restarted. To permanently delete the node and all its data, you must decommission the node.

4.2.6. Adding kernel arguments to Nodes

In some special cases, you might want to add kernel arguments to a set of nodes in your cluster. This should only be done with caution and clear understanding of the implications of the arguments you set.

Warning

Improper use of kernel arguments can result in your systems becoming unbootable.

Examples of kernel arguments you could set include:

  • selinux=0: Disables Security Enhanced Linux (SELinux). While not recommended for production, disabling SELinux can improve performance by 2% - 3%.
  • nosmt: Disables symmetric multithreading (SMT) in the kernel. Multithreading allows multiple logical threads for each CPU. You could consider nosmt in multi-tenant environments to reduce risks from potential cross-thread attacks. By disabling SMT, you essentially choose security over performance.

See Kernel.org kernel parameters for a list and descriptions of kernel arguments.

In the following procedure, you create a MachineConfig that identifies:

  • A set of machines to which you want to add the kernel argument. In this case, machines with a worker role.
  • Kernel arguments that are appended to the end of the existing kernel arguments.
  • A label that indicates where in the list of MachineConfigs the change is applied.

Prerequisites

  • Have administrative privilege to a working OpenShift Container Platform cluster.

Procedure

  1. List existing MachineConfigs for your OpenShift Container Platform cluster to determine how to label your MachineConfig:

    $ oc get MachineConfig
    NAME                                                        GENERATEDBYCONTROLLER                      IGNITIONVERSION   CREATED
    00-master                                                   577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             30m
    00-worker                                                   577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             30m
    01-master-container-runtime                                 577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             30m
    01-master-kubelet                                           577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             30m
    01-worker-container-runtime                                 577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             30m
    01-worker-kubelet                                           577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             30m
    99-master-1131169f-dae9-11e9-b5dd-12a845e8ffd8-registries   577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             30m
    99-master-ssh                                                                                          2.2.0             30m
    99-worker-114e8ac7-dae9-11e9-b5dd-12a845e8ffd8-registries   577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             30m
    99-worker-ssh                                                                                          2.2.0             30m
    rendered-master-b3729e5f6124ca3678188071343115d0            577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             30m
    rendered-worker-18ff9506c718be1e8bd0a066850065b7            577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             30m
  2. Create a MachineConfig file that identifies the kernel argument (for example, 05-worker-kernelarg-selinuxoff.yaml)

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfig
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker1
      name: 05-worker-kernelarg-selinuxoff2
    spec:
      config:
        ignition:
          version: 2.2.0
      kernelArguments:
        - selinux=03
    1
    Applies the new kernel argument only to worker nodes.
    2
    Named to identify where it fits among the MachineConfigs (05) and what it does (adds a kernel argument to turn off SELinux).
    3
    Identifies the exact kernel argument as selinux=0.
  3. Create the new MachineConfig:

    $ oc create -f 05-worker-kernelarg-selinuxoff.yaml
  4. Check the MachineConfigs to see that the new one was added:

    $ oc get MachineConfig
    NAME                                                        GENERATEDBYCONTROLLER                      IGNITIONVERSION   CREATED
    00-master                                                   577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             31m
    00-worker                                                   577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             31m
    01-master-container-runtime                                 577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             31m
    01-master-kubelet                                           577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             31m
    01-worker-container-runtime                                 577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             31m
    01-worker-kubelet                                           577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             31m
    
    05-worker-kernelarg-selinuxoff                                                                         2.2.0             105s
    
    99-master-1131169f-dae9-11e9-b5dd-12a845e8ffd8-registries   577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             31m
    99-master-ssh                                                                                          2.2.0             30m
    99-worker-114e8ac7-dae9-11e9-b5dd-12a845e8ffd8-registries   577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             31m
    99-worker-ssh                                                                                          2.2.0             31m
    rendered-master-b3729e5f6124ca3678188071343115d0            577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             31m
    rendered-worker-18ff9506c718be1e8bd0a066850065b7            577c2d527b09cd7a481a162c50592139caa15e20   2.2.0             31m
  5. Check the nodes:

    $ oc get node
    NAME                           STATUS                     ROLES    AGE   VERSION
    ip-10-0-136-161.ec2.internal   Ready                      worker   28m   v1.14.6+90fadebfa
    ip-10-0-136-243.ec2.internal   Ready                      master   34m   v1.14.6+90fadebfa
    ip-10-0-141-105.ec2.internal   Ready,SchedulingDisabled   worker   28m   v1.14.6+90fadebfa
    ip-10-0-142-249.ec2.internal   Ready                      master   34m   v1.14.6+90fadebfa
    ip-10-0-153-11.ec2.internal    Ready                      worker   28m   v1.14.6+90fadebfa
    ip-10-0-153-150.ec2.internal   Ready                      master   34m   v1.14.6+90fadebfa

    You can see that scheduling on each worker node is disabled as the change is being applied.

  6. Check that the kernel argument worked by going to one of the worker nodes and listing the kernel command line arguments (in /proc/cmdline on the host):

    $ oc debug node/ip-10-0-141-105.ec2.internal
    Starting pod/ip-10-0-141-105ec2internal-debug ...
    To use host binaries, run `chroot /host`
    
    sh-4.2# cat /host/proc/cmdline
    BOOT_IMAGE=/ostree/rhcos-... console=tty0 console=ttyS0,115200n8
    rootflags=defaults,prjquota rw root=UUID=fd0... ostree=/ostree/boot.0/rhcos/16...
    coreos.oem.id=qemu coreos.oem.id=ec2 ignition.platform.id=ec2 selinux=0
    
    sh-4.2# exit

    You should see the selinux=0 argument added to the other kernel arguments.

4.2.7. Additional resources

For more information on scaling your cluster using a MachineSet, see Manually scaling a MachineSet.

4.3. Managing Nodes

OpenShift Container Platform uses a KubeletConfig Custom Resource to manage the configuration of nodes. By creating an instance of a KubeletConfig, a managed MachineConfig is created to override setting on the node.

Note

Logging in to remote machines for the purpose of changing their configuration is not supported.

4.3.1. Modifying Nodes

To make configuration changes to a cluster, or MachinePool, you must create a Custom Resource Definition, or KubeletConfig instance. OpenShift Container Platform uses the Machine Config Controller to watch for changes introduced through the CRD applies the changes to the cluster.

Procedure

  1. Obtain the label associated with the static CRD, Machine Config Pool, for the type of node you want to configure. Perform one of the following steps:

    1. Check current labels of the desired machineconfigpool.

      For example:

      $  oc get machineconfigpool  --show-labels
      NAME      CONFIG                                             UPDATED   UPDATING   DEGRADED   LABELS
      master    rendered-master-e05b81f5ca4db1d249a1bf32f9ec24fd   True      False      False      operator.machineconfiguration.openshift.io/required-for-upgrade=
      worker    rendered-worker-f50e78e1bc06d8e82327763145bfcf62   True      False      False
    2. Add a custom label to the desired machineconfigpool.

      For example:

      $ oc label machineconfigpool worker custom-kubelet=enabled
  2. Create a KubeletConfig Custom Resource (CR) for your configuration change.

    For example:

    Sample configuration for a custom-config CR

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: custom-config 1
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: enabled 2
      kubeletConfig: 3
        podsPerCore: 10
        maxPods: 250
        systemReserved:
          cpu: 1000m
          memory: 500Mi
        kubeReserved:
          cpu: 1000m
          memory: 500Mi

    1
    Assign a name to CR.
    2
    Specify the label to apply the configuration change, this is the label you added to the machineconfigpool.
    3
    Specify the new value(s) you want to change.
  3. Create the CR object.

    $ oc create -f <file-name>

    For example:

    $ oc create -f master-kube-config.yaml

Most KubeletConfig Options may be set by the user. The following options are not allowed to be overwritten:

  • CgroupDriver
  • ClusterDNS
  • ClusterDomain
  • RuntimeRequestTimeout
  • StaticPodPath

4.4. Managing the maximum number of Pods per Node

In OpenShift Container Platform, you can configure the number of pods that can run on a node based on the number of processor cores on the node, a hard limit or both. If you use both options, the lower of the two limits the number of pods on a node.

Exceeding these values can result in:

  • Increased CPU utilization by OpenShift Container Platform.
  • Slow pod scheduling.
  • Potential out-of-memory scenarios, depending on the amount of memory in the node.
  • Exhausting the IP address pool.
  • Resource overcommitting, leading to poor user application performance.
Note

A pod that is holding a single container actually uses two containers. The second container sets up networking prior to the actual container starting. As a result, a node running 10 pods actually has 20 containers running.

The podsPerCore parameter limits the number of pods the node can run based on the number of processor cores on the node. For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum number of pods allowed on the node is 40.

The maxPods parameter limits the number of pods the node can run to a fixed value, regardless of the properties of the node.

4.4.1. Configuring the maximum number of Pods per Node

Two parameters control the maximum number of pods that can be scheduled to a node: podsPerCore and maxPods. If you use both options, the lower of the two limits the number of pods on a node.

For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum number of pods allowed on the node will be 40.

Prerequisite

  1. Obtain the label associated with the static Machine Config Pool CRD for the type of node you want to configure. Perform one of the following steps:

    1. View the Machine Config Pool:

      $ oc describe machineconfigpool <name>

      For example:

      $ oc describe machineconfigpool worker
      
      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfigPool
      metadata:
        creationTimestamp: 2019-02-08T14:52:39Z
        generation: 1
        labels:
          custom-kubelet: small-pods 1
      1
      If a label has been added it appears under labels.
    2. If the label is not present, add a key/value pair:

      $ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

  1. Create a Custom Resource (CR) for your configuration change.

    Sample configuration for a max-pods CR

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-max-pods 1
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: small-pods 2
      kubeletConfig:
        podsPerCore: 10 3
        maxPods: 250 4

    1
    Assign a name to CR.
    2
    Specify the label to apply the configuration change.
    3
    Specify the number of pods the node can run based on the number of processor cores on the node.
    4
    Specify the number of pods the node can run to a fixed value, regardless of the properties of the node.
    Note

    Setting podsPerCore to 0 disables this limit.

    In the above example, the default value for podsPerCore is 10 and the default value for maxPods is 250. This means that unless the node has 25 cores or more, by default, podsPerCore will be the limiting factor.

  2. List the Machine Config Pool CRDs to see if the change is applied. The UPDATING column reports True if the change is picked up by the Machine Config Controller:

    $ oc get machineconfigpools
    NAME     CONFIG                        UPDATED   UPDATING   DEGRADED
    master   master-9cc2c72f205e103bb534   False     False      False
    worker   worker-8cecd1236b33ee3f8a5e   False     True       False

    Once the change is complete, the UPDATED column reports True.

    $ oc get machineconfigpools
    NAME     CONFIG                        UPDATED   UPDATING   DEGRADED
    master   master-9cc2c72f205e103bb534   False     True       False
    worker   worker-8cecd1236b33ee3f8a5e   True      False      False

4.5. Using the Node Tuning Operator

Learn about the Node Tuning Operator and how you can use it to manage node-level tuning by orchestrating the tuned daemon.

4.5.1. About the Node Tuning Operator

The Node Tuning Operator helps you manage node-level tuning by orchestrating the tuned daemon. The majority of high-performance applications require some level of kernel tuning. The Node Tuning Operator provides a unified management interface to users of node-level sysctls and more flexibility to add custom tuning specified by user needs. The Operator manages the containerized tuned daemon for OpenShift Container Platform as a Kubernetes DaemonSet. It ensures the custom tuning specification is passed to all containerized tuned daemons running in the cluster in the format that the daemons understand. The daemons run on all nodes in the cluster, one per node.

Node-level settings applied by the containerized tuned daemon are rolled back on an event that triggers a profile change or when the containerized tuned daemon is terminated gracefully by receiving and handling a termination signal.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1 and later.

4.5.2. Accessing an example Node Tuning Operator specification

Use this process to access an example Node Tuning Operator specification.

Procedure

  1. Run:

    $ oc get Tuned/default -o yaml -n openshift-cluster-node-tuning-operator

Note the default CR is meant for delivering standard node-level tuning for the OpenShift Container Platform platform and any custom changes to the default CR will be overwritten by the Operator. For custom tuning, create your own tuned CRs. Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift Container Platform nodes based on node/pod labels and profile priorities.

4.5.3. Custom tuning specification

The custom resource (CR) for the operator has two major sections. The first section, profile:, is a list of tuned profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the operator’s namespace. The existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning specifications are merged and appropriate objects for the containerized tuned daemons are updated.

Profile data

The profile: section lists tuned profiles and their names.

profile:
- name: tuned_profile_1
  data: |
    # Tuned profile specification
    [main]
    summary=Description of tuned_profile_1 profile

    [sysctl]
    net.ipv4.ip_forward=1
    # ... other sysctl's or other tuned daemon plugins supported by the containerized tuned

# ...

- name: tuned_profile_n
  data: |
    # Tuned profile specification
    [main]
    summary=Description of tuned_profile_n profile

    # tuned_profile_n profile settings

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR:

recommend:
- match:                              # optional; if omitted, profile match is assumed unless a profile with a higher matches first
  <match>                             # an optional array
  priority: <priority>                # profile ordering priority, lower numbers mean higher priority (0 is the highest priority)
  profile: <tuned_profile_name>       # e.g. tuned_profile_1

# ...

- match:
  <match>
  priority: <priority>
  profile: <tuned_profile_name>       # e.g. tuned_profile_n

If <match> is omitted, a profile match (for example, true) is assumed.

<match> is an optional array recursively defined as follows:

- label: <label_name>     # node or pod label name
  value: <label_value>    # optional node or pod label value; if omitted, the presence of <label_name> is enough to match
  type: <label_type>      # optional node or pod type ("node" or "pod"); if omitted, "node" is assumed
  <match>                 # an optional <match> array

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is assumed and the profile with the respective <match> section will not be applied or recommended. Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item of the <match> array matches, the entire <match> array evaluates to true. Therefore, the array acts as logical OR operator.

Example

- match:
  - label: tuned.openshift.io/elasticsearch
    match:
    - label: node-role.kubernetes.io/master
    - label: node-role.kubernetes.io/infra
    type: pod
  priority: 10
  profile: openshift-control-plane-es
- match:
  - label: node-role.kubernetes.io/master
  - label: node-role.kubernetes.io/infra
  priority: 20
  profile: openshift-control-plane
- priority: 30
  profile: openshift-node

The CR above is translated for the containerized tuned daemon into its recommend.conf file based on the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and, therefore, it is considered first. The containerized tuned daemon running on a given node looks to see if there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the entire <match> section evaluates as false. If there is such a pod with the label, in order for the <match> section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and no other profile is considered. If the node/pod label combination did not match, the second highest priority profile (openshift-control-plane) is considered. This profile is applied if the containerized tuned pod runs on a node with labels node-role.kubernetes.io/master or node-role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and, therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile with higher priority matches on a given node.

Decision workflow

4.5.4. Default profiles set on a cluster

The following are the default profiles set on a cluster.

apiVersion: tuned.openshift.io/v1alpha1
kind: Tuned
metadata:
  name: default
  namespace: openshift-cluster-node-tuning-operator
spec:
  profile:
  - name: "openshift"
    data: |
      [main]
      summary=Optimize systems running OpenShift (parent profile)
      include=${f:virt_check:virtual-guest:throughput-performance}
      [selinux]
      avc_cache_threshold=8192
      [net]
      nf_conntrack_hashsize=131072
      [sysctl]
      net.ipv4.ip_forward=1
      kernel.pid_max=>131072
      net.netfilter.nf_conntrack_max=1048576
      net.ipv4.neigh.default.gc_thresh1=8192
      net.ipv4.neigh.default.gc_thresh2=32768
      net.ipv4.neigh.default.gc_thresh3=65536
      net.ipv6.neigh.default.gc_thresh1=8192
      net.ipv6.neigh.default.gc_thresh2=32768
      net.ipv6.neigh.default.gc_thresh3=65536
      [sysfs]
      /sys/module/nvme_core/parameters/io_timeout=4294967295
      /sys/module/nvme_core/parameters/max_retries=10
  - name: "openshift-control-plane"
    data: |
      [main]
      summary=Optimize systems running OpenShift control plane
      include=openshift
      [sysctl]
      # ktune sysctl settings, maximizing i/o throughput
      #
      # Minimal preemption granularity for CPU-bound tasks:
      # (default: 1 msec#  (1 + ilog(ncpus)), units: nanoseconds)
      kernel.sched_min_granularity_ns=10000000
      # The total time the scheduler will consider a migrated process
      # "cache hot" and thus less likely to be re-migrated
      # (system default is 500000, i.e. 0.5 ms)
      kernel.sched_migration_cost_ns=5000000
      # SCHED_OTHER wake-up granularity.
      #
      # Preemption granularity when tasks wake up.  Lower the value to
      # improve wake-up latency and throughput for latency critical tasks.
      kernel.sched_wakeup_granularity_ns=4000000
  - name: "openshift-node"
    data: |
      [main]
      summary=Optimize systems running OpenShift nodes
      include=openshift
      [sysctl]
      net.ipv4.tcp_fastopen=3
      fs.inotify.max_user_watches=65536
  - name: "openshift-control-plane-es"
    data: |
      [main]
      summary=Optimize systems running ES on OpenShift control-plane
      include=openshift-control-plane
      [sysctl]
      vm.max_map_count=262144
  - name: "openshift-node-es"
    data: |
      [main]
      summary=Optimize systems running ES on OpenShift nodes
      include=openshift-node
      [sysctl]
      vm.max_map_count=262144
  recommend:
  - profile: "openshift-control-plane-es"
    priority: 10
    match:
    - label: "tuned.openshift.io/elasticsearch"
      type: "pod"
      match:
      - label: "node-role.kubernetes.io/master"
      - label: "node-role.kubernetes.io/infra"

  - profile: "openshift-node-es"
    priority: 20
    match:
    - label: "tuned.openshift.io/elasticsearch"
      type: "pod"

  - profile: "openshift-control-plane"
    priority: 30
    match:
    - label: "node-role.kubernetes.io/master"
    - label: "node-role.kubernetes.io/infra"

  - profile: "openshift-node"
priority: 40

4.5.5. Supported Tuned daemon plug-ins

Excluding the [main] section, the following Tuned plug-ins are supported when using custom profiles defined in the profile: section of the Tuned CR:

  • audio
  • cpu
  • disk
  • eeepc_she
  • modules
  • mounts
  • net
  • scheduler
  • scsi_host
  • selinux
  • sysctl
  • sysfs
  • usb
  • video
  • vm

There is some dynamic tuning functionality provided by some of these plug-ins that is not supported. The following Tuned plug-ins are currently not supported:

  • bootloader
  • script
  • systemd

See Available Tuned Plug-ins and Getting Started with Tuned for more information.

4.6. Understanding node rebooting

To reboot a node without causing an outage for applications running on the platform, it is important to first evacuate the pods. For pods that are made highly available by the routing tier, nothing else needs to be done. For other pods needing storage, typically databases, it is critical to ensure that they can remain in operation with one pod temporarily going offline. While implementing resiliency for stateful pods is different for each application, in all cases it is important to configure the scheduler to use node anti-affinity to ensure that the pods are properly spread across available nodes.

Another challenge is how to handle nodes that are running critical infrastructure such as the router or the registry. The same node evacuation process applies, though it is important to understand certain edge cases.

4.6.1. Understanding infrastructure node rebooting

Infrastructure nodes are nodes that are labeled to run pieces of the OpenShift Container Platform environment. Currently, the easiest way to manage node reboots is to ensure that there are at least three nodes available to run infrastructure. The nodes to run the infrastructure are called master nodes.

The scenario below demonstrates a common mistake that can lead to service interruptions for the applications running on OpenShift Container Platform when only two nodes are available.

  • Node A is marked unschedulable and all pods are evacuated.
  • The registry pod running on that node is now redeployed on node B. This means node B is now running both registry pods.
  • Node B is now marked unschedulable and is evacuated.
  • The service exposing the two pod endpoints on node B, for a brief period of time, loses all endpoints until they are redeployed to node A.

The same process using three master nodes for infrastructure does not result in a service disruption. However, due to pod scheduling, the last node that is evacuated and brought back in to rotation is left running zero registries. The other two nodes will run two and one registries respectively. The best solution is to rely on pod anti-affinity.

4.6.2. Rebooting a node using pod anti-affinity

Pod anti-affinity is slightly different than node anti-affinity. Node anti-affinity can be violated if there are no other suitable locations to deploy a pod. Pod anti-affinity can be set to either required or preferred.

With this in place, if only two infrastructure nodes are available and one is rebooted, the container image registry pod is prevented from running on the other node. oc get pods reports the pod as unready until a suitable node is available. Once a node is available and all pods are back in ready state, the next node can be restarted.

Procedure

To reboot a node using pod anti-affinity:

  1. Edit the node specification to configure pod anti-affinity:

    apiVersion: v1
    kind: Pod
    metadata:
      name: with-pod-antiaffinity
    spec:
      affinity:
        podAntiAffinity: 1
          preferredDuringSchedulingIgnoredDuringExecution: 2
          - weight: 100 3
            podAffinityTerm:
              labelSelector:
                matchExpressions:
                - key: registry 4
                  operator: In 5
                  values:
                  - default
              topologyKey: kubernetes.io/hostname
    1
    Stanza to configure pod anti-affinity.
    2
    Defines a preferred rule.
    3
    Specifies a weight for a preferred rule. The node with the highest weight is preferred.
    4
    Description of the pod label that determines when the anti-affinity rule applies. Specify a key and value for the label.
    5
    The operator represents the relationship between the label on the existing pod and the set of values in the matchExpression parameters in the specification for the new pod. Can be In, NotIn, Exists, or DoesNotExist.

    This example assumes the container image registry pod has a label of registry=default. Pod anti-affinity can use any Kubernetes match expression.

  2. Enable the MatchInterPodAffinity scheduler predicate in the scheduling policy file.

4.6.3. Understanding how to reboot nodes running routers

In most cases, a pod running an OpenShift Container Platform router exposes a host port.

The PodFitsPorts scheduler predicate ensures that no router pods using the same port can run on the same node, and pod anti-affinity is achieved. If the routers are relying on IP failover for high availability, there is nothing else that is needed.

For router pods relying on an external service such as AWS Elastic Load Balancing for high availability, it is that service’s responsibility to react to router pod restarts.

In rare cases, a router pod may not have a host port configured. In those cases, it is important to follow the recommended restart process for infrastructure nodes.

4.7. Freeing node resources using garbage collection

As an administrator, you can use OpenShift Container Platform to ensure that your nodes are running efficiently by freeing up resources through garbage collection.

The OpenShift Container Platform node performs two types of garbage collection:

  • Container garbage collection: Removes terminated containers.
  • Image garbage collection: Removes images not referenced by any running pods.

4.7.1. Understanding how terminated containers are removed though garbage collection

Container garbage collection can be performed using eviction thresholds.

When eviction thresholds are set for garbage collection, the node tries to keep any container for any pod accessible from the API. If the pod has been deleted, the containers will be as well. Containers are preserved as long the pod is not deleted and the eviction threshold is not reached. If the node is under disk pressure, it will remove containers and their logs will no longer be accessible using oc logs.

  • eviction-soft - A soft eviction threshold pairs an eviction threshold with a required administrator-specified grace period.
  • eviction-hard - A hard eviction threshold has no grace period, and if observed, OpenShift Container Platform takes immediate action.

If a node is oscillating above and below a soft eviction threshold, but not exceeding its associated grace period, the corresponding node would constantly oscillate between true and false. As a consequence, the scheduler could make poor scheduling decisions.

To protect against this oscillation, use the eviction-pressure-transition-period flag to control how long OpenShift Container Platform must wait before transitioning out of a pressure condition. OpenShift Container Platform will not set an eviction threshold as being met for the specified pressure condition for the period specified before toggling the condition back to false.

4.7.2. Understanding how images are removed though garbage collection

Image garbage collection relies on disk usage as reported by cAdvisor on the node to decide which images to remove from the node.

The policy for image garbage collection is based on two conditions:

  • The percent of disk usage (expressed as an integer) which triggers image garbage collection. The default is 85.
  • The percent of disk usage (expressed as an integer) to which image garbage collection attempts to free. Default is 80.

For image garbage collection, you can modify any of the following variables using a Custom Resource.

Table 4.2. Variables for configuring image garbage collection
SettingDescription

imageMinimumGCAge

The minimum age for an unused image before the image is removed by garbage collection. The default is 2m.

imageGCHighThresholdPercent

The percent of disk usage, expressed as an integer, which triggers image garbage collection. The default is 85.

imageGCLowThresholdPercent

The percent of disk usage, expressed as an integer, to which image garbage collection attempts to free. The default is 80.

Two lists of images are retrieved in each garbage collector run:

  1. A list of images currently running in at least one pod.
  2. A list of images available on a host.

As new containers are run, new images appear. All images are marked with a time stamp. If the image is running (the first list above) or is newly detected (the second list above), it is marked with the current time. The remaining images are already marked from the previous spins. All images are then sorted by the time stamp.

Once the collection starts, the oldest images get deleted first until the stopping criterion is met.

4.7.3. Configuring garbage collection for containers and images

As an administrator, you can configure how OpenShift Container Platform performs garbage collection by creating a kubeletConfig object for each Machine Config Pool.

Note

OpenShift Container Platform supports only one kubeletConfig object for each Machine Config Pool.

You can configure any combination of the following:

  • soft eviction for containers
  • hard eviction for containers
  • eviction for images

For soft container eviction you can also configure a grace period before eviction.

Prerequisites

  1. Obtain the label associated with the static Machine Config Pool CRD for the type of node you want to configure. Perform one of the following steps:

    1. View the Machine Config Pool:

      $ oc describe machineconfigpool <name>

      For example:

      $ oc describe machineconfigpool worker
      
      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfigPool
      metadata:
        creationTimestamp: 2019-02-08T14:52:39Z
        generation: 1
        labels:
          custom-kubelet: small-pods 1
      1
      If a label has been added it appears under labels.
    2. If the label is not present, add a key/value pair:

      $ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

  1. Create a Custom Resource (CR) for your configuration change.

    Sample configuration for a container garbage collection CR:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: worker-kubeconfig 1
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: small-pods 2
      kubeletConfig:
        evictionSoft: 3
          memory.available: "500Mi" 4
          nodefs.available: "10%"
          nodefs.inodesFree: "5%"
          imagefs.available: "15%"
          imagefs.inodesFree: "10%"
        evictionSoftGracePeriod:  5
          memory.available: "1m30s"
          nodefs.available: "1m30s"
          nodefs.inodesFree: "1m30s"
          imagefs.available: "1m30s"
          imagefs.inodesFree: "1m30s"
        evictionHard:
          memory.available: "200Mi"
          nodefs.available: "5%"
          nodefs.inodesFree: "4%"
          imagefs.available: "10%"
          imagefs.inodesFree: "5%"
        evictionPressureTransitionPeriod: 0s 6
        imageMinimumGCAge: 5m 7
        imageGCHighThresholdPercent: 80 8
        imageGCLowThresholdPercent: 75 9

    1
    Name for the object.
    2
    Selector label.
    3
    Type of eviction: EvictionSoft and EvictionHard.
    4
    Eviction thresholds based on a specific eviction trigger signal.
    5
    Grace periods for the soft eviction. This parameter does not apply to eviction-hard.
    6
    The duration to wait before transitioning out of an eviction pressure condition
    7
    The minimum age for an unused image before the image is removed by garbage collection.
    8
    The percent of disk usage (expressed as an integer) which triggers image garbage collection.
    9
    The percent of disk usage (expressed as an integer) to which image garbage collection attempts to free.
  2. Create the object:

    $ oc create -f <file-name>.yaml

    For example:

    oc create -f gc-container.yaml
    
    kubeletconfig.machineconfiguration.openshift.io/gc-container created
  3. Verify that garbage collection is active. The Machine Config Pool you specified in the custom resource appears with UPDATING as 'true` until the change is fully implemented:

    $ oc get machineconfigpool
    
    NAME     CONFIG                                   UPDATED   UPDATING
    master   rendered-master-546383f80705bd5aeaba93   True      False
    worker   rendered-worker-b4c51bb33ccaae6fc4a6a5   False     True

4.8. Allocating resources for nodes in an OpenShift Container Platform cluster

To provide more reliable scheduling and minimize node resource overcommitment, each node can reserve a portion of its resources for use by all underlying node components (such as kubelet, kube-proxy) and the remaining system components (such as sshd, NetworkManager) on the host. Once specified, the scheduler has more information about the resources (e.g., memory, CPU) a node has allocated for pods.

4.8.1. Understanding how to allocate resources for nodes

CPU and memory resources reserved for node components in OpenShift Container Platform are based on two node settings:

SettingDescription

kube-reserved

Resources reserved for node components. Default is none.

system-reserved

Resources reserved for the remaining system components. Default is none.

If a flag is not set, it defaults to 0. If none of the flags are set, the allocated resource is set to the node’s capacity as it was before the introduction of allocatable resources.

4.8.1.1. How OpenShift Container Platform computes allocated resources

An allocated amount of a resource is computed based on the following formula:

[Allocatable] = [Node Capacity] - [kube-reserved] - [system-reserved] - [Hard-Eviction-Thresholds]
Note

The withholding of Hard-Eviction-Thresholds from allocatable is a change in behavior to improve system reliability now that allocatable is enforced for end-user pods at the node level. The experimental-allocatable-ignore-eviction setting is available to preserve legacy behavior, but it will be deprecated in a future release.

If [Allocatable] is negative, it is set to 0.

Each node reports system resources utilized by the container runtime and kubelet. To better aid your ability to configure --system-reserved and --kube-reserved, you can introspect corresponding node’s resource usage using the node summary API, which is accessible at <master>/api/v1/nodes/<node>/proxy/stats/summary.

4.8.1.2. How nodes enforce resource constraints

The node is able to limit the total amount of resources that pods may consume based on the configured allocatable value. This feature significantly improves the reliability of the node by preventing pods from starving system services (for example: container runtime, node agent, etc.) for resources. It is strongly encouraged that administrators reserve resources based on the desired node utilization target in order to improve node reliability.

The node enforces resource constraints using a new cgroup hierarchy that enforces quality of service. All pods are launched in a dedicated cgroup hierarchy separate from system daemons.

Optionally, the node can be made to enforce kube-reserved and system-reserved by specifying those tokens in the enforce-node-allocatable flag. If specified, the corresponding --kube-reserved-cgroup or --system-reserved-cgroup needs to be provided. In future releases, the node and container runtime will be packaged in a common cgroup separate from system.slice. Until that time, we do not recommend users change the default value of enforce-node-allocatable flag.

Administrators should treat system daemons similar to Guaranteed pods. System daemons can burst within their bounding control groups and this behavior needs to be managed as part of cluster deployments. Enforcing system-reserved limits can lead to critical system services being CPU starved or OOM killed on the node. The recommendation is to enforce system-reserved only if operators have profiled their nodes exhaustively to determine precise estimates and are confident in their ability to recover if any process in that group is OOM killed.

As a result, we strongly recommended that users only enforce node allocatable for pods by default, and set aside appropriate reservations for system daemons to maintain overall node reliability.

4.8.1.3. Understanding Eviction Thresholds

If a node is under memory pressure, it can impact the entire node and all pods running on it. If a system daemon is using more than its reserved amount of memory, an OOM event may occur that can impact the entire node and all pods running on it. To avoid (or reduce the probability of) system OOMs the node provides out-of-resource handling.

You can reserve some memory using the --eviction-hard flag. The node attempts to evict pods whenever memory availability on the node drops below the absolute value or percentage. If system daemons do not exist on a node, pods are limited to the memory capacity - eviction-hard. For this reason, resources set aside as a buffer for eviction before reaching out of memory conditions are not available for pods.

The following is an example to illustrate the impact of node allocatable for memory:

  • Node capacity is 32Gi
  • --kube-reserved is 2Gi
  • --system-reserved is 1Gi
  • --eviction-hard is set to 100Mi.

For this node, the effective node allocatable value is 28.9Gi. If the node and system components use up all their reservation, the memory available for pods is 28.9Gi, and kubelet will evict pods when it exceeds this usage.

If you enforce node allocatable (28.9Gi) via top level cgroups, then pods can never exceed 28.9Gi. Evictions would not be performed unless system daemons are consuming more than 3.1Gi of memory.

If system daemons do not use up all their reservation, with the above example, pods would face memcg OOM kills from their bounding cgroup before node evictions kick in. To better enforce QoS under this situation, the node applies the hard eviction thresholds to the top-level cgroup for all pods to be Node Allocatable + Eviction Hard Thresholds.

If system daemons do not use up all their reservation, the node will evict pods whenever they consume more than 28.9Gi of memory. If eviction does not occur in time, a pod will be OOM killed if pods consume 29Gi of memory.

4.8.1.4. How the scheduler determines resource availability

The scheduler uses the value of node.Status.Allocatable instead of node.Status.Capacity to decide if a node will become a candidate for pod scheduling.

By default, the node will report its machine capacity as fully schedulable by the cluster.

4.8.2. Configuring allocated resources for nodes

OpenShift Container Platform supports the CPU and memory resource types for allocation. If your administrator enabled the ephemeral storage technology preview, the ephemeral-resource resource type is supported as well. For the cpu type, the resource quantity is specified in units of cores, such as 200m, 0.5, or 1. For memory and ephemeral-storage, it is specified in units of bytes, such as 200Ki, 50Mi, or 5Gi.

As an administrator, you can set these using a Custom Resource (CR) through a set of <resource_type>=<resource_quantity> pairs (e.g., cpu=200m,memory=512Mi).

Prerequisites

  1. To help you determine setting for --system-reserved and --kube-reserved you can introspect the corresponding node’s resource usage using the node summary API, which is accessible at <master>/api/v1/nodes/<node>/proxy/stats/summary. Run the following command for your node:

    $ curl <certificate details> https://<master>/api/v1/nodes/<node-name>/proxy/stats/summary

    The REST API Overview has details about certificate details.

    For example, to access the resources from cluster.node22 node, you can run:

    $ curl <certificate details> https://<master>/api/v1/nodes/cluster.node22/proxy/stats/summary
    {
        "node": {
            "nodeName": "cluster.node22",
            "systemContainers": [
                {
                    "cpu": {
                        "usageCoreNanoSeconds": 929684480915,
                        "usageNanoCores": 190998084
                    },
                    "memory": {
                        "rssBytes": 176726016,
                        "usageBytes": 1397895168,
                        "workingSetBytes": 1050509312
                    },
                    "name": "kubelet"
                },
                {
                    "cpu": {
                        "usageCoreNanoSeconds": 128521955903,
                        "usageNanoCores": 5928600
                    },
                    "memory": {
                        "rssBytes": 35958784,
                        "usageBytes": 129671168,
                        "workingSetBytes": 102416384
                    },
                    "name": "runtime"
                }
            ]
        }
    }
  2. Obtain the label associated with the static Machine Config Pool CRD for the type of node you want to configure. Perform one of the following steps:

    1. View the Machine Config Pool:

      $ oc describe machineconfigpool <name>

      For example:

      $ oc describe machineconfigpool worker
      
      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfigPool
      metadata:
        creationTimestamp: 2019-02-08T14:52:39Z
        generation: 1
        labels:
          custom-kubelet: small-pods 1
      1
      If a label has been added it appears under labels.
    2. If the label is not present, add a key/value pair:

      $ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

  1. Create a Custom Resource (CR) for your configuration change.

    Sample configuration for a resource allocation CR

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-allocatable 1
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: small-pods 2
      kubeletConfig:
        systemReserved:
          cpu: 500m
          memory: 512Mi
        kubeReserved:
          cpu: 500m
          memory: 512Mi

4.9. Viewing node audit logs

Audit provides a security-relevant chronological set of records documenting the sequence of activities that have affected system by individual users, administrators, or other components of the system.

4.9.1. About the API audit log

Audit works at the API server level, logging all requests coming to the server. Each audit log contains the following information:

Table 4.3. Audit log fields
FieldDescription

level

The audit level at which the event was generated.

auditID

A unique audit ID, generated for each request.

stage

The stage of the request handling when this event instance was generated.

requestURI

The request URI as sent by the client to a server.

verb

The Kubernetes verb associated with the request. For non-resource requests, this is the lowercase HTTP method.

user

The authenticated user information.

impersonatedUser

Optional. The impersonated user information, if the request is impersonating another user.

sourceIPs

Optional. The source IPs, from where the request originated and any intermediate proxies.

userAgent

Optional. The user agent string reported by the client. Note that the user agent is provided by the client, and must not be trusted.

objectRef

Optional. The object reference this request is targeted at. This does not apply for List-type requests, or non-resource requests.

responseStatus

Optional. The response status, populated even when the ResponseObject is not a Status type. For successful responses, this will only include the code. For non-status type error responses, this will be auto-populated with the error message.

requestObject

Optional. The API object from the request, in JSON format. The RequestObject is recorded as is in the request (possibly re-encoded as JSON), prior to version conversion, defaulting, admission or merging. It is an external versioned object type, and might not be a valid object on its own. This is omitted for non-resource requests and is only logged at request level and higher.

responseObject

Optional. The API object returned in the response, in JSON format. The ResponseObject is recorded after conversion to the external type, and serialized as JSON. This is omitted for non-resource requests and is only logged at response level.

requestReceivedTimestamp

The time that the request reached the API server.

stageTimestamp

The time that the request reached the current audit stage.

annotations

Optional. An unstructured key value map stored with an audit event that may be set by plugins invoked in the request serving chain, including authentication, authorization and admission plugins. Note that these annotations are for the audit event, and do not correspond to the metadata.annotations of the submitted object. Keys should uniquely identify the informing component to avoid name collisions, for example podsecuritypolicy.admission.k8s.io/policy. Values should be short. Annotations are included in the metadata level.

Example output for the Kubernetes API server:

{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"ad209ce1-fec7-4130-8192-c4cc63f1d8cd","stage":"ResponseComplete","requestURI":"/api/v1/namespaces/openshift-kube-controller-manager/configmaps/cert-recovery-controller-lock?timeout=35s","verb":"update","user":{"username":"system:serviceaccount:openshift-kube-controller-manager:localhost-recovery-client","uid":"dd4997e3-d565-4e37-80f8-7fc122ccd785","groups":["system:serviceaccounts","system:serviceaccounts:openshift-kube-controller-manager","system:authenticated"]},"sourceIPs":["::1"],"userAgent":"cluster-kube-controller-manager-operator/v0.0.0 (linux/amd64) kubernetes/$Format","objectRef":{"resource":"configmaps","namespace":"openshift-kube-controller-manager","name":"cert-recovery-controller-lock","uid":"5c57190b-6993-425d-8101-8337e48c7548","apiVersion":"v1","resourceVersion":"574307"},"responseStatus":{"metadata":{},"code":200},"requestReceivedTimestamp":"2020-04-02T08:27:20.200962Z","stageTimestamp":"2020-04-02T08:27:20.206710Z","annotations":{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by ClusterRoleBinding \"system:openshift:operator:kube-controller-manager-recovery\" of ClusterRole \"cluster-admin\" to ServiceAccount \"localhost-recovery-client/openshift-kube-controller-manager\""}}

4.9.2. Viewing the audit log

You can view logs for the OpenShift Container Platform API server or the Kubernetes API server for each master node.

Procedure

To view the audit log:

  1. View the OpenShift Container Platform API server logs

    1. If necessary, get the node name of the log you want to view:

      $ oc adm node-logs --role=master --path=openshift-apiserver/
      
      ip-10-0-140-97.ec2.internal audit-2019-04-09T00-12-19.834.log
      ip-10-0-140-97.ec2.internal audit-2019-04-09T11-13-00.469.log
      ip-10-0-140-97.ec2.internal audit.log
      ip-10-0-153-35.ec2.internal audit-2019-04-09T00-11-49.835.log
      ip-10-0-153-35.ec2.internal audit-2019-04-09T11-08-30.469.log
      ip-10-0-153-35.ec2.internal audit.log
      ip-10-0-170-165.ec2.internal audit-2019-04-09T00-13-00.128.log
      ip-10-0-170-165.ec2.internal audit-2019-04-09T11-10-04.082.log
      ip-10-0-170-165.ec2.internal audit.log
    2. View the OpenShift Container Platform API server log for a specific master node and timestamp or view all the logs for that master:

      $ oc adm node-logs <node-name> --path=openshift-apiserver/<log-name>

      For example:

      $ oc adm node-logs ip-10-0-140-97.ec2.internal --path=openshift-apiserver/audit-2019-04-08T13-09-01.227.log
      $ oc adm node-logs ip-10-0-140-97.ec2.internal --path=openshift-apiserver/audit.log

      The output appears similar to the following:

      {"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"ad209ce1-fec7-4130-8192-c4cc63f1d8cd","stage":"ResponseComplete","requestURI":"/api/v1/namespaces/openshift-kube-controller-manager/configmaps/cert-recovery-controller-lock?timeout=35s","verb":"update","user":{"username":"system:serviceaccount:openshift-kube-controller-manager:localhost-recovery-client","uid":"dd4997e3-d565-4e37-80f8-7fc122ccd785","groups":["system:serviceaccounts","system:serviceaccounts:openshift-kube-controller-manager","system:authenticated"]},"sourceIPs":["::1"],"userAgent":"cluster-kube-controller-manager-operator/v0.0.0 (linux/amd64) kubernetes/$Format","objectRef":{"resource":"configmaps","namespace":"openshift-kube-controller-manager","name":"cert-recovery-controller-lock","uid":"5c57190b-6993-425d-8101-8337e48c7548","apiVersion":"v1","resourceVersion":"574307"},"responseStatus":{"metadata":{},"code":200},"requestReceivedTimestamp":"2020-04-02T08:27:20.200962Z","stageTimestamp":"2020-04-02T08:27:20.206710Z","annotations":{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by ClusterRoleBinding \"system:openshift:operator:kube-controller-manager-recovery\" of ClusterRole \"cluster-admin\" to ServiceAccount \"localhost-recovery-client/openshift-kube-controller-manager\""}}
  2. View the Kubernetes API server logs:

    1. If necessary, get the node name of the log you want to view:

      $ oc adm node-logs --role=master --path=kube-apiserver/
      
      ip-10-0-140-97.ec2.internal audit-2019-04-09T14-07-27.129.log
      ip-10-0-140-97.ec2.internal audit-2019-04-09T19-18-32.542.log
      ip-10-0-140-97.ec2.internal audit.log
      ip-10-0-153-35.ec2.internal audit-2019-04-09T19-24-22.620.log
      ip-10-0-153-35.ec2.internal audit-2019-04-09T19-51-30.905.log
      ip-10-0-153-35.ec2.internal audit.log
      ip-10-0-170-165.ec2.internal audit-2019-04-09T18-37-07.511.log
      ip-10-0-170-165.ec2.internal audit-2019-04-09T19-21-14.371.log
      ip-10-0-170-165.ec2.internal audit.log
    2. View the Kubernetes API server log for a specific master node and timestamp or view all the logs for that master:

      $ oc adm node-logs <node-name> --path=kube-apiserver/<log-name>

      For example:

      $ oc adm node-logs ip-10-0-140-97.ec2.internal --path=kube-apiserver/audit-2019-04-09T14-07-27.129.log
      $ oc adm node-logs ip-10-0-170-165.ec2.internal --path=kube-apiserver/audit.log

      The output appears similar to the following:

      {"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"ad209ce1-fec7-4130-8192-c4cc63f1d8cd","stage":"ResponseComplete","requestURI":"/api/v1/namespaces/openshift-kube-controller-manager/configmaps/cert-recovery-controller-lock?timeout=35s","verb":"update","user":{"username":"system:serviceaccount:openshift-kube-controller-manager:localhost-recovery-client","uid":"dd4997e3-d565-4e37-80f8-7fc122ccd785","groups":["system:serviceaccounts","system:serviceaccounts:openshift-kube-controller-manager","system:authenticated"]},"sourceIPs":["::1"],"userAgent":"cluster-kube-controller-manager-operator/v0.0.0 (linux/amd64) kubernetes/$Format","objectRef":{"resource":"configmaps","namespace":"openshift-kube-controller-manager","name":"cert-recovery-controller-lock","uid":"5c57190b-6993-425d-8101-8337e48c7548","apiVersion":"v1","resourceVersion":"574307"},"responseStatus":{"metadata":{},"code":200},"requestReceivedTimestamp":"2020-04-02T08:27:20.200962Z","stageTimestamp":"2020-04-02T08:27:20.206710Z","annotations":{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by ClusterRoleBinding \"system:openshift:operator:kube-controller-manager-recovery\" of ClusterRole \"cluster-admin\" to ServiceAccount \"localhost-recovery-client/openshift-kube-controller-manager\""}}
Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.