Chapter 1. Installing on Azure
1.1. Configuring an Azure account
Before you can install OpenShift Container Platform, you must configure a Microsoft Azure account.
All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
1.1.1. Azure account limits
The OpenShift Container Platform cluster uses a number of Microsoft Azure components, and the default Azure subscription and service limits, quotas, and constraints affect your ability to install OpenShift Container Platform clusters.
Default limits vary by offer category types, such as Free Trial and Pay-As-You-Go, and by series, such as Dv2, F, and G. For example, the default for Enterprise Agreement subscriptions is 350 cores.
Check the limits for your subscription type and if necessary, increase quota limits for your account before you install a default cluster on Azure.
The following table summarizes the Azure components whose limits can impact your ability to install and run OpenShift Container Platform clusters.
Component | Number of components required by default | Default Azure limit | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
vCPU | 40 | 20 per region | A default cluster requires 40 vCPUs, so you must increase the account limit. By default, each cluster creates the following instances:
Because the bootstrap machine uses To deploy more worker nodes, enable autoscaling, deploy large workloads, or use a different instance type, you must further increase the vCPU limit for your account to ensure that your cluster can deploy the machines that you require. By default, the installation program distributes control plane and compute machines across all availability zones within a region. To ensure high availability for your cluster, select a region with at least three availability zones. If your region contains fewer than three availability zones, the installation program places more than one control plane machine in the available zones. | ||||||
OS Disk | 7 |
VM OS disk must be able to sustain a minimum throughput of 5000 IOPS / 200MBps. This throughput can be provided by having a minimum of 1 TiB Premium SSD (P30). In Azure, disk performance is directly dependent on SSD disk sizes, so to achieve the throughput supported by
Host caching must be set to | |||||||
VNet | 1 | 1000 per region | Each default cluster requires one Virtual Network (VNet), which contains two subnets. | ||||||
Network interfaces | 6 | 65,536 per region | Each default cluster requires six network interfaces. If you create more machines or your deployed workloads create load balancers, your cluster uses more network interfaces. | ||||||
Network security groups | 2 | 5000 | Each default cluster Each cluster creates network security groups for each subnet in the VNet. The default cluster creates network security groups for the control plane and for the compute node subnets:
| ||||||
Network load balancers | 3 | 1000 per region | Each cluster creates the following load balancers:
If your applications create more Kubernetes | ||||||
Public IP addresses | 3 | Each of the two public load balancers uses a public IP address. The bootstrap machine also uses a public IP address so that you can SSH into the machine to troubleshoot issues during installation. The IP address for the bootstrap node is used only during installation. | |||||||
Private IP addresses | 7 | The internal load balancer, each of the three control plane machines, and each of the three worker machines each use a private IP address. | |||||||
Spot VM vCPUs (optional) | 0 If you configure spot VMs, your cluster must have two spot VM vCPUs for every compute node. | 20 per region | This is an optional component. To use spot VMs, you must increase the Azure default limit to at least twice the number of compute nodes in your cluster. Note Using spot VMs for control plane nodes is not recommended. |
1.1.2. Configuring a public DNS zone in Azure
To install OpenShift Container Platform, the Microsoft Azure account you use must have a dedicated public hosted DNS zone in your account. This zone must be authoritative for the domain. This service provides cluster DNS resolution and name lookup for external connections to the cluster.
Procedure
Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through Azure or another source.
NoteFor more information about purchasing domains through Azure, see Buy a custom domain name for Azure App Service in the Azure documentation.
- If you are using an existing domain and registrar, migrate its DNS to Azure. See Migrate an active DNS name to Azure App Service in the Azure documentation.
Configure DNS for your domain. Follow the steps in the Tutorial: Host your domain in Azure DNS in the Azure documentation to create a public hosted zone for your domain or subdomain, extract the new authoritative name servers, and update the registrar records for the name servers that your domain uses.
Use an appropriate root domain, such as
openshiftcorp.com
, or subdomain, such asclusters.openshiftcorp.com
.- If you use a subdomain, follow your company’s procedures to add its delegation records to the parent domain.
1.1.3. Increasing Azure account limits
To increase an account limit, file a support request on the Azure portal.
You can increase only one type of quota per support request.
Procedure
- From the Azure portal, click Help + support in the lower left corner.
Click New support request and then select the required values:
- From the Issue type list, select Service and subscription limits (quotas).
- From the Subscription list, select the subscription to modify.
- From the Quota type list, select the quota to increase. For example, select Compute-VM (cores-vCPUs) subscription limit increases to increase the number of vCPUs, which is required to install a cluster.
- Click Next: Solutions.
On the Problem Details page, provide the required information for your quota increase:
- Click Provide details and provide the required details in the Quota details window.
- In the SUPPORT METHOD and CONTACT INFO sections, provide the issue severity and your contact details.
- Click Next: Review + create and then click Create.
1.1.4. Required Azure roles
OpenShift Container Platform needs a service principal so it can manage Microsoft Azure resources. Before you can create a service principal, your Azure account subscription must have the following roles:
-
User Access Administrator
-
Owner
To set roles on the Azure portal, see the Manage access to Azure resources using RBAC and the Azure portal in the Azure documentation.
1.1.5. Creating a service principal
Because OpenShift Container Platform and its installation program must create Microsoft Azure resources through Azure Resource Manager, you must create a service principal to represent it.
Prerequisites
- Install or update the Azure CLI.
-
Install the
jq
package. - Your Azure account has the required roles for the subscription that you use.
Procedure
Log in to the Azure CLI:
$ az login
Log in to Azure in the web console by using your credentials.
If your Azure account uses subscriptions, ensure that you are using the right subscription.
View the list of available accounts and record the
tenantId
value for the subscription you want to use for your cluster:$ az account list --refresh
Example output
[ { "cloudName": "AzureCloud", "id": "9bab1460-96d5-40b3-a78e-17b15e978a80", "isDefault": true, "name": "Subscription Name", "state": "Enabled", "tenantId": "6057c7e9-b3ae-489d-a54e-de3f6bf6a8ee", "user": { "name": "you@example.com", "type": "user" } } ]
View your active account details and confirm that the
tenantId
value matches the subscription you want to use:$ az account show
Example output
{ "environmentName": "AzureCloud", "id": "9bab1460-96d5-40b3-a78e-17b15e978a80", "isDefault": true, "name": "Subscription Name", "state": "Enabled", "tenantId": "6057c7e9-b3ae-489d-a54e-de3f6bf6a8ee", 1 "user": { "name": "you@example.com", "type": "user" } }
- 1
- Ensure that the value of the
tenantId
parameter is the UUID of the correct subscription.
If you are not using the right subscription, change the active subscription:
$ az account set -s <id> 1
- 1
- Substitute the value of the
id
for the subscription that you want to use for<id>
.
If you changed the active subscription, display your account information again:
$ az account show
Example output
{ "environmentName": "AzureCloud", "id": "33212d16-bdf6-45cb-b038-f6565b61edda", "isDefault": true, "name": "Subscription Name", "state": "Enabled", "tenantId": "8049c7e9-c3de-762d-a54e-dc3f6be6a7ee", "user": { "name": "you@example.com", "type": "user" } }
-
Record the values of the
tenantId
andid
parameters from the previous output. You need these values during OpenShift Container Platform installation. Create the service principal for your account:
$ az ad sp create-for-rbac --role Contributor --name <service_principal> 1
- 1
- Replace
<service_principal>
with the name to assign to the service principal.
Example output
Changing "<service_principal>" to a valid URI of "http://<service_principal>", which is the required format used for service principal names Retrying role assignment creation: 1/36 Retrying role assignment creation: 2/36 Retrying role assignment creation: 3/36 Retrying role assignment creation: 4/36 { "appId": "8bd0d04d-0ac2-43a8-928d-705c598c6956", "displayName": "<service_principal>", "name": "http://<service_principal>", "password": "ac461d78-bf4b-4387-ad16-7e32e328aec6", "tenant": "6048c7e9-b2ad-488d-a54e-dc3f6be6a7ee" }
-
Record the values of the
appId
andpassword
parameters from the previous output. You need these values during OpenShift Container Platform installation. Grant additional permissions to the service principal.
-
You must always add the
Contributor
andUser Access Administrator
roles to the app registration service principal so the cluster can assign credentials for its components. -
To operate the Cloud Credential Operator (CCO) in mint mode, the app registration service principal also requires the
Azure Active Directory Graph/Application.ReadWrite.OwnedBy
API permission. - To operate the CCO in passthrough mode, the app registration service principal does not require additional API permissions.
For more information about CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
To assign the
User Access Administrator
role, run the following command:$ az role assignment create --role "User Access Administrator" \ --assignee-object-id $(az ad sp list --filter "appId eq '<appId>'" \ | jq '.[0].id' -r) 1
- 1
- Replace
<appId>
with theappId
parameter value for your service principal.
To assign the
Azure Active Directory Graph
permission, run the following command:$ az ad app permission add --id <appId> \ 1 --api 00000002-0000-0000-c000-000000000000 \ --api-permissions 824c81eb-e3f8-4ee6-8f6d-de7f50d565b7=Role
- 1
- Replace
<appId>
with theappId
parameter value for your service principal.
Example output
Invoking "az ad app permission grant --id 46d33abc-b8a3-46d8-8c84-f0fd58177435 --api 00000002-0000-0000-c000-000000000000" is needed to make the change effective
For more information about the specific permissions that you grant with this command, see the GUID Table for Windows Azure Active Directory Permissions.
Approve the permissions request. If your account does not have the Azure Active Directory tenant administrator role, follow the guidelines for your organization to request that the tenant administrator approve your permissions request.
$ az ad app permission grant --id <appId> \ 1 --api 00000002-0000-0000-c000-000000000000
- 1
- Replace
<appId>
with theappId
parameter value for your service principal.
-
You must always add the
1.1.6. Supported Azure regions
The installation program dynamically generates the list of available Microsoft Azure regions based on your subscription. The following Azure regions were tested and validated in OpenShift Container Platform version 4.6.1:
Supported Azure public regions
-
australiacentral
(Australia Central) -
australiaeast
(Australia East) -
australiasoutheast
(Australia South East) -
brazilsouth
(Brazil South) -
canadacentral
(Canada Central) -
canadaeast
(Canada East) -
centralindia
(Central India) -
centralus
(Central US) -
eastasia
(East Asia) -
eastus
(East US) -
eastus2
(East US 2) -
francecentral
(France Central) -
germanywestcentral
(Germany West Central) -
japaneast
(Japan East) -
japanwest
(Japan West) -
koreacentral
(Korea Central) -
koreasouth
(Korea South) -
northcentralus
(North Central US) -
northeurope
(North Europe) -
norwayeast
(Norway East) -
southafricanorth
(South Africa North) -
southcentralus
(South Central US) -
southeastasia
(Southeast Asia) -
southindia
(South India) -
switzerlandnorth
(Switzerland North) -
uaenorth
(UAE North) -
uksouth
(UK South) -
ukwest
(UK West) -
westcentralus
(West Central US) -
westeurope
(West Europe) -
westindia
(West India) -
westus
(West US) -
westus2
(West US 2)
Supported Azure Government regions
Support for the following Microsoft Azure Government (MAG) regions was added in OpenShift Container Platform version 4.6:
-
usgovtexas
(US Gov Texas) -
usgovvirginia
(US Gov Virginia)
You can reference all available MAG regions in the Azure documentation. Other provided MAG regions are expected to work with OpenShift Container Platform, but have not been tested.
1.1.7. Next steps
- Install an OpenShift Container Platform cluster on Azure. You can install a customized cluster or quickly install a cluster with default options.
1.2. Manually creating IAM for Azure
In environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace, you can put the Cloud Credential Operator (CCO) into manual mode before you install the cluster.
1.2.1. Alternatives to storing administrator-level secrets in the kube-system project
The Cloud Credential Operator (CCO) manages cloud provider credentials as Kubernetes custom resource definitions (CRDs). You can configure the CCO to suit the security requirements of your organization by setting different values for the credentialsMode
parameter in the install-config.yaml
file.
If you prefer not to store an administrator-level credential secret in the cluster kube-system
project, you can set the credentialsMode
parameter for the CCO to Manual
when installing OpenShift Container Platform and manage your cloud credentials manually.
Using manual mode allows each cluster component to have only the permissions it requires, without storing an administrator-level credential in the cluster. You can also use this mode if your environment does not have connectivity to the cloud provider public IAM endpoint. However, you must manually reconcile permissions with new release images for every upgrade. You must also manually supply credentials for every component that requests them.
Additional resources
- For a detailed description of all available CCO credential modes and their supported platforms, see the Cloud Credential Operator reference.
1.2.2. Manually create IAM
The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace.
Procedure
To generate the manifests, run the following command from the directory that contains the installation program:
$ openshift-install create manifests --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the directory name to store the files that the installation program creates.
Insert a config map into the manifests directory so that the Cloud Credential Operator is placed in manual mode:
$ cat <<EOF > mycluster/manifests/cco-configmap.yaml apiVersion: v1 kind: ConfigMap metadata: name: cloud-credential-operator-config namespace: openshift-cloud-credential-operator annotations: release.openshift.io/create-only: "true" data: disabled: "true" EOF
Remove the
admin
credential secret created using your local cloud credentials. This removal prevents youradmin
credential from being stored in the cluster:$ rm mycluster/openshift/99_cloud-creds-secret.yaml
From the directory that contains the installation program, obtain details of the OpenShift Container Platform release image that your
openshift-install
binary is built to use:$ openshift-install version
Example output
release image quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64
Locate all
CredentialsRequest
objects in this release image that target the cloud you are deploying on:$ oc adm release extract quay.io/openshift-release-dev/ocp-release:4.y.z-x86_64 --credentials-requests --cloud=azure
This displays the details for each request.
Sample
CredentialsRequest
objectapiVersion: cloudcredential.openshift.io/v1 kind: CredentialsRequest metadata: labels: controller-tools.k8s.io: "1.0" name: openshift-image-registry-azure namespace: openshift-cloud-credential-operator spec: secretRef: name: installer-cloud-credentials namespace: openshift-image-registry providerSpec: apiVersion: cloudcredential.openshift.io/v1 kind: AzureProviderSpec roleBindings: - role: Contributor
-
Create YAML files for secrets in the
openshift-install
manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in thespec.secretRef
for eachcredentialsRequest
. The format for the secret data varies for each cloud provider. From the directory that contains the installation program, proceed with your cluster creation:
$ openshift-install create cluster --dir <installation_directory>
ImportantBefore upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state. For details, see the Upgrading clusters with manually maintained credentials section of the installation content for your cloud provider.
1.2.3. Admin credentials root secret format
Each cloud provider uses a credentials root secret in the kube-system
namespace by convention, which is then used to satisfy all credentials requests and create their respective secrets. This is done either by minting new credentials, with mint mode, or by copying the credentials root secret, with passthrough mode.
The format for the secret varies by cloud, and is also used for each CredentialsRequest
secret.
Microsoft Azure secret format
apiVersion: v1 kind: Secret metadata: namespace: kube-system name: azure-credentials stringData: azure_subscription_id: <SubscriptionID> azure_client_id: <ClientID> azure_client_secret: <ClientSecret> azure_tenant_id: <TenantID> azure_resource_prefix: <ResourcePrefix> azure_resourcegroup: <ResourceGroup> azure_region: <Region>
On Microsoft Azure, the credentials secret format includes two properties that must contain the cluster’s infrastructure ID, generated randomly for each cluster installation. This value can be found after running create manifests:
$ cat .openshift_install_state.json | jq '."*installconfig.ClusterID".InfraID' -r
Example output
mycluster-2mpcn
This value would be used in the secret data as follows:
azure_resource_prefix: mycluster-2mpcn azure_resourcegroup: mycluster-2mpcn-rg
1.2.4. Upgrading clusters with manually maintained credentials
If credentials are added in a future release, the Cloud Credential Operator (CCO) upgradable
status for a cluster with manually maintained credentials changes to false
. For minor release, for example, from 4.5 to 4.6, this status prevents you from upgrading until you have addressed any updated permissions. For z-stream releases, for example, from 4.5.10 to 4.5.11, the upgrade is not blocked, but the credentials must still be updated for the new release.
Use the Administrator perspective of the web console to determine if the CCO is upgradeable.
-
Navigate to Administration
Cluster Settings. - To view the CCO status details, click cloud-credential in the Cluster Operators list.
-
If the Upgradeable status in the Conditions section is False, examine the
credentialsRequests
for the new release and update the manually maintained credentials on your cluster to match before upgrading.
In addition to creating new credentials for the release image that you are upgrading to, you must review the required permissions for existing credentials and accommodate any new permissions requirements for existing components in the new release. The CCO cannot detect these mismatches and will not set upgradable
to false
in this case.
The Manually creating IAM section of the installation content for your cloud provider explains how to obtain and use the credentials required for your cloud.
1.2.5. Mint mode
Mint mode is the default and recommended Cloud Credential Operator (CCO) credentials mode for OpenShift Container Platform. In this mode, the CCO uses the provided administrator-level cloud credential to run the cluster. Mint mode is supported for AWS, GCP, and Azure.
In mint mode, the admin
credential is stored in the kube-system
namespace and then used by the CCO to process the CredentialsRequest
objects in the cluster and create users for each with specific permissions.
The benefits of mint mode include:
- Each cluster component has only the permissions it requires
- Automatic, on-going reconciliation for cloud credentials, including additional credentials or permissions that might be required for upgrades
One drawback is that mint mode requires admin
credential storage in a cluster kube-system
secret.
1.2.6. Next steps
Install an OpenShift Container Platform cluster:
- Installing a cluster quickly on Azure with default options on installer-provisioned infrastructure
- Install a cluster with cloud customizations on installer-provisioned infrastructure
- Install a cluster with network customizations on installer-provisioned infrastructure
1.3. Installing a cluster quickly on Azure
In OpenShift Container Platform version 4.6, you can install a cluster on Microsoft Azure that uses the default configuration options.
1.3.1. Prerequisites
- Review details about the OpenShift Container Platform installation and update processes.
- Configure an Azure account to host the cluster and determine the tested and validated region to deploy the cluster to.
- If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
- If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
1.3.2. Internet access for OpenShift Container Platform
In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
You must have Internet access to:
- Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
1.3.3. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program.
1.3.4. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space
Procedure
- Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- Select your infrastructure provider.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf openshift-install-linux.tar.gz
- Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
1.3.5. Deploying the cluster
You can install OpenShift Container Platform on a compatible cloud platform.
You can run the create cluster
command of the installation program only once, during initial installation.
Prerequisites
- Configure an account with the cloud platform that hosts your cluster.
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ 1 --log-level=info 2
ImportantSpecify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
Provide values at the prompts:
Optional: Select an SSH key to use to access your cluster machines.
NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.- Select azure as the platform to target.
If you do not have a Microsoft Azure profile stored on your computer, specify the following Azure parameter values for your subscription and service principal:
-
azure subscription id: The subscription ID to use for the cluster. Specify the
id
value in your account output. -
azure tenant id: The tenant ID. Specify the
tenantId
value in your account output. -
azure service principal client id: The value of the
appId
parameter for the service principal. -
azure service principal client secret: The value of the
password
parameter for the service principal.
-
azure subscription id: The subscription ID to use for the cluster. Specify the
- Select the region to deploy the cluster to.
- Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
Enter a descriptive name for your cluster.
ImportantAll Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
- Paste the pull secret from the Red Hat OpenShift Cluster Manager.
NoteIf the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the
kubeadmin
user, display in your terminal.Example output
... INFO Install complete! INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig' INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL" INFO Time elapsed: 36m22s
NoteThe cluster access and credential information also outputs to
<installation_directory>/.openshift_install.log
when an installation succeeds.Important-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
ImportantYou must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
1.3.6. Installing the OpenShift CLI by downloading the binary
You can install the OpenShift CLI (oc
) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc
.
1.3.6.1. Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
Unpack the archive:
$ tar xvzf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
1.3.6.2. Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
1.3.6.3. Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
1.3.7. Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- You deployed an OpenShift Container Platform cluster.
-
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
Additional resources
- See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
1.3.8. Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
Additional resources
- See About remote health monitoring for more information about the Telemetry service
1.3.9. Next steps
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
1.4. Installing a cluster on Azure with customizations
In OpenShift Container Platform version 4.6, you can install a customized cluster on infrastructure that the installation program provisions on Microsoft Azure. To customize the installation, you modify parameters in the install-config.yaml
file before you install the cluster.
1.4.1. Prerequisites
- Review details about the OpenShift Container Platform installation and update processes.
- Configure an Azure account to host the cluster and determine the tested and validated region to deploy the cluster to.
- If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
- If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
1.4.2. Internet access for OpenShift Container Platform
In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
You must have Internet access to:
- Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
1.4.3. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program.
1.4.4. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space
Procedure
- Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- Select your infrastructure provider.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf openshift-install-linux.tar.gz
- Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
1.4.5. Creating the installation configuration file
You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Create the
install-config.yaml
file.Change to the directory that contains the installation program and run the following command:
$ ./openshift-install create install-config --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the directory name to store the files that the installation program creates.
ImportantSpecify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.- Select azure as the platform to target.
If you do not have a Microsoft Azure profile stored on your computer, specify the following Azure parameter values for your subscription and service principal:
-
azure subscription id: The subscription ID to use for the cluster. Specify the
id
value in your account output. -
azure tenant id: The tenant ID. Specify the
tenantId
value in your account output. -
azure service principal client id: The value of the
appId
parameter for the service principal. -
azure service principal client secret: The value of the
password
parameter for the service principal.
-
azure subscription id: The subscription ID to use for the cluster. Specify the
- Select the region to deploy the cluster to.
- Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
Enter a descriptive name for your cluster.
ImportantAll Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
- Paste the pull secret from the Red Hat OpenShift Cluster Manager.
-
Modify the
install-config.yaml
file. You can find more information about the available parameters in the Installation configuration parameters section. Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the installation process. If you want to reuse the file, you must back it up now.
1.4.5.1. Installation configuration parameters
Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the install-config.yaml
file.
The openshift-install
command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
1.4.5.1.1. Required configuration parameters
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the | String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource | Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: | Object |
| Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io. |
{ "auths":{ "cloud.openshift.com":{ "auth":"b3Blb=", "email":"you@example.com" }, "quay.io":{ "auth":"b3Blb=", "email":"you@example.com" } } } |
1.4.5.1.2. Network configuration parameters
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values |
---|---|---|
| The configuration for the cluster network. | Object Note
You cannot modify parameters specified by the |
| The cluster network provider Container Network Interface (CNI) plug-in to install. |
Either |
| The IP address blocks for pods.
The default value is If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 |
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between |
|
The subnet prefix length to assign to each individual node. For example, if | A subnet prefix.
The default value is |
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. | An array with an IP address block in CIDR format. For example: networking: serviceNetwork: - 172.30.0.0/16 |
| The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: machineNetwork: - cidr: 10.0.0.0/16 |
|
Required if you use | An IP network block in CIDR notation.
For example, Note
Set the |
1.4.5.1.3. Optional configuration parameters
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. | String |
| The configuration for the machines that comprise the compute nodes. | Array of machine-pool objects. For details, see the following "Machine-pool" table. |
|
Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
| The configuration for the machines that comprise the control plane. |
Array of |
|
Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of control plane machines to provision. |
The only supported value is |
| The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported. Note Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content. |
|
|
Enable or disable FIPS mode. The default is Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the Note If you are using Azure File storage, you cannot enable FIPS mode. |
|
| Sources and repositories for the release-image content. |
Array of objects. Includes a |
|
Required if you use | String |
| Specify one or more repositories that may also contain the same images. | Array of strings |
| How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
|
| The SSH key or keys to authenticate access your cluster machines. Note
For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your | One or more keys. For example: sshKey: <key1> <key2> <key3> |
1.4.5.1.4. Additional Azure configuration parameters
Additional Azure configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| The Azure disk size for the VM. |
Integer that represents the size of the disk in GB. The default is |
| Defines the type of disk. |
|
| The Azure disk size for the VM. |
Integer that represents the size of the disk in GB. The default is |
| Defines the type of disk. |
|
| The name of the resource group that contains the DNS zone for your base domain. |
String, for example |
| The outbound routing strategy used to connect your cluster to the internet. If you are using user-defined routing, you must have pre-existing networking available where the outbound routing has already been configured prior to installing a cluster. The installation program is not responsible for configuring user-defined routing. |
|
| The name of the Azure region that hosts your cluster. |
Any valid region name, such as |
| List of availability zones to place machines in. For high availability, specify at least two zones. |
List of zones, for example |
|
The name of the resource group that contains the existing VNet that you want to deploy your cluster to. This name cannot be the same as the | String. |
| The name of the existing VNet that you want to deploy your cluster to. | String. |
| The name of the existing subnet in your VNet that you want to deploy your control plane machines to. |
Valid CIDR, for example |
| The name of the existing subnet in your VNet that you want to deploy your compute machines to. |
Valid CIDR, for example |
|
The name of the Azure cloud environment that is used to configure the Azure SDK with the appropriate Azure API endpoints. If empty, the default value |
Any valid cloud environment, such as |
You cannot customize Azure Availability Zones or Use tags to organize your Azure resources with an Azure cluster.
1.4.5.2. Sample customized install-config.yaml file for Azure
You can customize the install-config.yaml
file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
This sample YAML file is provided for reference only. You must obtain your install-config.yaml
file by using the installation program and modify it.
apiVersion: v1 baseDomain: example.com 1 controlPlane: 2 hyperthreading: Enabled 3 4 name: master platform: azure: osDisk: diskSizeGB: 1024 5 diskType: Premium_LRS type: Standard_D8s_v3 replicas: 3 compute: 6 - hyperthreading: Enabled 7 name: worker platform: azure: type: Standard_D2s_v3 osDisk: diskSizeGB: 512 8 diskType: Standard_LRS zones: 9 - "1" - "2" - "3" replicas: 5 metadata: name: test-cluster 10 networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 machineNetwork: - cidr: 10.0.0.0/16 networkType: OpenShiftSDN serviceNetwork: - 172.30.0.0/16 platform: azure: baseDomainResourceGroupName: resource_group 11 region: centralus 12 resourceGroupName: existing_resource_group 13 outboundType: Loadbalancer cloudName: AzurePublicCloud pullSecret: '{"auths": ...}' 14 fips: false 15 sshKey: ssh-ed25519 AAAA... 16
- 1 10 12 14
- Required. The installation program prompts you for this value.
- 2 6
- If you do not provide these parameters and values, the installation program provides the default value.
- 3 7
- The
controlPlane
section is a single mapping, but thecompute
section is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecompute
section must begin with a hyphen,-
, and the first line of thecontrolPlane
section must not. Only one control plane pool is used. - 4
- Whether to enable or disable simultaneous multithreading, or
hyperthreading
. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled
. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.ImportantIf you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as
Standard_D8s_v3
, for your machines if you disable simultaneous multithreading. - 5 8
- You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes (also known as the master nodes) is 1024 GB.
- 9
- Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
- 11
- Specify the name of the resource group that contains the DNS zone for your base domain.
- 13
- Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
- 15
- Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the
x86_64
architecture. - 16
- You can optionally provide the
sshKey
value that you use to access the machines in your cluster.NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.
1.4.5.3. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Prerequisites
-
You have an existing
install-config.yaml
file. You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- ...
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster.
- 3
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace to hold the additional CA certificates. If you provideadditionalTrustBundle
and at least one proxy setting, theProxy
object is configured to reference theuser-ca-bundle
config map in thetrustedCA
field. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges the contents specified for thetrustedCA
parameter with the RHCOS trust bundle. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
NoteThe installation program does not support the proxy
readinessEndpoints
field.- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
1.4.6. Deploying the cluster
You can install OpenShift Container Platform on a compatible cloud platform.
You can run the create cluster
command of the installation program only once, during initial installation.
Prerequisites
- Configure an account with the cloud platform that hosts your cluster.
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ 1 --log-level=info 2
NoteIf the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the
kubeadmin
user, display in your terminal.Example output
... INFO Install complete! INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig' INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL" INFO Time elapsed: 36m22s
NoteThe cluster access and credential information also outputs to
<installation_directory>/.openshift_install.log
when an installation succeeds.Important-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
ImportantYou must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
1.4.7. Installing the OpenShift CLI by downloading the binary
You can install the OpenShift CLI (oc
) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc
.
1.4.7.1. Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
Unpack the archive:
$ tar xvzf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
1.4.7.2. Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
1.4.7.3. Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
1.4.8. Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- You deployed an OpenShift Container Platform cluster.
-
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
Additional resources
- See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
1.4.9. Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
Additional resources
- See About remote health monitoring for more information about the Telemetry service
1.4.10. Next steps
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
1.5. Installing a cluster on Azure with network customizations
In OpenShift Container Platform version 4.6, you can install a cluster with a customized network configuration on infrastructure that the installation program provisions on Microsoft Azure. By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations.
You must set most of the network configuration parameters during installation, and you can modify only kubeProxy
configuration parameters in a running cluster.
1.5.1. Prerequisites
- Review details about the OpenShift Container Platform installation and update processes.
- Configure an Azure account to host the cluster and determine the tested and validated region to deploy the cluster to.
- If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
- If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
1.5.2. Internet access for OpenShift Container Platform
In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
You must have Internet access to:
- Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
1.5.3. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program.
1.5.4. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space
Procedure
- Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- Select your infrastructure provider.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf openshift-install-linux.tar.gz
- Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
1.5.5. Creating the installation configuration file
You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Create the
install-config.yaml
file.Change to the directory that contains the installation program and run the following command:
$ ./openshift-install create install-config --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the directory name to store the files that the installation program creates.
ImportantSpecify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.- Select azure as the platform to target.
If you do not have a Microsoft Azure profile stored on your computer, specify the following Azure parameter values for your subscription and service principal:
-
azure subscription id: The subscription ID to use for the cluster. Specify the
id
value in your account output. -
azure tenant id: The tenant ID. Specify the
tenantId
value in your account output. -
azure service principal client id: The value of the
appId
parameter for the service principal. -
azure service principal client secret: The value of the
password
parameter for the service principal.
-
azure subscription id: The subscription ID to use for the cluster. Specify the
- Select the region to deploy the cluster to.
- Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
Enter a descriptive name for your cluster.
ImportantAll Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
- Paste the pull secret from the Red Hat OpenShift Cluster Manager.
-
Modify the
install-config.yaml
file. You can find more information about the available parameters in the Installation configuration parameters section. Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the installation process. If you want to reuse the file, you must back it up now.
1.5.5.1. Installation configuration parameters
Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the install-config.yaml
file.
The openshift-install
command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
1.5.5.1.1. Required configuration parameters
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the | String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource | Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: | Object |
| Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io. |
{ "auths":{ "cloud.openshift.com":{ "auth":"b3Blb=", "email":"you@example.com" }, "quay.io":{ "auth":"b3Blb=", "email":"you@example.com" } } } |
1.5.5.1.2. Network configuration parameters
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values |
---|---|---|
| The configuration for the cluster network. | Object Note
You cannot modify parameters specified by the |
| The cluster network provider Container Network Interface (CNI) plug-in to install. |
Either |
| The IP address blocks for pods.
The default value is If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 |
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between |
|
The subnet prefix length to assign to each individual node. For example, if | A subnet prefix.
The default value is |
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. | An array with an IP address block in CIDR format. For example: networking: serviceNetwork: - 172.30.0.0/16 |
| The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: machineNetwork: - cidr: 10.0.0.0/16 |
|
Required if you use | An IP network block in CIDR notation.
For example, Note
Set the |
1.5.5.1.3. Optional configuration parameters
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. | String |
| The configuration for the machines that comprise the compute nodes. | Array of machine-pool objects. For details, see the following "Machine-pool" table. |
|
Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
| The configuration for the machines that comprise the control plane. |
Array of |
|
Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of control plane machines to provision. |
The only supported value is |
| The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported. Note Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content. |
|
|
Enable or disable FIPS mode. The default is Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the Note If you are using Azure File storage, you cannot enable FIPS mode. |
|
| Sources and repositories for the release-image content. |
Array of objects. Includes a |
|
Required if you use | String |
| Specify one or more repositories that may also contain the same images. | Array of strings |
| How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
|
| The SSH key or keys to authenticate access your cluster machines. Note
For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your | One or more keys. For example: sshKey: <key1> <key2> <key3> |
1.5.5.1.4. Additional Azure configuration parameters
Additional Azure configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| The Azure disk size for the VM. |
Integer that represents the size of the disk in GB. The default is |
| Defines the type of disk. |
|
| The Azure disk size for the VM. |
Integer that represents the size of the disk in GB. The default is |
| Defines the type of disk. |
|
| The name of the resource group that contains the DNS zone for your base domain. |
String, for example |
| The outbound routing strategy used to connect your cluster to the internet. If you are using user-defined routing, you must have pre-existing networking available where the outbound routing has already been configured prior to installing a cluster. The installation program is not responsible for configuring user-defined routing. |
|
| The name of the Azure region that hosts your cluster. |
Any valid region name, such as |
| List of availability zones to place machines in. For high availability, specify at least two zones. |
List of zones, for example |
|
The name of the resource group that contains the existing VNet that you want to deploy your cluster to. This name cannot be the same as the | String. |
| The name of the existing VNet that you want to deploy your cluster to. | String. |
| The name of the existing subnet in your VNet that you want to deploy your control plane machines to. |
Valid CIDR, for example |
| The name of the existing subnet in your VNet that you want to deploy your compute machines to. |
Valid CIDR, for example |
|
The name of the Azure cloud environment that is used to configure the Azure SDK with the appropriate Azure API endpoints. If empty, the default value |
Any valid cloud environment, such as |
You cannot customize Azure Availability Zones or Use tags to organize your Azure resources with an Azure cluster.
1.5.5.2. Sample customized install-config.yaml file for Azure
You can customize the install-config.yaml
file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
This sample YAML file is provided for reference only. You must obtain your install-config.yaml
file by using the installation program and modify it.
apiVersion: v1 baseDomain: example.com 1 controlPlane: 2 hyperthreading: Enabled 3 4 name: master platform: azure: osDisk: diskSizeGB: 1024 5 diskType: Premium_LRS type: Standard_D8s_v3 replicas: 3 compute: 6 - hyperthreading: Enabled 7 name: worker platform: azure: type: Standard_D2s_v3 osDisk: diskSizeGB: 512 8 diskType: Standard_LRS zones: 9 - "1" - "2" - "3" replicas: 5 metadata: name: test-cluster 10 networking: 11 clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 machineNetwork: - cidr: 10.0.0.0/16 networkType: OpenShiftSDN serviceNetwork: - 172.30.0.0/16 platform: azure: baseDomainResourceGroupName: resource_group 12 region: centralus 13 resourceGroupName: existing_resource_group 14 outboundType: Loadbalancer cloudName: AzurePublicCloud pullSecret: '{"auths": ...}' 15 fips: false 16 sshKey: ssh-ed25519 AAAA... 17
- 1 10 13 15
- Required. The installation program prompts you for this value.
- 2 6 11
- If you do not provide these parameters and values, the installation program provides the default value.
- 3 7
- The
controlPlane
section is a single mapping, but thecompute
section is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecompute
section must begin with a hyphen,-
, and the first line of thecontrolPlane
section must not. Only one control plane pool is used. - 4
- Whether to enable or disable simultaneous multithreading, or
hyperthreading
. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled
. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.ImportantIf you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as
Standard_D8s_v3
, for your machines if you disable simultaneous multithreading. - 5 8
- You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes (also known as the master nodes) is 1024 GB.
- 9
- Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
- 12
- Specify the name of the resource group that contains the DNS zone for your base domain.
- 14
- Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
- 16
- Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the
x86_64
architecture. - 17
- You can optionally provide the
sshKey
value that you use to access the machines in your cluster.NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.
1.5.5.3. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Prerequisites
-
You have an existing
install-config.yaml
file. You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- ...
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster.
- 3
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace to hold the additional CA certificates. If you provideadditionalTrustBundle
and at least one proxy setting, theProxy
object is configured to reference theuser-ca-bundle
config map in thetrustedCA
field. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges the contents specified for thetrustedCA
parameter with the RHCOS trust bundle. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
NoteThe installation program does not support the proxy
readinessEndpoints
field.- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
1.5.6. Network configuration phases
When specifying a cluster configuration prior to installation, there are several phases in the installation procedures when you can modify the network configuration:
- Phase 1
After entering the
openshift-install create install-config
command. In theinstall-config.yaml
file, you can customize the following network-related fields:-
networking.networkType
-
networking.clusterNetwork
-
networking.serviceNetwork
networking.machineNetwork
For more information on these fields, refer to "Installation configuration parameters".
NoteSet the
networking.machineNetwork
to match the CIDR that the preferred NIC resides in.
-
- Phase 2
-
After entering the
openshift-install create manifests
command. If you must specify advanced network configuration, during this phase you can define a customized Cluster Network Operator manifest with only the fields you want to modify.
You cannot override the values specified in phase 1 in the install-config.yaml
file during phase 2. However, you can further customize the cluster network provider during phase 2.
1.5.7. Specifying advanced network configuration
You can use advanced configuration customization to integrate your cluster into your existing network environment by specifying additional configuration for your cluster network provider. You can specify advanced network configuration only before you install the cluster.
Modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported.
Prerequisites
-
Create the
install-config.yaml
file and complete any modifications to it.
Procedure
Change to the directory that contains the installation program and create the manifests:
$ ./openshift-install create manifests --dir <installation_directory>
where:
<installation_directory>
-
Specifies the name of the directory that contains the
install-config.yaml
file for your cluster.
Create a stub manifest file for the advanced network configuration that is named
cluster-network-03-config.yml
in the<installation_directory>/manifests/
directory:$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml apiVersion: operator.openshift.io/v1 kind: Network metadata: name: cluster spec: EOF
where:
<installation_directory>
-
Specifies the directory name that contains the
manifests/
directory for your cluster.
Open the
cluster-network-03-config.yml
file in an editor and specify the advanced network configuration for your cluster, such as in the following example:Specify a different VXLAN port for the OpenShift SDN network provider
apiVersion: operator.openshift.io/v1 kind: Network metadata: name: cluster spec: defaultNetwork: openshiftSDNConfig: vxlanPort: 4800
-
Save the
cluster-network-03-config.yml
file and quit the text editor. -
Optional: Back up the
manifests/cluster-network-03-config.yml
file. The installation program deletes themanifests/
directory when creating the cluster.
1.5.8. Cluster Network Operator configuration
The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster
. The CR specifies the fields for the Network
API in the operator.openshift.io
API group.
The CNO configuration inherits the following fields during cluster installation from the Network
API in the Network.config.openshift.io
API group and these fields cannot be changed:
clusterNetwork
- IP address pools from which pod IP addresses are allocated.
serviceNetwork
- IP address pool for services.
defaultNetwork.type
- Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.
You can specify the cluster network provider configuration for your cluster by setting the fields for the defaultNetwork
object in the CNO object named cluster
.
1.5.8.1. Cluster Network Operator configuration object
The fields for the Cluster Network Operator (CNO) are described in the following table:
Field | Type | Description |
---|---|---|
|
|
The name of the CNO object. This name is always |
|
| A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example: spec: clusterNetwork: - cidr: 10.128.0.0/19 hostPrefix: 23 - cidr: 10.128.32.0/19 hostPrefix: 23
This value is ready-only and specified in the |
|
| A block of IP addresses for services. The OpenShift SDN and OVN-Kubernetes Container Network Interface (CNI) network providers support only a single IP address block for the service network. For example: spec: serviceNetwork: - 172.30.0.0/14
This value is ready-only and specified in the |
|
| Configures the Container Network Interface (CNI) cluster network provider for the cluster network. |
|
| The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network provider, the kube-proxy configuration has no effect. |
defaultNetwork object configuration
The values for the defaultNetwork
object are defined in the following table:
Field | Type | Description |
---|---|---|
|
|
Either Note OpenShift Container Platform uses the OpenShift SDN Container Network Interface (CNI) cluster network provider by default. |
|
| This object is only valid for the OpenShift SDN cluster network provider. |
|
| This object is only valid for the OVN-Kubernetes cluster network provider. |
Configuration for the OpenShift SDN CNI cluster network provider
The following table describes the configuration fields for the OpenShift SDN Container Network Interface (CNI) cluster network provider.
Field | Type | Description |
---|---|---|
|
|
Configures the network isolation mode for OpenShift SDN. The default value is
The values |
|
| The maximum transmission unit (MTU) for the VXLAN overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU. If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
If your cluster requires different MTU values for different nodes, you must set this value to This value cannot be changed after cluster installation. |
|
|
The port to use for all VXLAN packets. The default value is If you are running in a virtualized environment with existing nodes that are part of another VXLAN network, then you might be required to change this. For example, when running an OpenShift SDN overlay on top of VMware NSX-T, you must select an alternate port for the VXLAN, because both SDNs use the same default VXLAN port number.
On Amazon Web Services (AWS), you can select an alternate port for the VXLAN between port |
Example OpenShift SDN configuration
defaultNetwork: type: OpenShiftSDN openshiftSDNConfig: mode: NetworkPolicy mtu: 1450 vxlanPort: 4789
Configuration for the OVN-Kubernetes CNI cluster network provider
The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network provider.
Field | Type | Description |
---|---|---|
|
| The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU. If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
If your cluster requires different MTU values for different nodes, you must set this value to This value cannot be changed after cluster installation. |
|
|
The port to use for all Geneve packets. The default value is |
Example OVN-Kubernetes configuration
defaultNetwork: type: OVNKubernetes ovnKubernetesConfig: mtu: 1400 genevePort: 6081
kubeProxyConfig object configuration
The values for the kubeProxyConfig
object are defined in the following table:
Field | Type | Description |
---|---|---|
|
|
The refresh period for Note
Because of performance improvements introduced in OpenShift Container Platform 4.3 and greater, adjusting the |
|
|
The minimum duration before refreshing kubeProxyConfig: proxyArguments: iptables-min-sync-period: - 0s |
1.5.9. Configuring hybrid networking with OVN-Kubernetes
You can configure your cluster to use hybrid networking with OVN-Kubernetes. This allows a hybrid cluster that supports different node networking configurations. For example, this is necessary to run both Linux and Windows nodes in a cluster.
You must configure hybrid networking with OVN-Kubernetes during the installation of your cluster. You cannot switch to hybrid networking after the installation process.
Prerequisites
-
You defined
OVNKubernetes
for thenetworking.networkType
parameter in theinstall-config.yaml
file. See the installation documentation for configuring OpenShift Container Platform network customizations on your chosen cloud provider for more information.
Procedure
Change to the directory that contains the installation program and create the manifests:
$ ./openshift-install create manifests --dir <installation_directory>
where:
<installation_directory>
-
Specifies the name of the directory that contains the
install-config.yaml
file for your cluster.
Create a stub manifest file for the advanced network configuration that is named
cluster-network-03-config.yml
in the<installation_directory>/manifests/
directory:$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml apiVersion: operator.openshift.io/v1 kind: Network metadata: name: cluster spec: EOF
where:
<installation_directory>
-
Specifies the directory name that contains the
manifests/
directory for your cluster.
Open the
cluster-network-03-config.yml
file in an editor and configure OVN-Kubernetes with hybrid networking, such as in the following example:Specify a hybrid networking configuration
apiVersion: operator.openshift.io/v1 kind: Network metadata: name: cluster spec: defaultNetwork: ovnKubernetesConfig: hybridOverlayConfig: hybridClusterNetwork: 1 - cidr: 10.132.0.0/14 hostPrefix: 23 hybridOverlayVXLANPort: 9898 2
- 1
- Specify the CIDR configuration used for nodes on the additional overlay network. The
hybridClusterNetwork
CIDR cannot overlap with theclusterNetwork
CIDR. - 2
- Specify a custom VXLAN port for the additional overlay network. This is required for running Windows nodes in a cluster installed on vSphere, and must not be configured for any other cloud provider. The custom port can be any open port excluding the default
4789
port. For more information on this requirement, see the Microsoft documentation on Pod-to-pod connectivity between hosts is broken.
-
Save the
cluster-network-03-config.yml
file and quit the text editor. -
Optional: Back up the
manifests/cluster-network-03-config.yml
file. The installation program deletes themanifests/
directory when creating the cluster.
For more information on using Linux and Windows nodes in the same cluster, see Understanding Windows container workloads.
1.5.10. Deploying the cluster
You can install OpenShift Container Platform on a compatible cloud platform.
You can run the create cluster
command of the installation program only once, during initial installation.
Prerequisites
- Configure an account with the cloud platform that hosts your cluster.
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ 1 --log-level=info 2
NoteIf the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the
kubeadmin
user, display in your terminal.Example output
... INFO Install complete! INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig' INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL" INFO Time elapsed: 36m22s
NoteThe cluster access and credential information also outputs to
<installation_directory>/.openshift_install.log
when an installation succeeds.Important-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
ImportantYou must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
1.5.11. Installing the OpenShift CLI by downloading the binary
You can install the OpenShift CLI (oc
) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc
.
1.5.11.1. Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
Unpack the archive:
$ tar xvzf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
1.5.11.2. Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
1.5.11.3. Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
1.5.12. Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- You deployed an OpenShift Container Platform cluster.
-
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
Additional resources
- See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
1.5.13. Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
Additional resources
- See About remote health monitoring for more information about the Telemetry service
1.5.14. Next steps
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
1.6. Installing a cluster on Azure into an existing VNet
In OpenShift Container Platform version 4.6, you can install a cluster into an existing Azure Virtual Network (VNet) on Microsoft Azure. The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml
file before you install the cluster.
1.6.1. Prerequisites
- Review details about the OpenShift Container Platform installation and update processes.
- Configure an Azure account to host the cluster and determine the tested and validated region to deploy the cluster to.
- If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
- If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
1.6.2. About reusing a VNet for your OpenShift Container Platform cluster
In OpenShift Container Platform 4.6, you can deploy a cluster into an existing Azure Virtual Network (VNet) in Microsoft Azure. If you do, you must also use existing subnets within the VNet and routing rules.
By deploying OpenShift Container Platform into an existing Azure VNet, you might be able to avoid service limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. This is a good option to use if you cannot obtain the infrastructure creation permissions that are required to create the VNet.
1.6.2.1. Requirements for using your VNet
When you deploy a cluster by using an existing VNet, you must perform additional network configuration before you install the cluster. In installer-provisioned infrastructure clusters, the installer usually creates the following components, but it does not create them when you install into an existing VNet:
- Subnets
- Route tables
- VNets
- Network Security Groups
The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.
If you use a custom VNet, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VNet options like DHCP, so you must do so before you install the cluster.
The cluster must be able to access the resource group that contains the existing VNet and subnets. While all of the resources that the cluster creates are placed in a separate resource group that it creates, some network resources are used from a separate group. Some cluster Operators must be able to access resources in both resource groups. For example, the Machine API controller attaches NICS for the virtual machines that it creates to subnets from the networking resource group.
Your VNet must meet the following characteristics:
-
The VNet’s CIDR block must contain the
Networking.MachineCIDR
range, which is the IP address pool for cluster machines. - The VNet and its subnets must belong to the same resource group, and the subnets must be configured to use Azure-assigned DHCP IP addresses instead of static IP addresses.
You must provide two subnets within your VNet, one for the control plane machines and one for the compute machines. Because Azure distributes machines in different availability zones within the region that you specify, your cluster will have high availability by default.
To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
- All the specified subnets exist.
- There are two private subnets, one for the control plane machines and one for the compute machines.
- The subnet CIDRs belong to the machine CIDR that you specified. Machines are not provisioned in availability zones that you do not provide private subnets for. If required, the installation program creates public load balancers that manage the control plane and worker nodes, and Azure allocates a public IP address to them.
If you destroy a cluster that uses an existing VNet, the VNet is not deleted.
1.6.2.1.1. Network security group requirements
The network security groups for the subnets that host the compute and control plane machines require specific access to ensure that the cluster communication is correct. You must create rules to allow access to the required cluster communication ports.
The network security group rules must be in place before you install the cluster. If you attempt to install a cluster without the required access, the installation program cannot reach the Azure APIs, and installation fails.
Port | Description | Control plane | Compute |
---|---|---|---|
| Allows HTTP traffic | x | |
| Allows HTTPS traffic | x | |
| Allows communication to the control plane machines | x | |
| Allows communication to the machine config server | x |
Since cluster components do not modify the user-provided network security groups, which the Kubernetes controllers update, a pseudo-network security group is created for the Kubernetes controller to modify without impacting the rest of the environment.
1.6.2.2. Division of permissions
Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resources in your clouds than others. For example, you might be able to create application-specific items, like instances, storage, and load balancers, but not networking-related components such as VNets, subnet, or ingress rules.
The Azure credentials that you use when you create your cluster do not need the networking permissions that are required to make VNets and core networking components within the VNet, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as load balancers, security groups, storage accounts, and nodes.
1.6.2.3. Isolation between clusters
Because the cluster is unable to modify network security groups in an existing subnet, there is no way to isolate clusters from each other on the VNet.
1.6.3. Internet access for OpenShift Container Platform
In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
You must have Internet access to:
- Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
1.6.4. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program.
1.6.5. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space
Procedure
- Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- Select your infrastructure provider.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf openshift-install-linux.tar.gz
- Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
1.6.6. Creating the installation configuration file
You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Create the
install-config.yaml
file.Change to the directory that contains the installation program and run the following command:
$ ./openshift-install create install-config --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the directory name to store the files that the installation program creates.
ImportantSpecify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.- Select azure as the platform to target.
If you do not have a Microsoft Azure profile stored on your computer, specify the following Azure parameter values for your subscription and service principal:
-
azure subscription id: The subscription ID to use for the cluster. Specify the
id
value in your account output. -
azure tenant id: The tenant ID. Specify the
tenantId
value in your account output. -
azure service principal client id: The value of the
appId
parameter for the service principal. -
azure service principal client secret: The value of the
password
parameter for the service principal.
-
azure subscription id: The subscription ID to use for the cluster. Specify the
- Select the region to deploy the cluster to.
- Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
Enter a descriptive name for your cluster.
ImportantAll Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
- Paste the pull secret from the Red Hat OpenShift Cluster Manager.
-
Modify the
install-config.yaml
file. You can find more information about the available parameters in the Installation configuration parameters section. Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the installation process. If you want to reuse the file, you must back it up now.
1.6.6.1. Installation configuration parameters
Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the install-config.yaml
file.
The openshift-install
command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
1.6.6.1.1. Required configuration parameters
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the | String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource | Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: | Object |
| Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io. |
{ "auths":{ "cloud.openshift.com":{ "auth":"b3Blb=", "email":"you@example.com" }, "quay.io":{ "auth":"b3Blb=", "email":"you@example.com" } } } |
1.6.6.1.2. Network configuration parameters
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values |
---|---|---|
| The configuration for the cluster network. | Object Note
You cannot modify parameters specified by the |
| The cluster network provider Container Network Interface (CNI) plug-in to install. |
Either |
| The IP address blocks for pods.
The default value is If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 |
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between |
|
The subnet prefix length to assign to each individual node. For example, if | A subnet prefix.
The default value is |
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. | An array with an IP address block in CIDR format. For example: networking: serviceNetwork: - 172.30.0.0/16 |
| The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: machineNetwork: - cidr: 10.0.0.0/16 |
|
Required if you use | An IP network block in CIDR notation.
For example, Note
Set the |
1.6.6.1.3. Optional configuration parameters
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. | String |
| The configuration for the machines that comprise the compute nodes. | Array of machine-pool objects. For details, see the following "Machine-pool" table. |
|
Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
| The configuration for the machines that comprise the control plane. |
Array of |
|
Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of control plane machines to provision. |
The only supported value is |
| The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported. Note Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content. |
|
|
Enable or disable FIPS mode. The default is Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the Note If you are using Azure File storage, you cannot enable FIPS mode. |
|
| Sources and repositories for the release-image content. |
Array of objects. Includes a |
|
Required if you use | String |
| Specify one or more repositories that may also contain the same images. | Array of strings |
| How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
|
| The SSH key or keys to authenticate access your cluster machines. Note
For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your | One or more keys. For example: sshKey: <key1> <key2> <key3> |
1.6.6.1.4. Additional Azure configuration parameters
Additional Azure configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| The Azure disk size for the VM. |
Integer that represents the size of the disk in GB. The default is |
| Defines the type of disk. |
|
| The Azure disk size for the VM. |
Integer that represents the size of the disk in GB. The default is |
| Defines the type of disk. |
|
| The name of the resource group that contains the DNS zone for your base domain. |
String, for example |
| The outbound routing strategy used to connect your cluster to the internet. If you are using user-defined routing, you must have pre-existing networking available where the outbound routing has already been configured prior to installing a cluster. The installation program is not responsible for configuring user-defined routing. |
|
| The name of the Azure region that hosts your cluster. |
Any valid region name, such as |
| List of availability zones to place machines in. For high availability, specify at least two zones. |
List of zones, for example |
|
The name of the resource group that contains the existing VNet that you want to deploy your cluster to. This name cannot be the same as the | String. |
| The name of the existing VNet that you want to deploy your cluster to. | String. |
| The name of the existing subnet in your VNet that you want to deploy your control plane machines to. |
Valid CIDR, for example |
| The name of the existing subnet in your VNet that you want to deploy your compute machines to. |
Valid CIDR, for example |
|
The name of the Azure cloud environment that is used to configure the Azure SDK with the appropriate Azure API endpoints. If empty, the default value |
Any valid cloud environment, such as |
You cannot customize Azure Availability Zones or Use tags to organize your Azure resources with an Azure cluster.
1.6.6.2. Sample customized install-config.yaml file for Azure
You can customize the install-config.yaml
file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
This sample YAML file is provided for reference only. You must obtain your install-config.yaml
file by using the installation program and modify it.
apiVersion: v1 baseDomain: example.com 1 controlPlane: 2 hyperthreading: Enabled 3 4 name: master platform: azure: osDisk: diskSizeGB: 1024 5 diskType: Premium_LRS type: Standard_D8s_v3 replicas: 3 compute: 6 - hyperthreading: Enabled 7 name: worker platform: azure: type: Standard_D2s_v3 osDisk: diskSizeGB: 512 8 diskType: Standard_LRS zones: 9 - "1" - "2" - "3" replicas: 5 metadata: name: test-cluster 10 networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 machineNetwork: - cidr: 10.0.0.0/16 networkType: OpenShiftSDN serviceNetwork: - 172.30.0.0/16 platform: azure: baseDomainResourceGroupName: resource_group 11 region: centralus 12 resourceGroupName: existing_resource_group 13 networkResourceGroupName: vnet_resource_group 14 virtualNetwork: vnet 15 controlPlaneSubnet: control_plane_subnet 16 computeSubnet: compute_subnet 17 outboundType: Loadbalancer cloudName: AzurePublicCloud pullSecret: '{"auths": ...}' 18 fips: false 19 sshKey: ssh-ed25519 AAAA... 20
- 1 10 12 18
- Required. The installation program prompts you for this value.
- 2 6
- If you do not provide these parameters and values, the installation program provides the default value.
- 3 7
- The
controlPlane
section is a single mapping, but thecompute
section is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecompute
section must begin with a hyphen,-
, and the first line of thecontrolPlane
section must not. Only one control plane pool is used. - 4
- Whether to enable or disable simultaneous multithreading, or
hyperthreading
. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled
. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.ImportantIf you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as
Standard_D8s_v3
, for your machines if you disable simultaneous multithreading. - 5 8
- You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes (also known as the master nodes) is 1024 GB.
- 9
- Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
- 11
- Specify the name of the resource group that contains the DNS zone for your base domain.
- 13
- Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
- 14
- If you use an existing VNet, specify the name of the resource group that contains it.
- 15
- If you use an existing VNet, specify its name.
- 16
- If you use an existing VNet, specify the name of the subnet to host the control plane machines.
- 17
- If you use an existing VNet, specify the name of the subnet to host the compute machines.
- 19
- Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the
x86_64
architecture. - 20
- You can optionally provide the
sshKey
value that you use to access the machines in your cluster.NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.
1.6.6.3. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Prerequisites
-
You have an existing
install-config.yaml
file. You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- ...
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster.
- 3
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace to hold the additional CA certificates. If you provideadditionalTrustBundle
and at least one proxy setting, theProxy
object is configured to reference theuser-ca-bundle
config map in thetrustedCA
field. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges the contents specified for thetrustedCA
parameter with the RHCOS trust bundle. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
NoteThe installation program does not support the proxy
readinessEndpoints
field.- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
1.6.7. Deploying the cluster
You can install OpenShift Container Platform on a compatible cloud platform.
You can run the create cluster
command of the installation program only once, during initial installation.
Prerequisites
- Configure an account with the cloud platform that hosts your cluster.
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ 1 --log-level=info 2
NoteIf the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the
kubeadmin
user, display in your terminal.Example output
... INFO Install complete! INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig' INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL" INFO Time elapsed: 36m22s
NoteThe cluster access and credential information also outputs to
<installation_directory>/.openshift_install.log
when an installation succeeds.Important-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
ImportantYou must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
1.6.8. Installing the OpenShift CLI by downloading the binary
You can install the OpenShift CLI (oc
) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc
.
1.6.8.1. Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
Unpack the archive:
$ tar xvzf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
1.6.8.2. Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
1.6.8.3. Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
1.6.9. Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- You deployed an OpenShift Container Platform cluster.
-
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
Additional resources
- See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
1.6.10. Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
Additional resources
- See About remote health monitoring for more information about the Telemetry service
1.6.11. Next steps
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
1.7. Installing a private cluster on Azure
In OpenShift Container Platform version 4.6, you can install a private cluster into an existing Azure Virtual Network (VNet) on Microsoft Azure. The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml
file before you install the cluster.
1.7.1. Prerequisites
- Review details about the OpenShift Container Platform installation and update processes.
- Configure an Azure account to host the cluster and determine the tested and validated region to deploy the cluster to.
- If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
- If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
1.7.2. Private clusters
You can deploy a private OpenShift Container Platform cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the Internet.
By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.
To deploy a private cluster, you must use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
Additionally, you must deploy a private cluster from a machine that has access the API services for the cloud you provision to, the hosts on the network that you provision, and to the internet to obtain installation media. You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.
1.7.2.1. Private clusters in Azure
To create a private cluster on Microsoft Azure, you must provide an existing private VNet and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for only internal traffic.
Depending how your network connects to the private VNET, you might need to use a DNS forwarder in order to resolve the cluster’s private DNS records. The cluster’s machines use 168.63.129.16
internally for DNS resolution. For more information, see What is Azure Private DNS? and What is IP address 168.63.129.16? in the Azure documentation.
The cluster still requires access to Internet to access the Azure APIs.
The following items are not required or created when you install a private cluster:
-
A
BaseDomainResourceGroup
, since the cluster does not create public records - Public IP addresses
- Public DNS records
Public endpoints
The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.
1.7.2.1.1. Limitations
Private clusters on Azure are subject to only the limitations that are associated with the use of an existing VNet.
1.7.2.2. User-defined outbound routing
In OpenShift Container Platform, you can choose your own outbound routing for a cluster to connect to the Internet. This allows you to skip the creation of public IP addresses and the public load balancer.
You can configure user-defined routing by modifying parameters in the install-config.yaml
file before installing your cluster. A pre-existing VNet is required to use outbound routing when installing a cluster; the installation program is not responsible for configuring this.
When configuring a cluster to use user-defined routing, the installation program does not create the following resources:
- Outbound rules for access to the Internet.
- Public IPs for the public load balancer.
- Kubernetes Service object to add the cluster machines to the public load balancer for outbound requests.
You must ensure the following items are available before setting user-defined routing:
- Egress to the Internet is possible to pull container images, unless using an internal registry mirror.
- The cluster can access Azure APIs.
- Various allowlist endpoints are configured. You can reference these endpoints in the Configuring your firewall section.
There are several pre-existing networking setups that are supported for Internet access using user-defined routing.
Private cluster with network address translation
You can use Azure VNET network address translation (NAT) to provide outbound Internet access for the subnets in your cluster. You can reference Create a NAT gateway using Azure CLI in the Azure documentation for configuration instructions.
When using a VNet setup with Azure NAT and user-defined routing configured, you can create a private cluster with no public endpoints.
Private cluster with Azure Firewall
You can use Azure Firewall to provide outbound routing for the VNet used to install the cluster. You can learn more about providing user-defined routing with Azure Firewall in the Azure documentation.
When using a VNet setup with Azure Firewall and user-defined routing configured, you can create a private cluster with no public endpoints.
Private cluster with a proxy configuration
You can use a proxy with user-defined routing to allow egress to the Internet. You must ensure that cluster Operators do not access Azure APIs using a proxy; Operators must have access to Azure APIs outside of the proxy.
When using the default route table for subnets, with 0.0.0.0/0
populated automatically by Azure, all Azure API requests are routed over Azure’s internal network even though the IP addresses are public. As long as the Network Security Group rules allow egress to Azure API endpoints, proxies with user-defined routing configured allow you to create private clusters with no public endpoints.
Private cluster with no Internet access
You can install a private network that restricts all access to the internet, except the Azure API. This is accomplished by mirroring the release image registry locally. Your cluster must have access to the following:
- An internal registry mirror that allows for pulling container images
- Access to Azure APIs
With these requirements available, you can use user-defined routing to create private clusters with no public endpoints.
1.7.3. About reusing a VNet for your OpenShift Container Platform cluster
In OpenShift Container Platform 4.6, you can deploy a cluster into an existing Azure Virtual Network (VNet) in Microsoft Azure. If you do, you must also use existing subnets within the VNet and routing rules.
By deploying OpenShift Container Platform into an existing Azure VNet, you might be able to avoid service limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. This is a good option to use if you cannot obtain the infrastructure creation permissions that are required to create the VNet.
1.7.3.1. Requirements for using your VNet
When you deploy a cluster by using an existing VNet, you must perform additional network configuration before you install the cluster. In installer-provisioned infrastructure clusters, the installer usually creates the following components, but it does not create them when you install into an existing VNet:
- Subnets
- Route tables
- VNets
- Network Security Groups
The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.
If you use a custom VNet, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VNet options like DHCP, so you must do so before you install the cluster.
The cluster must be able to access the resource group that contains the existing VNet and subnets. While all of the resources that the cluster creates are placed in a separate resource group that it creates, some network resources are used from a separate group. Some cluster Operators must be able to access resources in both resource groups. For example, the Machine API controller attaches NICS for the virtual machines that it creates to subnets from the networking resource group.
Your VNet must meet the following characteristics:
-
The VNet’s CIDR block must contain the
Networking.MachineCIDR
range, which is the IP address pool for cluster machines. - The VNet and its subnets must belong to the same resource group, and the subnets must be configured to use Azure-assigned DHCP IP addresses instead of static IP addresses.
You must provide two subnets within your VNet, one for the control plane machines and one for the compute machines. Because Azure distributes machines in different availability zones within the region that you specify, your cluster will have high availability by default.
To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
- All the specified subnets exist.
- There are two private subnets, one for the control plane machines and one for the compute machines.
- The subnet CIDRs belong to the machine CIDR that you specified. Machines are not provisioned in availability zones that you do not provide private subnets for.
If you destroy a cluster that uses an existing VNet, the VNet is not deleted.
1.7.3.1.1. Network security group requirements
The network security groups for the subnets that host the compute and control plane machines require specific access to ensure that the cluster communication is correct. You must create rules to allow access to the required cluster communication ports.
The network security group rules must be in place before you install the cluster. If you attempt to install a cluster without the required access, the installation program cannot reach the Azure APIs, and installation fails.
Port | Description | Control plane | Compute |
---|---|---|---|
| Allows HTTP traffic | x | |
| Allows HTTPS traffic | x | |
| Allows communication to the control plane machines | x | |
| Allows communication to the machine config server | x |
Since cluster components do not modify the user-provided network security groups, which the Kubernetes controllers update, a pseudo-network security group is created for the Kubernetes controller to modify without impacting the rest of the environment.
1.7.3.2. Division of permissions
Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resources in your clouds than others. For example, you might be able to create application-specific items, like instances, storage, and load balancers, but not networking-related components such as VNets, subnet, or ingress rules.
The Azure credentials that you use when you create your cluster do not need the networking permissions that are required to make VNets and core networking components within the VNet, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as load balancers, security groups, storage accounts, and nodes.
1.7.3.3. Isolation between clusters
Because the cluster is unable to modify network security groups in an existing subnet, there is no way to isolate clusters from each other on the VNet.
1.7.4. Internet access for OpenShift Container Platform
In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
You must have Internet access to:
- Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
1.7.5. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program.
1.7.6. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space
Procedure
- Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- Select your infrastructure provider.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf openshift-install-linux.tar.gz
- Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
1.7.7. Manually creating the installation configuration file
For installations of a private OpenShift Container Platform cluster that are only accessible from an internal network and are not visible to the Internet, you must manually generate your installation configuration file.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the access token for your cluster.
Procedure
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
ImportantYou must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
Customize the following
install-config.yaml
file template and save it in the<installation_directory>
.NoteYou must name this configuration file
install-config.yaml
.Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the next step of the installation process. You must back it up now.
1.7.7.1. Installation configuration parameters
Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the install-config.yaml
file.
The openshift-install
command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
1.7.7.1.1. Required configuration parameters
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the | String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource | Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: | Object |
| Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io. |
{ "auths":{ "cloud.openshift.com":{ "auth":"b3Blb=", "email":"you@example.com" }, "quay.io":{ "auth":"b3Blb=", "email":"you@example.com" } } } |
1.7.7.1.2. Network configuration parameters
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values |
---|---|---|
| The configuration for the cluster network. | Object Note
You cannot modify parameters specified by the |
| The cluster network provider Container Network Interface (CNI) plug-in to install. |
Either |
| The IP address blocks for pods.
The default value is If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 |
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between |
|
The subnet prefix length to assign to each individual node. For example, if | A subnet prefix.
The default value is |
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. | An array with an IP address block in CIDR format. For example: networking: serviceNetwork: - 172.30.0.0/16 |
| The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: machineNetwork: - cidr: 10.0.0.0/16 |
|
Required if you use | An IP network block in CIDR notation.
For example, Note
Set the |
1.7.7.1.3. Optional configuration parameters
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. | String |
| The configuration for the machines that comprise the compute nodes. | Array of machine-pool objects. For details, see the following "Machine-pool" table. |
|
Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
| The configuration for the machines that comprise the control plane. |
Array of |
|
Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of control plane machines to provision. |
The only supported value is |
| The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported. Note Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content. |
|
|
Enable or disable FIPS mode. The default is Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the Note If you are using Azure File storage, you cannot enable FIPS mode. |
|
| Sources and repositories for the release-image content. |
Array of objects. Includes a |
|
Required if you use | String |
| Specify one or more repositories that may also contain the same images. | Array of strings |
| How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
|
| The SSH key or keys to authenticate access your cluster machines. Note
For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your | One or more keys. For example: sshKey: <key1> <key2> <key3> |
1.7.7.1.4. Additional Azure configuration parameters
Additional Azure configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| The Azure disk size for the VM. |
Integer that represents the size of the disk in GB. The default is |
| Defines the type of disk. |
|
| The Azure disk size for the VM. |
Integer that represents the size of the disk in GB. The default is |
| Defines the type of disk. |
|
| The name of the resource group that contains the DNS zone for your base domain. |
String, for example |
| The outbound routing strategy used to connect your cluster to the internet. If you are using user-defined routing, you must have pre-existing networking available where the outbound routing has already been configured prior to installing a cluster. The installation program is not responsible for configuring user-defined routing. |
|
| The name of the Azure region that hosts your cluster. |
Any valid region name, such as |
| List of availability zones to place machines in. For high availability, specify at least two zones. |
List of zones, for example |
|
The name of the resource group that contains the existing VNet that you want to deploy your cluster to. This name cannot be the same as the | String. |
| The name of the existing VNet that you want to deploy your cluster to. | String. |
| The name of the existing subnet in your VNet that you want to deploy your control plane machines to. |
Valid CIDR, for example |
| The name of the existing subnet in your VNet that you want to deploy your compute machines to. |
Valid CIDR, for example |
|
The name of the Azure cloud environment that is used to configure the Azure SDK with the appropriate Azure API endpoints. If empty, the default value |
Any valid cloud environment, such as |
You cannot customize Azure Availability Zones or Use tags to organize your Azure resources with an Azure cluster.
1.7.7.2. Sample customized install-config.yaml file for Azure
You can customize the install-config.yaml
file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
This sample YAML file is provided for reference only. You must obtain your install-config.yaml
file by using the installation program and modify it.
apiVersion: v1 baseDomain: example.com 1 controlPlane: 2 hyperthreading: Enabled 3 4 name: master platform: azure: osDisk: diskSizeGB: 1024 5 diskType: Premium_LRS type: Standard_D8s_v3 replicas: 3 compute: 6 - hyperthreading: Enabled 7 name: worker platform: azure: type: Standard_D2s_v3 osDisk: diskSizeGB: 512 8 diskType: Standard_LRS zones: 9 - "1" - "2" - "3" replicas: 5 metadata: name: test-cluster 10 networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 machineNetwork: - cidr: 10.0.0.0/16 networkType: OpenShiftSDN serviceNetwork: - 172.30.0.0/16 platform: azure: baseDomainResourceGroupName: resource_group 11 region: centralus 12 resourceGroupName: existing_resource_group 13 networkResourceGroupName: vnet_resource_group 14 virtualNetwork: vnet 15 controlPlaneSubnet: control_plane_subnet 16 computeSubnet: compute_subnet 17 outboundType: UserDefinedRouting 18 cloudName: AzurePublicCloud pullSecret: '{"auths": ...}' 19 fips: false 20 sshKey: ssh-ed25519 AAAA... 21 publish: Internal 22
- 1 10 12 19
- Required. The installation program prompts you for this value.
- 2 6
- If you do not provide these parameters and values, the installation program provides the default value.
- 3 7
- The
controlPlane
section is a single mapping, but thecompute
section is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecompute
section must begin with a hyphen,-
, and the first line of thecontrolPlane
section must not. Only one control plane pool is used. - 4
- Whether to enable or disable simultaneous multithreading, or
hyperthreading
. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled
. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.ImportantIf you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as
Standard_D8s_v3
, for your machines if you disable simultaneous multithreading. - 5 8
- You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes (also known as the master nodes) is 1024 GB.
- 9
- Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
- 11
- Specify the name of the resource group that contains the DNS zone for your base domain.
- 13
- Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
- 14
- If you use an existing VNet, specify the name of the resource group that contains it.
- 15
- If you use an existing VNet, specify its name.
- 16
- If you use an existing VNet, specify the name of the subnet to host the control plane machines.
- 17
- If you use an existing VNet, specify the name of the subnet to host the compute machines.
- 18
- You can customize your own outbound routing. Configuring user-defined routing prevents exposing external endpoints in your cluster. User-defined routing for egress requires deploying your cluster to an existing VNet.
- 20
- Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the
x86_64
architecture. - 21
- You can optionally provide the
sshKey
value that you use to access the machines in your cluster.NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses. - 22
- How to publish the user-facing endpoints of your cluster. Set
publish
toInternal
to deploy a private cluster, which cannot be accessed from the Internet. The default value isExternal
.
1.7.7.3. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Prerequisites
-
You have an existing
install-config.yaml
file. You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- ...
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster.
- 3
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace to hold the additional CA certificates. If you provideadditionalTrustBundle
and at least one proxy setting, theProxy
object is configured to reference theuser-ca-bundle
config map in thetrustedCA
field. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges the contents specified for thetrustedCA
parameter with the RHCOS trust bundle. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
NoteThe installation program does not support the proxy
readinessEndpoints
field.- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
1.7.8. Deploying the cluster
You can install OpenShift Container Platform on a compatible cloud platform.
You can run the create cluster
command of the installation program only once, during initial installation.
Prerequisites
- Configure an account with the cloud platform that hosts your cluster.
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ 1 --log-level=info 2
NoteIf the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the
kubeadmin
user, display in your terminal.Example output
... INFO Install complete! INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig' INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL" INFO Time elapsed: 36m22s
NoteThe cluster access and credential information also outputs to
<installation_directory>/.openshift_install.log
when an installation succeeds.Important-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
ImportantYou must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
1.7.9. Installing the OpenShift CLI by downloading the binary
You can install the OpenShift CLI (oc
) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc
.
1.7.9.1. Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
Unpack the archive:
$ tar xvzf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
1.7.9.2. Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
1.7.9.3. Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
1.7.10. Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- You deployed an OpenShift Container Platform cluster.
-
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
Additional resources
- See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
1.7.11. Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
Additional resources
- See About remote health monitoring for more information about the Telemetry service
1.7.12. Next steps
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
1.8. Installing a cluster on Azure into a government region
In OpenShift Container Platform version 4.6, you can install a cluster on Microsoft Azure into a government region. To configure the government region, you modify parameters in the install-config.yaml
file before you install the cluster.
1.8.1. Prerequisites
- Review details about the OpenShift Container Platform installation and update processes.
- Configure an Azure account to host the cluster and determine the tested and validated government region to deploy the cluster to.
- If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
- If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
1.8.2. Azure government regions
OpenShift Container Platform supports deploying a cluster to Microsoft Azure Government (MAG) regions. MAG is specifically designed for US government agencies at the federal, state, and local level, as well as contractors, educational institutions, and other US customers that must run sensitive workloads on Azure. MAG is composed of government-only data center regions, all granted an Impact Level 5 Provisional Authorization.
Installing to a MAG region requires manually configuring the Azure Government dedicated cloud instance and region in the install-config.yaml
file. You must also update your service principal to reference the appropriate government environment.
The Azure government region cannot be selected using the guided terminal prompts from the installation program. You must define the region manually in the install-config.yaml
file. Remember to also set the dedicated cloud instance, like AzureUSGovernmentCloud
, based on the region specified.
1.8.3. Private clusters
You can deploy a private OpenShift Container Platform cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the Internet.
By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.
To deploy a private cluster, you must use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
Additionally, you must deploy a private cluster from a machine that has access the API services for the cloud you provision to, the hosts on the network that you provision, and to the internet to obtain installation media. You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.
1.8.3.1. Private clusters in Azure
To create a private cluster on Microsoft Azure, you must provide an existing private VNet and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for only internal traffic.
Depending how your network connects to the private VNET, you might need to use a DNS forwarder in order to resolve the cluster’s private DNS records. The cluster’s machines use 168.63.129.16
internally for DNS resolution. For more information, see What is Azure Private DNS? and What is IP address 168.63.129.16? in the Azure documentation.
The cluster still requires access to Internet to access the Azure APIs.
The following items are not required or created when you install a private cluster:
-
A
BaseDomainResourceGroup
, since the cluster does not create public records - Public IP addresses
- Public DNS records
Public endpoints
The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.
1.8.3.1.1. Limitations
Private clusters on Azure are subject to only the limitations that are associated with the use of an existing VNet.
1.8.3.2. User-defined outbound routing
In OpenShift Container Platform, you can choose your own outbound routing for a cluster to connect to the Internet. This allows you to skip the creation of public IP addresses and the public load balancer.
You can configure user-defined routing by modifying parameters in the install-config.yaml
file before installing your cluster. A pre-existing VNet is required to use outbound routing when installing a cluster; the installation program is not responsible for configuring this.
When configuring a cluster to use user-defined routing, the installation program does not create the following resources:
- Outbound rules for access to the Internet.
- Public IPs for the public load balancer.
- Kubernetes Service object to add the cluster machines to the public load balancer for outbound requests.
You must ensure the following items are available before setting user-defined routing:
- Egress to the Internet is possible to pull container images, unless using an internal registry mirror.
- The cluster can access Azure APIs.
- Various allowlist endpoints are configured. You can reference these endpoints in the Configuring your firewall section.
There are several pre-existing networking setups that are supported for Internet access using user-defined routing.
Private cluster with network address translation
You can use Azure VNET network address translation (NAT) to provide outbound Internet access for the subnets in your cluster. You can reference Create a NAT gateway using Azure CLI in the Azure documentation for configuration instructions.
When using a VNet setup with Azure NAT and user-defined routing configured, you can create a private cluster with no public endpoints.
Private cluster with Azure Firewall
You can use Azure Firewall to provide outbound routing for the VNet used to install the cluster. You can learn more about providing user-defined routing with Azure Firewall in the Azure documentation.
When using a VNet setup with Azure Firewall and user-defined routing configured, you can create a private cluster with no public endpoints.
Private cluster with a proxy configuration
You can use a proxy with user-defined routing to allow egress to the Internet. You must ensure that cluster Operators do not access Azure APIs using a proxy; Operators must have access to Azure APIs outside of the proxy.
When using the default route table for subnets, with 0.0.0.0/0
populated automatically by Azure, all Azure API requests are routed over Azure’s internal network even though the IP addresses are public. As long as the Network Security Group rules allow egress to Azure API endpoints, proxies with user-defined routing configured allow you to create private clusters with no public endpoints.
Private cluster with no Internet access
You can install a private network that restricts all access to the internet, except the Azure API. This is accomplished by mirroring the release image registry locally. Your cluster must have access to the following:
- An internal registry mirror that allows for pulling container images
- Access to Azure APIs
With these requirements available, you can use user-defined routing to create private clusters with no public endpoints.
1.8.4. About reusing a VNet for your OpenShift Container Platform cluster
In OpenShift Container Platform 4.6, you can deploy a cluster into an existing Azure Virtual Network (VNet) in Microsoft Azure. If you do, you must also use existing subnets within the VNet and routing rules.
By deploying OpenShift Container Platform into an existing Azure VNet, you might be able to avoid service limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. This is a good option to use if you cannot obtain the infrastructure creation permissions that are required to create the VNet.
1.8.4.1. Requirements for using your VNet
When you deploy a cluster by using an existing VNet, you must perform additional network configuration before you install the cluster. In installer-provisioned infrastructure clusters, the installer usually creates the following components, but it does not create them when you install into an existing VNet:
- Subnets
- Route tables
- VNets
- Network Security Groups
The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.
If you use a custom VNet, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VNet options like DHCP, so you must do so before you install the cluster.
The cluster must be able to access the resource group that contains the existing VNet and subnets. While all of the resources that the cluster creates are placed in a separate resource group that it creates, some network resources are used from a separate group. Some cluster Operators must be able to access resources in both resource groups. For example, the Machine API controller attaches NICS for the virtual machines that it creates to subnets from the networking resource group.
Your VNet must meet the following characteristics:
-
The VNet’s CIDR block must contain the
Networking.MachineCIDR
range, which is the IP address pool for cluster machines. - The VNet and its subnets must belong to the same resource group, and the subnets must be configured to use Azure-assigned DHCP IP addresses instead of static IP addresses.
You must provide two subnets within your VNet, one for the control plane machines and one for the compute machines. Because Azure distributes machines in different availability zones within the region that you specify, your cluster will have high availability by default.
To ensure that the subnets that you provide are suitable, the installation program confirms the following data:
- All the specified subnets exist.
- There are two private subnets, one for the control plane machines and one for the compute machines.
- The subnet CIDRs belong to the machine CIDR that you specified. Machines are not provisioned in availability zones that you do not provide private subnets for. If required, the installation program creates public load balancers that manage the control plane and worker nodes, and Azure allocates a public IP address to them.
If you destroy a cluster that uses an existing VNet, the VNet is not deleted.
1.8.4.1.1. Network security group requirements
The network security groups for the subnets that host the compute and control plane machines require specific access to ensure that the cluster communication is correct. You must create rules to allow access to the required cluster communication ports.
The network security group rules must be in place before you install the cluster. If you attempt to install a cluster without the required access, the installation program cannot reach the Azure APIs, and installation fails.
Port | Description | Control plane | Compute |
---|---|---|---|
| Allows HTTP traffic | x | |
| Allows HTTPS traffic | x | |
| Allows communication to the control plane machines | x | |
| Allows communication to the machine config server | x |
Since cluster components do not modify the user-provided network security groups, which the Kubernetes controllers update, a pseudo-network security group is created for the Kubernetes controller to modify without impacting the rest of the environment.
1.8.4.2. Division of permissions
Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resources in your clouds than others. For example, you might be able to create application-specific items, like instances, storage, and load balancers, but not networking-related components such as VNets, subnet, or ingress rules.
The Azure credentials that you use when you create your cluster do not need the networking permissions that are required to make VNets and core networking components within the VNet, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as load balancers, security groups, storage accounts, and nodes.
1.8.4.3. Isolation between clusters
Because the cluster is unable to modify network security groups in an existing subnet, there is no way to isolate clusters from each other on the VNet.
1.8.5. Internet access for OpenShift Container Platform
In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
You must have Internet access to:
- Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
1.8.6. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program.
1.8.7. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space
Procedure
- Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- Select your infrastructure provider.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf openshift-install-linux.tar.gz
- Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
1.8.8. Manually creating the installation configuration file
When installing OpenShift Container Platform on Microsoft Azure into a government region, you must manually generate your installation configuration file.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the access token for your cluster.
Procedure
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
ImportantYou must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
Customize the following
install-config.yaml
file template and save it in the<installation_directory>
.NoteYou must name this configuration file
install-config.yaml
.Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the next step of the installation process. You must back it up now.
1.8.8.1. Installation configuration parameters
Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the install-config.yaml
file.
The openshift-install
command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
1.8.8.1.1. Required configuration parameters
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the | String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource | Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: | Object |
| Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io. |
{ "auths":{ "cloud.openshift.com":{ "auth":"b3Blb=", "email":"you@example.com" }, "quay.io":{ "auth":"b3Blb=", "email":"you@example.com" } } } |
1.8.8.1.2. Network configuration parameters
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values |
---|---|---|
| The configuration for the cluster network. | Object Note
You cannot modify parameters specified by the |
| The cluster network provider Container Network Interface (CNI) plug-in to install. |
Either |
| The IP address blocks for pods.
The default value is If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 |
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between |
|
The subnet prefix length to assign to each individual node. For example, if | A subnet prefix.
The default value is |
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. | An array with an IP address block in CIDR format. For example: networking: serviceNetwork: - 172.30.0.0/16 |
| The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: machineNetwork: - cidr: 10.0.0.0/16 |
|
Required if you use | An IP network block in CIDR notation.
For example, Note
Set the |
1.8.8.1.3. Optional configuration parameters
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. | String |
| The configuration for the machines that comprise the compute nodes. | Array of machine-pool objects. For details, see the following "Machine-pool" table. |
|
Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
| The configuration for the machines that comprise the control plane. |
Array of |
|
Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of control plane machines to provision. |
The only supported value is |
| The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported. Note Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content. |
|
|
Enable or disable FIPS mode. The default is Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the Note If you are using Azure File storage, you cannot enable FIPS mode. |
|
| Sources and repositories for the release-image content. |
Array of objects. Includes a |
|
Required if you use | String |
| Specify one or more repositories that may also contain the same images. | Array of strings |
| How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
|
| The SSH key or keys to authenticate access your cluster machines. Note
For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your | One or more keys. For example: sshKey: <key1> <key2> <key3> |
1.8.8.1.4. Additional Azure configuration parameters
Additional Azure configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| The Azure disk size for the VM. |
Integer that represents the size of the disk in GB. The default is |
| Defines the type of disk. |
|
| The Azure disk size for the VM. |
Integer that represents the size of the disk in GB. The default is |
| Defines the type of disk. |
|
| The name of the resource group that contains the DNS zone for your base domain. |
String, for example |
| The outbound routing strategy used to connect your cluster to the internet. If you are using user-defined routing, you must have pre-existing networking available where the outbound routing has already been configured prior to installing a cluster. The installation program is not responsible for configuring user-defined routing. |
|
| The name of the Azure region that hosts your cluster. |
Any valid region name, such as |
| List of availability zones to place machines in. For high availability, specify at least two zones. |
List of zones, for example |
|
The name of the resource group that contains the existing VNet that you want to deploy your cluster to. This name cannot be the same as the | String. |
| The name of the existing VNet that you want to deploy your cluster to. | String. |
| The name of the existing subnet in your VNet that you want to deploy your control plane machines to. |
Valid CIDR, for example |
| The name of the existing subnet in your VNet that you want to deploy your compute machines to. |
Valid CIDR, for example |
|
The name of the Azure cloud environment that is used to configure the Azure SDK with the appropriate Azure API endpoints. If empty, the default value |
Any valid cloud environment, such as |
You cannot customize Azure Availability Zones or Use tags to organize your Azure resources with an Azure cluster.
1.8.8.2. Sample customized install-config.yaml file for Azure
You can customize the install-config.yaml
file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
This sample YAML file is provided for reference only. You must obtain your install-config.yaml
file by using the installation program and modify it.
apiVersion: v1 baseDomain: example.com 1 controlPlane: 2 hyperthreading: Enabled 3 4 name: master platform: azure: osDisk: diskSizeGB: 1024 5 diskType: Premium_LRS type: Standard_D8s_v3 replicas: 3 compute: 6 - hyperthreading: Enabled 7 name: worker platform: azure: type: Standard_D2s_v3 osDisk: diskSizeGB: 512 8 diskType: Standard_LRS zones: 9 - "1" - "2" - "3" replicas: 5 metadata: name: test-cluster 10 networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 machineNetwork: - cidr: 10.0.0.0/16 networkType: OpenShiftSDN serviceNetwork: - 172.30.0.0/16 platform: azure: baseDomainResourceGroupName: resource_group 11 region: usgovvirginia resourceGroupName: existing_resource_group 12 networkResourceGroupName: vnet_resource_group 13 virtualNetwork: vnet 14 controlPlaneSubnet: control_plane_subnet 15 computeSubnet: compute_subnet 16 outboundType: UserDefinedRouting 17 cloudName: AzureUSGovernmentCloud 18 pullSecret: '{"auths": ...}' 19 fips: false 20 sshKey: ssh-ed25519 AAAA... 21 publish: Internal 22
- 1 10 19
- Required.
- 2 6
- If you do not provide these parameters and values, the installation program provides the default value.
- 3 7
- The
controlPlane
section is a single mapping, but thecompute
section is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecompute
section must begin with a hyphen,-
, and the first line of thecontrolPlane
section must not. Only one control plane pool is used. - 4
- Whether to enable or disable simultaneous multithreading, or
hyperthreading
. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled
. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.ImportantIf you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as
Standard_D8s_v3
, for your machines if you disable simultaneous multithreading. - 5 8
- You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes (also known as the master nodes) is 1024 GB.
- 9
- Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
- 11
- Specify the name of the resource group that contains the DNS zone for your base domain.
- 12
- Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
- 13
- If you use an existing VNet, specify the name of the resource group that contains it.
- 14
- If you use an existing VNet, specify its name.
- 15
- If you use an existing VNet, specify the name of the subnet to host the control plane machines.
- 16
- If you use an existing VNet, specify the name of the subnet to host the compute machines.
- 17
- You can customize your own outbound routing. Configuring user-defined routing prevents exposing external endpoints in your cluster. User-defined routing for egress requires deploying your cluster to an existing VNet.
- 18
- Specify the name of the Azure cloud environment to deploy your cluster to. Set
AzureUSGovernmentCloud
to deploy to a Microsoft Azure Government (MAG) region. The default value isAzurePublicCloud
. - 20
- Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the
x86_64
architecture. - 21
- You can optionally provide the
sshKey
value that you use to access the machines in your cluster.NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses. - 22
- How to publish the user-facing endpoints of your cluster. Set
publish
toInternal
to deploy a private cluster, which cannot be accessed from the Internet. The default value isExternal
.
1.8.8.3. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Prerequisites
-
You have an existing
install-config.yaml
file. You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- ...
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster.
- 3
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace to hold the additional CA certificates. If you provideadditionalTrustBundle
and at least one proxy setting, theProxy
object is configured to reference theuser-ca-bundle
config map in thetrustedCA
field. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges the contents specified for thetrustedCA
parameter with the RHCOS trust bundle. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
NoteThe installation program does not support the proxy
readinessEndpoints
field.- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
1.8.9. Deploying the cluster
You can install OpenShift Container Platform on a compatible cloud platform.
You can run the create cluster
command of the installation program only once, during initial installation.
Prerequisites
- Configure an account with the cloud platform that hosts your cluster.
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ 1 --log-level=info 2
NoteIf the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the
kubeadmin
user, display in your terminal.Example output
... INFO Install complete! INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig' INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL" INFO Time elapsed: 36m22s
NoteThe cluster access and credential information also outputs to
<installation_directory>/.openshift_install.log
when an installation succeeds.Important-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
ImportantYou must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
1.8.10. Installing the OpenShift CLI by downloading the binary
You can install the OpenShift CLI (oc
) in order to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.6. Download and install the new version of oc
.
1.8.10.1. Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 Linux Client entry and save the file.
Unpack the archive:
$ tar xvzf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
1.8.10.2. Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 Windows Client entry and save the file.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
1.8.10.3. Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.6 MacOSX Client entry and save the file.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
1.8.11. Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- You deployed an OpenShift Container Platform cluster.
-
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
Additional resources
- See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.
1.8.12. Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.6, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
Additional resources
- See About remote health monitoring for more information about the Telemetry service
1.8.13. Next steps
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
1.9. Installing a cluster on Azure using ARM templates
In OpenShift Container Platform version 4.6, you can install a cluster on Microsoft Azure by using infrastructure that you provide.
Several Azure Resource Manager (ARM) templates are provided to assist in completing these steps or to help model your own.
The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the cloud provider and the installation process of OpenShift Container Platform. Several ARM templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods; the templates are just an example.
1.9.1. Prerequisites
- Review details about the OpenShift Container Platform installation and update processes.
- Configure an Azure account to host the cluster.
-
Download the Azure CLI and install it on your computer. See Install the Azure CLI in the Azure documentation. The documentation below was last tested using version
2.2.0
of the Azure CLI. Azure CLI commands might perform differently based on the version you use. - If you use a firewall and plan to use telemetry, you must configure the firewall to allow the sites that your cluster requires access to.
If you do not allow the system to manage identity and access management (IAM), then a cluster administrator can manually create and maintain IAM credentials. Manual mode can also be used in environments where the cloud IAM APIs are not reachable.
NoteBe sure to also review this site list if you are configuring a proxy.
1.9.2. Internet access for OpenShift Container Platform
In OpenShift Container Platform 4.6, you require access to the Internet to install your cluster.
You must have Internet access to:
- Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
1.9.3. Configuring your Azure project
Before you can install OpenShift Container Platform, you must configure an Azure project to host it.
All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
1.9.3.1. Azure account limits
The OpenShift Container Platform cluster uses a number of Microsoft Azure components, and the default Azure subscription and service limits, quotas, and constraints affect your ability to install OpenShift Container Platform clusters.
Default limits vary by offer category types, such as Free Trial and Pay-As-You-Go, and by series, such as Dv2, F, and G. For example, the default for Enterprise Agreement subscriptions is 350 cores.
Check the limits for your subscription type and if necessary, increase quota limits for your account before you install a default cluster on Azure.
The following table summarizes the Azure components whose limits can impact your ability to install and run OpenShift Container Platform clusters.
Component | Number of components required by default | Default Azure limit | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
vCPU | 40 | 20 per region | A default cluster requires 40 vCPUs, so you must increase the account limit. By default, each cluster creates the following instances:
Because the bootstrap machine uses To deploy more worker nodes, enable autoscaling, deploy large workloads, or use a different instance type, you must further increase the vCPU limit for your account to ensure that your cluster can deploy the machines that you require. By default, the installation program distributes control plane and compute machines across all availability zones within a region. To ensure high availability for your cluster, select a region with at least three availability zones. If your region contains fewer than three availability zones, the installation program places more than one control plane machine in the available zones. | ||||||
OS Disk | 7 |
VM OS disk must be able to sustain a minimum throughput of 5000 IOPS / 200MBps. This throughput can be provided by having a minimum of 1 TiB Premium SSD (P30). In Azure, disk performance is directly dependent on SSD disk sizes, so to achieve the throughput supported by
Host caching must be set to | |||||||
VNet | 1 | 1000 per region | Each default cluster requires one Virtual Network (VNet), which contains two subnets. | ||||||
Network interfaces | 6 | 65,536 per region | Each default cluster requires six network interfaces. If you create more machines or your deployed workloads create load balancers, your cluster uses more network interfaces. | ||||||
Network security groups | 2 | 5000 | Each default cluster Each cluster creates network security groups for each subnet in the VNet. The default cluster creates network security groups for the control plane and for the compute node subnets:
| ||||||
Network load balancers | 3 | 1000 per region | Each cluster creates the following load balancers:
If your applications create more Kubernetes | ||||||
Public IP addresses | 3 | Each of the two public load balancers uses a public IP address. The bootstrap machine also uses a public IP address so that you can SSH into the machine to troubleshoot issues during installation. The IP address for the bootstrap node is used only during installation. | |||||||
Private IP addresses | 7 | The internal load balancer, each of the three control plane machines, and each of the three worker machines each use a private IP address. | |||||||
Spot VM vCPUs (optional) | 0 If you configure spot VMs, your cluster must have two spot VM vCPUs for every compute node. | 20 per region | This is an optional component. To use spot VMs, you must increase the Azure default limit to at least twice the number of compute nodes in your cluster. Note Using spot VMs for control plane nodes is not recommended. |
1.9.3.2. Configuring a public DNS zone in Azure
To install OpenShift Container Platform, the Microsoft Azure account you use must have a dedicated public hosted DNS zone in your account. This zone must be authoritative for the domain. This service provides cluster DNS resolution and name lookup for external connections to the cluster.
Procedure
Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through Azure or another source.
NoteFor more information about purchasing domains through Azure, see Buy a custom domain name for Azure App Service in the Azure documentation.
- If you are using an existing domain and registrar, migrate its DNS to Azure. See Migrate an active DNS name to Azure App Service in the Azure documentation.
Configure DNS for your domain. Follow the steps in the Tutorial: Host your domain in Azure DNS in the Azure documentation to create a public hosted zone for your domain or subdomain, extract the new authoritative name servers, and update the registrar records for the name servers that your domain uses.
Use an appropriate root domain, such as
openshiftcorp.com
, or subdomain, such asclusters.openshiftcorp.com
.- If you use a subdomain, follow your company’s procedures to add its delegation records to the parent domain.
You can view Azure’s DNS solution by visiting this example for creating DNS zones.
1.9.3.3. Increasing Azure account limits
To increase an account limit, file a support request on the Azure portal.
You can increase only one type of quota per support request.
Procedure
- From the Azure portal, click Help + support in the lower left corner.
Click New support request and then select the required values:
- From the Issue type list, select Service and subscription limits (quotas).
- From the Subscription list, select the subscription to modify.
- From the Quota type list, select the quota to increase. For example, select Compute-VM (cores-vCPUs) subscription limit increases to increase the number of vCPUs, which is required to install a cluster.
- Click Next: Solutions.
On the Problem Details page, provide the required information for your quota increase:
- Click Provide details and provide the required details in the Quota details window.
- In the SUPPORT METHOD and CONTACT INFO sections, provide the issue severity and your contact details.
- Click Next: Review + create and then click Create.
1.9.3.4. Certificate signing requests management
Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager
only approves the kubelet client CSRs. The machine-approver
cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
1.9.3.5. Required Azure roles
OpenShift Container Platform needs a service principal so it can manage Microsoft Azure resources. Before you can create a service principal, your Azure account subscription must have the following roles:
-
User Access Administrator
-
Owner
To set roles on the Azure portal, see the Manage access to Azure resources using RBAC and the Azure portal in the Azure documentation.
1.9.3.6. Creating a service principal
Because OpenShift Container Platform and its installation program must create Microsoft Azure resources through Azure Resource Manager, you must create a service principal to represent it.
Prerequisites
- Install or update the Azure CLI.
-
Install the
jq
package. - Your Azure account has the required roles for the subscription that you use.
Procedure
Log in to the Azure CLI:
$ az login
Log in to Azure in the web console by using your credentials.
If your Azure account uses subscriptions, ensure that you are using the right subscription.
View the list of available accounts and record the
tenantId
value for the subscription you want to use for your cluster:$ az account list --refresh
Example output
[ { "cloudName": "AzureCloud", "id": "9bab1460-96d5-40b3-a78e-17b15e978a80", "isDefault": true, "name": "Subscription Name", "state": "Enabled", "tenantId": "6057c7e9-b3ae-489d-a54e-de3f6bf6a8ee", "user": { "name": "you@example.com", "type": "user" } } ]
View your active account details and confirm that the
tenantId
value matches the subscription you want to use:$ az account show
Example output
{ "environmentName": "AzureCloud", "id": "9bab1460-96d5-40b3-a78e-17b15e978a80", "isDefault": true, "name": "Subscription Name", "state": "Enabled", "tenantId": "6057c7e9-b3ae-489d-a54e-de3f6bf6a8ee", 1 "user": { "name": "you@example.com", "type": "user" } }
- 1
- Ensure that the value of the
tenantId
parameter is the UUID of the correct subscription.
If you are not using the right subscription, change the active subscription:
$ az account set -s <id> 1
- 1
- Substitute the value of the
id
for the subscription that you want to use for<id>
.
If you changed the active subscription, display your account information again:
$ az account show
Example output
{ "environmentName": "AzureCloud", "id": "33212d16-bdf6-45cb-b038-f6565b61edda", "isDefault": true, "name": "Subscription Name", "state": "Enabled", "tenantId": "8049c7e9-c3de-762d-a54e-dc3f6be6a7ee", "user": { "name": "you@example.com", "type": "user" } }
-
Record the values of the
tenantId
andid
parameters from the previous output. You need these values during OpenShift Container Platform installation. Create the service principal for your account:
$ az ad sp create-for-rbac --role Contributor --name <service_principal> 1
- 1
- Replace
<service_principal>
with the name to assign to the service principal.
Example output
Changing "<service_principal>" to a valid URI of "http://<service_principal>", which is the required format used for service principal names Retrying role assignment creation: 1/36 Retrying role assignment creation: 2/36 Retrying role assignment creation: 3/36 Retrying role assignment creation: 4/36 { "appId": "8bd0d04d-0ac2-43a8-928d-705c598c6956", "displayName": "<service_principal>", "name": "http://<service_principal>", "password": "ac461d78-bf4b-4387-ad16-7e32e328aec6", "tenant": "6048c7e9-b2ad-488d-a54e-dc3f6be6a7ee" }
-
Record the values of the
appId
andpassword
parameters from the previous output. You need these values during OpenShift Container Platform installation. Grant additional permissions to the service principal.
-
You must always add the
Contributor
andUser Access Administrator
roles to the app registration service principal so the cluster can assign credentials for its components. -
To operate the Cloud Credential Operator (CCO) in mint mode, the app registration service principal also requires the
Azure Active Directory Graph/Application.ReadWrite.OwnedBy
API permission. - To operate the CCO in passthrough mode, the app registration service principal does not require additional API permissions.
For more information about CCO modes, see the Cloud Credential Operator entry in the Red Hat Operators reference content.
To assign the
User Access Administrator
role, run the following command:$ az role assignment create --role "User Access Administrator" \ --assignee-object-id $(az ad sp list --filter "appId eq '<appId>'" \ | jq '.[0].id' -r) 1
- 1
- Replace
<appId>
with theappId
parameter value for your service principal.
To assign the
Azure Active Directory Graph
permission, run the following command:$ az ad app permission add --id <appId> \ 1 --api 00000002-0000-0000-c000-000000000000 \ --api-permissions 824c81eb-e3f8-4ee6-8f6d-de7f50d565b7=Role
- 1
- Replace
<appId>
with theappId
parameter value for your service principal.
Example output
Invoking "az ad app permission grant --id 46d33abc-b8a3-46d8-8c84-f0fd58177435 --api 00000002-0000-0000-c000-000000000000" is needed to make the change effective
For more information about the specific permissions that you grant with this command, see the GUID Table for Windows Azure Active Directory Permissions.
Approve the permissions request. If your account does not have the Azure Active Directory tenant administrator role, follow the guidelines for your organization to request that the tenant administrator approve your permissions request.
$ az ad app permission grant --id <appId> \ 1 --api 00000002-0000-0000-c000-000000000000
- 1
- Replace
<appId>
with theappId
parameter value for your service principal.
-
You must always add the
1.9.3.7. Supported Azure regions
The installation program dynamically generates the list of available Microsoft Azure regions based on your subscription. The following Azure regions were tested and validated in OpenShift Container Platform version 4.6.1:
Supported Azure public regions
-
australiacentral
(Australia Central) -
australiaeast
(Australia East) -
australiasoutheast
(Australia South East) -
brazilsouth
(Brazil South) -
canadacentral
(Canada Central) -
canadaeast
(Canada East) -
centralindia
(Central India) -
centralus
(Central US) -
eastasia
(East Asia) -
eastus
(East US) -
eastus2
(East US 2) -
francecentral
(France Central) -
germanywestcentral
(Germany West Central) -
japaneast
(Japan East) -
japanwest
(Japan West) -
koreacentral
(Korea Central) -
koreasouth
(Korea South) -
northcentralus
(North Central US) -
northeurope
(North Europe) -
norwayeast
(Norway East) -
southafricanorth
(South Africa North) -
southcentralus
(South Central US) -
southeastasia
(Southeast Asia) -
southindia
(South India) -
switzerlandnorth
(Switzerland North) -
uaenorth
(UAE North) -
uksouth
(UK South) -
ukwest
(UK West) -
westcentralus
(West Central US) -
westeurope
(West Europe) -
westindia
(West India) -
westus
(West US) -
westus2
(West US 2)
Supported Azure Government regions
Support for the following Microsoft Azure Government (MAG) regions was added in OpenShift Container Platform version 4.6:
-
usgovtexas
(US Gov Texas) -
usgovvirginia
(US Gov Virginia)
You can reference all available MAG regions in the Azure documentation. Other provided MAG regions are expected to work with OpenShift Container Platform, but have not been tested.
1.9.4. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space
Procedure
- Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- Select your infrastructure provider.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf openshift-install-linux.tar.gz
- Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
1.9.5. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide this key to your cluster’s machines.
1.9.6. Creating the installation files for Azure
To install OpenShift Container Platform on Microsoft Azure using user-provisioned infrastructure, you must generate the files that the installation program needs to deploy your cluster and modify them so that the cluster creates only the machines that it will use. You generate and customize the install-config.yaml
file, Kubernetes manifests, and Ignition config files. You also have the option to first set up a separate var
partition during the preparation phases of installation.
1.9.6.1. Optional: Creating a separate /var
partition
It is recommended that disk partitioning for OpenShift Container Platform be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var
partition or a subdirectory of /var
. For example:
-
/var/lib/containers
: Holds container-related content that can grow as more images and containers are added to a system. -
/var/lib/etcd
: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage. -
/var
: Holds data that you might want to keep separate for purposes such as auditing.
Storing the contents of a /var
directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
Because /var
must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var
partition by creating a machine config that is inserted during the openshift-install
preparation phases of an OpenShift Container Platform installation.
If you follow the steps to create a separate /var
partition in this procedure, it is not necessary to create the Kubernetes manifest and Ignition config files again as described later in this section.
Procedure
Create a directory to hold the OpenShift Container Platform installation files:
$ mkdir $HOME/clusterconfig
Run
openshift-install
to create a set of files in themanifest
andopenshift
subdirectories. Answer the system questions as you are prompted:$ openshift-install create manifests --dir $HOME/clusterconfig
Example output
? SSH Public Key ... INFO Credentials loaded from the "myprofile" profile in file "/home/myuser/.aws/credentials" INFO Consuming Install Config from target directory INFO Manifests created in: $HOME/clusterconfig/manifests and $HOME/clusterconfig/openshift
Optional: Confirm that the installation program created manifests in the
clusterconfig/openshift
directory:$ ls $HOME/clusterconfig/openshift/
Example output
99_kubeadmin-password-secret.yaml 99_openshift-cluster-api_master-machines-0.yaml 99_openshift-cluster-api_master-machines-1.yaml 99_openshift-cluster-api_master-machines-2.yaml ...
Create a
MachineConfig
object and add it to a file in theopenshift
directory. For example, name the file98-var-partition.yaml
, change the disk device name to the name of the storage device on theworker
systems, and set the storage size as appropriate. This example places the/var
directory on a separate partition:apiVersion: machineconfiguration.openshift.io/v1 kind: MachineConfig metadata: labels: machineconfiguration.openshift.io/role: worker name: 98-var-partition spec: config: ignition: version: 3.1.0 storage: disks: - device: /dev/<device_name> 1 partitions: - label: var startMiB: <partition_start_offset> 2 sizeMiB: <partition_size> 3 filesystems: - device: /dev/disk/by-partlabel/var path: /var format: xfs systemd: units: - name: var.mount 4 enabled: true contents: | [Unit] Before=local-fs.target [Mount] What=/dev/disk/by-partlabel/var Where=/var Options=defaults,prjquota 5 [Install] WantedBy=local-fs.target
- 1
- The storage device name of the disk that you want to partition.
- 2
- When adding a data partition to the boot disk, a minimum value of 25000 MiB (Mebibytes) is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
- 3
- The size of the data partition in mebibytes.
- 4
- The name of the mount unit must match the directory specified in the
Where=
directive. For example, for a filesystem mounted on/var/lib/containers
, the unit must be namedvar-lib-containers.mount
. - 5
- The
prjquota
mount option must be enabled for filesystems used for container storage.
NoteWhen creating a separate
/var
partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.Run
openshift-install
again to create Ignition configs from a set of files in themanifest
andopenshift
subdirectories:$ openshift-install create ignition-configs --dir $HOME/clusterconfig $ ls $HOME/clusterconfig/ auth bootstrap.ign master.ign metadata.json worker.ign
Now you can use the Ignition config files as input to the installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
1.9.6.2. Creating the installation configuration file
You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Create the
install-config.yaml
file.Change to the directory that contains the installation program and run the following command:
$ ./openshift-install create install-config --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the directory name to store the files that the installation program creates.
ImportantSpecify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.- Select azure as the platform to target.
If you do not have a Microsoft Azure profile stored on your computer, specify the following Azure parameter values for your subscription and service principal:
-
azure subscription id: The subscription ID to use for the cluster. Specify the
id
value in your account output. -
azure tenant id: The tenant ID. Specify the
tenantId
value in your account output. -
azure service principal client id: The value of the
appId
parameter for the service principal. -
azure service principal client secret: The value of the
password
parameter for the service principal.
-
azure subscription id: The subscription ID to use for the cluster. Specify the
- Select the region to deploy the cluster to.
- Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
Enter a descriptive name for your cluster.
ImportantAll Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
- Paste the pull secret from the Red Hat OpenShift Cluster Manager.
Optional: If you do not want the cluster to provision compute machines, empty the compute pool by editing the resulting
install-config.yaml
file to setreplicas
to0
for thecompute
pool:compute: - hyperthreading: Enabled name: worker platform: {} replicas: 0 1
- 1
- Set to
0
.
-
Modify the
install-config.yaml
file. You can find more information about the available parameters in the Installation configuration parameters section. Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the installation process. If you want to reuse the file, you must back it up now.
1.9.6.3. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Prerequisites
-
You have an existing
install-config.yaml
file. You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- ...
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster.
- 3
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace to hold the additional CA certificates. If you provideadditionalTrustBundle
and at least one proxy setting, theProxy
object is configured to reference theuser-ca-bundle
config map in thetrustedCA
field. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges the contents specified for thetrustedCA
parameter with the RHCOS trust bundle. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
NoteThe installation program does not support the proxy
readinessEndpoints
field.- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
1.9.6.4. Exporting common variables for ARM templates
You must export a common set of variables that are used with the provided Azure Resource Manager (ARM) templates used to assist in completing a user-provided infrastructure install on Microsoft Azure.
Specific ARM templates can also require additional exported variables, which are detailed in their related procedures.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Export common variables found in the
install-config.yaml
to be used by the provided ARM templates:$ export CLUSTER_NAME=<cluster_name>1 $ export AZURE_REGION=<azure_region>2 $ export SSH_KEY=<ssh_key>3 $ export BASE_DOMAIN=<base_domain>4 $ export BASE_DOMAIN_RESOURCE_GROUP=<base_domain_resource_group>5
- 1
- The value of the
.metadata.name
attribute from theinstall-config.yaml
file. - 2
- The region to deploy the cluster into, for example
centralus
. This is the value of the.platform.azure.region
attribute from theinstall-config.yaml
file. - 3
- The SSH RSA public key file as a string. You must enclose the SSH key in quotes since it contains spaces. This is the value of the
.sshKey
attribute from theinstall-config.yaml
file. - 4
- The base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster. This is the value of the
.baseDomain
attribute from theinstall-config.yaml
file. - 5
- The resource group where the public DNS zone exists. This is the value of the
.platform.azure.baseDomainResourceGroupName
attribute from theinstall-config.yaml
file.
For example:
$ export CLUSTER_NAME=test-cluster $ export AZURE_REGION=centralus $ export SSH_KEY="ssh-rsa xxx/xxx/xxx= user@email.com" $ export BASE_DOMAIN=example.com $ export BASE_DOMAIN_RESOURCE_GROUP=ocp-cluster
Export the kubeadmin credentials:
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
1.9.6.5. Creating the Kubernetes manifest and Ignition config files
Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
Prerequisites
- You obtained the OpenShift Container Platform installation program.
-
You created the
install-config.yaml
installation configuration file.
Procedure
Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
$ ./openshift-install create manifests --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the installation directory that contains theinstall-config.yaml
file you created.
Remove the Kubernetes manifest files that define the control plane machines:
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml
By removing these files, you prevent the cluster from automatically generating control plane machines.
Remove the Kubernetes manifest files that define the worker machines:
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml
Because you create and manage the worker machines yourself, you do not need to initialize these machines.
Check that the
mastersSchedulable
parameter in the<installation_directory>/manifests/cluster-scheduler-02-config.yml
Kubernetes manifest file is set tofalse
. This setting prevents pods from being scheduled on the control plane machines:-
Open the
<installation_directory>/manifests/cluster-scheduler-02-config.yml
file. -
Locate the
mastersSchedulable
parameter and ensure that it is set tofalse
. - Save and exit the file.
-
Open the
Optional: If you do not want the Ingress Operator to create DNS records on your behalf, remove the
privateZone
andpublicZone
sections from the<installation_directory>/manifests/cluster-dns-02-config.yml
DNS configuration file:apiVersion: config.openshift.io/v1 kind: DNS metadata: creationTimestamp: null name: cluster spec: baseDomain: example.openshift.com privateZone: 1 id: mycluster-100419-private-zone publicZone: 2 id: example.openshift.com status: {}
If you do so, you must add ingress DNS records manually in a later step.
When configuring Azure on user-provisioned infrastructure, you must export some common variables defined in the manifest files to use later in the Azure Resource Manager (ARM) templates:
Export the infrastructure ID by using the following command:
$ export INFRA_ID=<infra_id> 1
- 1
- The OpenShift Container Platform cluster has been assigned an identifier (
INFRA_ID
) in the form of<cluster_name>-<random_string>
. This will be used as the base name for most resources created using the provided ARM templates. This is the value of the.status.infrastructureName
attribute from themanifests/cluster-infrastructure-02-config.yml
file.
Export the resource group by using the following command:
$ export RESOURCE_GROUP=<resource_group> 1
- 1
- All resources created in this Azure deployment exists as part of a resource group. The resource group name is also based on the
INFRA_ID
, in the form of<cluster_name>-<random_string>-rg
. This is the value of the.status.platformStatus.azure.resourceGroupName
attribute from themanifests/cluster-infrastructure-02-config.yml
file.
To create the Ignition configuration files, run the following command from the directory that contains the installation program:
$ ./openshift-install create ignition-configs --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the same installation directory.
The following files are generated in the directory:
. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
1.9.7. Creating the Azure resource group and identity
You must create a Microsoft Azure resource group and an identity for that resource group. These are both used during the installation of your OpenShift Container Platform cluster on Azure.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
Procedure
Create the resource group in a supported Azure region:
$ az group create --name ${RESOURCE_GROUP} --location ${AZURE_REGION}
Create an Azure identity for the resource group:
$ az identity create -g ${RESOURCE_GROUP} -n ${INFRA_ID}-identity
This is used to grant the required access to Operators in your cluster. For example, this allows the Ingress Operator to create a public IP and its load balancer. You must assign the Azure identity to a role.
Grant the Contributor role to the Azure identity:
Export the following variables required by the Azure role assignment:
$ export PRINCIPAL_ID=`az identity show -g ${RESOURCE_GROUP} -n ${INFRA_ID}-identity --query principalId --out tsv`
$ export RESOURCE_GROUP_ID=`az group show -g ${RESOURCE_GROUP} --query id --out tsv`
Assign the Contributor role to the identity:
$ az role assignment create --assignee "${PRINCIPAL_ID}" --role 'Contributor' --scope "${RESOURCE_GROUP_ID}"
1.9.8. Uploading the RHCOS cluster image and bootstrap Ignition config file
The Azure client does not support deployments based on files existing locally; therefore, you must copy and store the RHCOS virtual hard disk (VHD) cluster image and bootstrap Ignition config file in a storage container so they are accessible during deployment.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
Procedure
Create an Azure storage account to store the VHD cluster image:
$ az storage account create -g ${RESOURCE_GROUP} --location ${AZURE_REGION} --name ${CLUSTER_NAME}sa --kind Storage --sku Standard_LRS
WarningThe Azure storage account name must be between 3 and 24 characters in length and use numbers and lower-case letters only. If your
CLUSTER_NAME
variable does not follow these restrictions, you must manually define the Azure storage account name. For more information on Azure storage account name restrictions, see Resolve errors for storage account names in the Azure documentation.Export the storage account key as an environment variable:
$ export ACCOUNT_KEY=`az storage account keys list -g ${RESOURCE_GROUP} --account-name ${CLUSTER_NAME}sa --query "[0].value" -o tsv`
Choose the RHCOS version to use and export the URL of its VHD to an environment variable:
$ export VHD_URL=`curl -s https://raw.githubusercontent.com/openshift/installer/release-4.6/data/data/rhcos.json | jq -r .azure.url`
ImportantThe RHCOS images might not change with every release of OpenShift Container Platform. You must specify an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.
Copy the chosen VHD to a blob:
$ az storage container create --name vhd --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY}
$ az storage blob copy start --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} --destination-blob "rhcos.vhd" --destination-container vhd --source-uri "${VHD_URL}"
To track the progress of the VHD copy task, run this script:
status="unknown" while [ "$status" != "success" ] do status=`az storage blob show --container-name vhd --name "rhcos.vhd" --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} -o tsv --query properties.copy.status` echo $status done
Create a blob storage container and upload the generated
bootstrap.ign
file:$ az storage container create --name files --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} --public-access blob
$ az storage blob upload --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} -c "files" -f "<installation_directory>/bootstrap.ign" -n "bootstrap.ign"
1.9.9. Example for creating DNS zones
DNS records are required for clusters that use user-provisioned infrastructure. You should choose the DNS strategy that fits your scenario.
For this example, Azure’s DNS solution is used, so you will create a new public DNS zone for external (internet) visibility and a private DNS zone for internal cluster resolution.
The public DNS zone is not required to exist in the same resource group as the cluster deployment and might already exist in your organization for the desired base domain. If that is the case, you can skip creating the public DNS zone; be sure the installation config you generated earlier reflects that scenario.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
Procedure
Create the new public DNS zone in the resource group exported in the
BASE_DOMAIN_RESOURCE_GROUP
environment variable:$ az network dns zone create -g ${BASE_DOMAIN_RESOURCE_GROUP} -n ${CLUSTER_NAME}.${BASE_DOMAIN}
You can skip this step if you are using a public DNS zone that already exists.
Create the private DNS zone in the same resource group as the rest of this deployment:
$ az network private-dns zone create -g ${RESOURCE_GROUP} -n ${CLUSTER_NAME}.${BASE_DOMAIN}
You can learn more about configuring a public DNS zone in Azure by visiting that section.
1.9.10. Creating a VNet in Azure
You must create a virtual network (VNet) in Microsoft Azure for your OpenShift Container Platform cluster to use. You can customize the VNet to meet your requirements. One way to create the VNet is to modify the provided Azure Resource Manager (ARM) template.
If you do not use the provided ARM template to create your Azure infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
Procedure
-
Copy the template from the ARM template for the VNet section of this topic and save it as
01_vnet.json
in your cluster’s installation directory. This template describes the VNet that your cluster requires. Create the deployment by using the
az
CLI:$ az deployment group create -g ${RESOURCE_GROUP} \ --template-file "<installation_directory>/01_vnet.json" \ --parameters baseName="${INFRA_ID}"1
- 1
- The base name to be used in resource names; this is usually the cluster’s infrastructure ID.
Link the VNet template to the private DNS zone:
$ az network private-dns link vnet create -g ${RESOURCE_GROUP} -z ${CLUSTER_NAME}.${BASE_DOMAIN} -n ${INFRA_ID}-network-link -v "${INFRA_ID}-vnet" -e false
1.9.10.1. ARM template for the VNet
You can use the following Azure Resource Manager (ARM) template to deploy the VNet that you need for your OpenShift Container Platform cluster:
Example 1.1. 01_vnet.json
ARM template
{ "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#", "contentVersion" : "1.0.0.0", "parameters" : { "baseName" : { "type" : "string", "minLength" : 1, "metadata" : { "description" : "Base name to be used in resource names (usually the cluster's Infra ID)" } } }, "variables" : { "location" : "[resourceGroup().location]", "virtualNetworkName" : "[concat(parameters('baseName'), '-vnet')]", "addressPrefix" : "10.0.0.0/16", "masterSubnetName" : "[concat(parameters('baseName'), '-master-subnet')]", "masterSubnetPrefix" : "10.0.0.0/24", "nodeSubnetName" : "[concat(parameters('baseName'), '-worker-subnet')]", "nodeSubnetPrefix" : "10.0.1.0/24", "clusterNsgName" : "[concat(parameters('baseName'), '-nsg')]" }, "resources" : [ { "apiVersion" : "2018-12-01", "type" : "Microsoft.Network/virtualNetworks", "name" : "[variables('virtualNetworkName')]", "location" : "[variables('location')]", "dependsOn" : [ "[concat('Microsoft.Network/networkSecurityGroups/', variables('clusterNsgName'))]" ], "properties" : { "addressSpace" : { "addressPrefixes" : [ "[variables('addressPrefix')]" ] }, "subnets" : [ { "name" : "[variables('masterSubnetName')]", "properties" : { "addressPrefix" : "[variables('masterSubnetPrefix')]", "serviceEndpoints": [], "networkSecurityGroup" : { "id" : "[resourceId('Microsoft.Network/networkSecurityGroups', variables('clusterNsgName'))]" } } }, { "name" : "[variables('nodeSubnetName')]", "properties" : { "addressPrefix" : "[variables('nodeSubnetPrefix')]", "serviceEndpoints": [], "networkSecurityGroup" : { "id" : "[resourceId('Microsoft.Network/networkSecurityGroups', variables('clusterNsgName'))]" } } } ] } }, { "type" : "Microsoft.Network/networkSecurityGroups", "name" : "[variables('clusterNsgName')]", "apiVersion" : "2018-10-01", "location" : "[variables('location')]", "properties" : { "securityRules" : [ { "name" : "apiserver_in", "properties" : { "protocol" : "Tcp", "sourcePortRange" : "*", "destinationPortRange" : "6443", "sourceAddressPrefix" : "*", "destinationAddressPrefix" : "*", "access" : "Allow", "priority" : 101, "direction" : "Inbound" } } ] } } ] }
1.9.11. Deploying the RHCOS cluster image for the Azure infrastructure
You must use a valid Red Hat Enterprise Linux CoreOS (RHCOS) image for Microsoft Azure for your OpenShift Container Platform nodes.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
- Store the RHCOS virtual hard disk (VHD) cluster image in an Azure storage container.
- Store the bootstrap Ignition config file in an Azure storage container.
Procedure
-
Copy the template from the ARM template for image storage section of this topic and save it as
02_storage.json
in your cluster’s installation directory. This template describes the image storage that your cluster requires. Export the RHCOS VHD blob URL as a variable:
$ export VHD_BLOB_URL=`az storage blob url --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} -c vhd -n "rhcos.vhd" -o tsv`
Deploy the cluster image:
$ az deployment group create -g ${RESOURCE_GROUP} \ --template-file "<installation_directory>/02_storage.json" \ --parameters vhdBlobURL="${VHD_BLOB_URL}" \ 1 --parameters baseName="${INFRA_ID}"2
1.9.11.1. ARM template for image storage
You can use the following Azure Resource Manager (ARM) template to deploy the stored Red Hat Enterprise Linux CoreOS (RHCOS) image that you need for your OpenShift Container Platform cluster:
Example 1.2. 02_storage.json
ARM template
{ "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#", "contentVersion" : "1.0.0.0", "parameters" : { "baseName" : { "type" : "string", "minLength" : 1, "metadata" : { "description" : "Base name to be used in resource names (usually the cluster's Infra ID)" } }, "vhdBlobURL" : { "type" : "string", "metadata" : { "description" : "URL pointing to the blob where the VHD to be used to create master and worker machines is located" } } }, "variables" : { "location" : "[resourceGroup().location]", "imageName" : "[concat(parameters('baseName'), '-image')]" }, "resources" : [ { "apiVersion" : "2018-06-01", "type": "Microsoft.Compute/images", "name": "[variables('imageName')]", "location" : "[variables('location')]", "properties": { "storageProfile": { "osDisk": { "osType": "Linux", "osState": "Generalized", "blobUri": "[parameters('vhdBlobURL')]", "storageAccountType": "Standard_LRS" } } } } ] }
1.9.12. Networking requirements for user-provisioned infrastructure
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config from the machine config server.
You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
Protocol | Port | Description |
---|---|---|
ICMP | N/A | Network reachability tests |
TCP |
| Metrics |
|
Host level services, including the node exporter on ports | |
| The default ports that Kubernetes reserves | |
| openshift-sdn | |
UDP |
| VXLAN and Geneve |
| VXLAN and Geneve | |
|
Host level services, including the node exporter on ports | |
TCP/UDP |
| Kubernetes node port |
Protocol | Port | Description |
---|---|---|
TCP |
| Kubernetes API |
Protocol | Port | Description |
---|---|---|
TCP |
| etcd server and peer ports |
Network topology requirements
The infrastructure that you provision for your cluster must meet the following network topology requirements.
OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
Load balancers
Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
- A stateless load balancing algorithm. The options vary based on the load balancer implementation.
ImportantDo not configure session persistence for an API load balancer.
Configure the following ports on both the front and back of the load balancers:
Table 1.32. API load balancer Port Back-end machines (pool members) Internal External Description 6443
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the
/readyz
endpoint for the API server health check probe.X
X
Kubernetes API server
22623
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
X
Machine config server
NoteThe load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the
/readyz
endpoint to the removal of the API server instance from the pool. Within the time frame after/readyz
returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
- A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
Configure the following ports on both the front and back of the load balancers:
Table 1.33. Application Ingress load balancer Port Back-end machines (pool members) Internal External Description 443
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTPS traffic
80
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTP traffic
If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
1.9.13. Creating networking and load balancing components in Azure
You must configure networking and load balancing in Microsoft Azure for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Azure Resource Manager (ARM) template.
If you do not use the provided ARM template to create your Azure infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
- Create and configure a VNet and associated subnets in Azure.
Procedure
-
Copy the template from the ARM template for the network and load balancers section of this topic and save it as
03_infra.json
in your cluster’s installation directory. This template describes the networking and load balancing objects that your cluster requires. Create the deployment by using the
az
CLI:$ az deployment group create -g ${RESOURCE_GROUP} \ --template-file "<installation_directory>/03_infra.json" \ --parameters privateDNSZoneName="${CLUSTER_NAME}.${BASE_DOMAIN}" \ 1 --parameters baseName="${INFRA_ID}"2
Create an
api
DNS record in the public zone for the API public load balancer. The${BASE_DOMAIN_RESOURCE_GROUP}
variable must point to the resource group where the public DNS zone exists.Export the following variable:
$ export PUBLIC_IP=`az network public-ip list -g ${RESOURCE_GROUP} --query "[?name=='${INFRA_ID}-master-pip'] | [0].ipAddress" -o tsv`
Create the DNS record in a new public zone:
$ az network dns record-set a add-record -g ${BASE_DOMAIN_RESOURCE_GROUP} -z ${CLUSTER_NAME}.${BASE_DOMAIN} -n api -a ${PUBLIC_IP} --ttl 60
If you are adding the cluster to an existing public zone, you can create the DNS record in it instead:
$ az network dns record-set a add-record -g ${BASE_DOMAIN_RESOURCE_GROUP} -z ${BASE_DOMAIN} -n api.${CLUSTER_NAME} -a ${PUBLIC_IP} --ttl 60
1.9.13.1. ARM template for the network and load balancers
You can use the following Azure Resource Manager (ARM) template to deploy the networking objects and load balancers that you need for your OpenShift Container Platform cluster:
Example 1.3. 03_infra.json
ARM template
{ "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#", "contentVersion" : "1.0.0.0", "parameters" : { "baseName" : { "type" : "string", "minLength" : 1, "metadata" : { "description" : "Base name to be used in resource names (usually the cluster's Infra ID)" } }, "privateDNSZoneName" : { "type" : "string", "metadata" : { "description" : "Name of the private DNS zone" } } }, "variables" : { "location" : "[resourceGroup().location]", "virtualNetworkName" : "[concat(parameters('baseName'), '-vnet')]", "virtualNetworkID" : "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]", "masterSubnetName" : "[concat(parameters('baseName'), '-master-subnet')]", "masterSubnetRef" : "[concat(variables('virtualNetworkID'), '/subnets/', variables('masterSubnetName'))]", "masterPublicIpAddressName" : "[concat(parameters('baseName'), '-master-pip')]", "masterPublicIpAddressID" : "[resourceId('Microsoft.Network/publicIPAddresses', variables('masterPublicIpAddressName'))]", "masterLoadBalancerName" : "[concat(parameters('baseName'), '-public-lb')]", "masterLoadBalancerID" : "[resourceId('Microsoft.Network/loadBalancers', variables('masterLoadBalancerName'))]", "internalLoadBalancerName" : "[concat(parameters('baseName'), '-internal-lb')]", "internalLoadBalancerID" : "[resourceId('Microsoft.Network/loadBalancers', variables('internalLoadBalancerName'))]", "skuName": "Standard" }, "resources" : [ { "apiVersion" : "2018-12-01", "type" : "Microsoft.Network/publicIPAddresses", "name" : "[variables('masterPublicIpAddressName')]", "location" : "[variables('location')]", "sku": { "name": "[variables('skuName')]" }, "properties" : { "publicIPAllocationMethod" : "Static", "dnsSettings" : { "domainNameLabel" : "[variables('masterPublicIpAddressName')]" } } }, { "apiVersion" : "2018-12-01", "type" : "Microsoft.Network/loadBalancers", "name" : "[variables('masterLoadBalancerName')]", "location" : "[variables('location')]", "sku": { "name": "[variables('skuName')]" }, "dependsOn" : [ "[concat('Microsoft.Network/publicIPAddresses/', variables('masterPublicIpAddressName'))]" ], "properties" : { "frontendIPConfigurations" : [ { "name" : "public-lb-ip", "properties" : { "publicIPAddress" : { "id" : "[variables('masterPublicIpAddressID')]" } } } ], "backendAddressPools" : [ { "name" : "public-lb-backend" } ], "loadBalancingRules" : [ { "name" : "api-internal", "properties" : { "frontendIPConfiguration" : { "id" :"[concat(variables('masterLoadBalancerID'), '/frontendIPConfigurations/public-lb-ip')]" }, "backendAddressPool" : { "id" : "[concat(variables('masterLoadBalancerID'), '/backendAddressPools/public-lb-backend')]" }, "protocol" : "Tcp", "loadDistribution" : "Default", "idleTimeoutInMinutes" : 30, "frontendPort" : 6443, "backendPort" : 6443, "probe" : { "id" : "[concat(variables('masterLoadBalancerID'), '/probes/api-internal-probe')]" } } } ], "probes" : [ { "name" : "api-internal-probe", "properties" : { "protocol" : "Https", "port" : 6443, "requestPath": "/readyz", "intervalInSeconds" : 10, "numberOfProbes" : 3 } } ] } }, { "apiVersion" : "2018-12-01", "type" : "Microsoft.Network/loadBalancers", "name" : "[variables('internalLoadBalancerName')]", "location" : "[variables('location')]", "sku": { "name": "[variables('skuName')]" }, "properties" : { "frontendIPConfigurations" : [ { "name" : "internal-lb-ip", "properties" : { "privateIPAllocationMethod" : "Dynamic", "subnet" : { "id" : "[variables('masterSubnetRef')]" }, "privateIPAddressVersion" : "IPv4" } } ], "backendAddressPools" : [ { "name" : "internal-lb-backend" } ], "loadBalancingRules" : [ { "name" : "api-internal", "properties" : { "frontendIPConfiguration" : { "id" : "[concat(variables('internalLoadBalancerID'), '/frontendIPConfigurations/internal-lb-ip')]" }, "frontendPort" : 6443, "backendPort" : 6443, "enableFloatingIP" : false, "idleTimeoutInMinutes" : 30, "protocol" : "Tcp", "enableTcpReset" : false, "loadDistribution" : "Default", "backendAddressPool" : { "id" : "[concat(variables('internalLoadBalancerID'), '/backendAddressPools/internal-lb-backend')]" }, "probe" : { "id" : "[concat(variables('internalLoadBalancerID'), '/probes/api-internal-probe')]" } } }, { "name" : "sint", "properties" : { "frontendIPConfiguration" : { "id" : "[concat(variables('internalLoadBalancerID'), '/frontendIPConfigurations/internal-lb-ip')]" }, "frontendPort" : 22623, "backendPort" : 22623, "enableFloatingIP" : false, "idleTimeoutInMinutes" : 30, "protocol" : "Tcp", "enableTcpReset" : false, "loadDistribution" : "Default", "backendAddressPool" : { "id" : "[concat(variables('internalLoadBalancerID'), '/backendAddressPools/internal-lb-backend')]" }, "probe" : { "id" : "[concat(variables('internalLoadBalancerID'), '/probes/sint-probe')]" } } } ], "probes" : [ { "name" : "api-internal-probe", "properties" : { "protocol" : "Https", "port" : 6443, "requestPath": "/readyz", "intervalInSeconds" : 10, "numberOfProbes" : 3 } }, { "name" : "sint-probe", "properties" : { "protocol" : "Https", "port" : 22623, "requestPath": "/healthz", "intervalInSeconds" : 10, "numberOfProbes" : 3 } } ] } }, { "apiVersion": "2018-09-01", "type": "Microsoft.Network/privateDnsZones/A", "name": "[concat(parameters('privateDNSZoneName'), '/api')]", "location" : "[variables('location')]", "dependsOn" : [ "[concat('Microsoft.Network/loadBalancers/', variables('internalLoadBalancerName'))]" ], "properties": { "ttl": 60, "aRecords": [ { "ipv4Address": "[reference(variables('internalLoadBalancerName')).frontendIPConfigurations[0].properties.privateIPAddress]" } ] } }, { "apiVersion": "2018-09-01", "type": "Microsoft.Network/privateDnsZones/A", "name": "[concat(parameters('privateDNSZoneName'), '/api-int')]", "location" : "[variables('location')]", "dependsOn" : [ "[concat('Microsoft.Network/loadBalancers/', variables('internalLoadBalancerName'))]" ], "properties": { "ttl": 60, "aRecords": [ { "ipv4Address": "[reference(variables('internalLoadBalancerName')).frontendIPConfigurations[0].properties.privateIPAddress]" } ] } } ] }
1.9.14. Creating the bootstrap machine in Azure
You must create the bootstrap machine in Microsoft Azure to use during OpenShift Container Platform cluster initialization. One way to create this machine is to modify the provided Azure Resource Manager (ARM) template.
If you do not use the provided ARM template to create your bootstrap machine, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
- Create and configure a VNet and associated subnets in Azure.
- Create and configure networking and load balancers in Azure.
- Create control plane and compute roles.
Procedure
-
Copy the template from the ARM template for the bootstrap machine section of this topic and save it as
04_bootstrap.json
in your cluster’s installation directory. This template describes the bootstrap machine that your cluster requires. Export the following variables required by the bootstrap machine deployment:
$ export BOOTSTRAP_URL=`az storage blob url --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} -c "files" -n "bootstrap.ign" -o tsv` $ export BOOTSTRAP_IGNITION=`jq -rcnM --arg v "3.1.0" --arg url ${BOOTSTRAP_URL} '{ignition:{version:$v,config:{replace:{source:$url}}}}' | base64 | tr -d '\n'`
Create the deployment by using the
az
CLI:$ az deployment group create -g ${RESOURCE_GROUP} \ --template-file "<installation_directory>/04_bootstrap.json" \ --parameters bootstrapIgnition="${BOOTSTRAP_IGNITION}" \ 1 --parameters sshKeyData="${SSH_KEY}" \ 2 --parameters baseName="${INFRA_ID}" 3
1.9.14.1. ARM template for the bootstrap machine
You can use the following Azure Resource Manager (ARM) template to deploy the bootstrap machine that you need for your OpenShift Container Platform cluster:
Example 1.4. 04_bootstrap.json
ARM template
{ "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#", "contentVersion" : "1.0.0.0", "parameters" : { "baseName" : { "type" : "string", "minLength" : 1, "metadata" : { "description" : "Base name to be used in resource names (usually the cluster's Infra ID)" } }, "bootstrapIgnition" : { "type" : "string", "minLength" : 1, "metadata" : { "description" : "Bootstrap ignition content for the bootstrap cluster" } }, "sshKeyData" : { "type" : "securestring", "metadata" : { "description" : "SSH RSA public key file as a string." } }, "bootstrapVMSize" : { "type" : "string", "defaultValue" : "Standard_D4s_v3", "allowedValues" : [ "Standard_A2", "Standard_A3", "Standard_A4", "Standard_A5", "Standard_A6", "Standard_A7", "Standard_A8", "Standard_A9", "Standard_A10", "Standard_A11", "Standard_D2", "Standard_D3", "Standard_D4", "Standard_D11", "Standard_D12", "Standard_D13", "Standard_D14", "Standard_D2_v2", "Standard_D3_v2", "Standard_D4_v2", "Standard_D5_v2", "Standard_D8_v3", "Standard_D11_v2", "Standard_D12_v2", "Standard_D13_v2", "Standard_D14_v2", "Standard_E2_v3", "Standard_E4_v3", "Standard_E8_v3", "Standard_E16_v3", "Standard_E32_v3", "Standard_E64_v3", "Standard_E2s_v3", "Standard_E4s_v3", "Standard_E8s_v3", "Standard_E16s_v3", "Standard_E32s_v3", "Standard_E64s_v3", "Standard_G1", "Standard_G2", "Standard_G3", "Standard_G4", "Standard_G5", "Standard_DS2", "Standard_DS3", "Standard_DS4", "Standard_DS11", "Standard_DS12", "Standard_DS13", "Standard_DS14", "Standard_DS2_v2", "Standard_DS3_v2", "Standard_DS4_v2", "Standard_DS5_v2", "Standard_DS11_v2", "Standard_DS12_v2", "Standard_DS13_v2", "Standard_DS14_v2", "Standard_GS1", "Standard_GS2", "Standard_GS3", "Standard_GS4", "Standard_GS5", "Standard_D2s_v3", "Standard_D4s_v3", "Standard_D8s_v3" ], "metadata" : { "description" : "The size of the Bootstrap Virtual Machine" } } }, "variables" : { "location" : "[resourceGroup().location]", "virtualNetworkName" : "[concat(parameters('baseName'), '-vnet')]", "virtualNetworkID" : "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]", "masterSubnetName" : "[concat(parameters('baseName'), '-master-subnet')]", "masterSubnetRef" : "[concat(variables('virtualNetworkID'), '/subnets/', variables('masterSubnetName'))]", "masterLoadBalancerName" : "[concat(parameters('baseName'), '-public-lb')]", "internalLoadBalancerName" : "[concat(parameters('baseName'), '-internal-lb')]", "sshKeyPath" : "/home/core/.ssh/authorized_keys", "identityName" : "[concat(parameters('baseName'), '-identity')]", "vmName" : "[concat(parameters('baseName'), '-bootstrap')]", "nicName" : "[concat(variables('vmName'), '-nic')]", "imageName" : "[concat(parameters('baseName'), '-image')]", "clusterNsgName" : "[concat(parameters('baseName'), '-nsg')]", "sshPublicIpAddressName" : "[concat(variables('vmName'), '-ssh-pip')]" }, "resources" : [ { "apiVersion" : "2018-12-01", "type" : "Microsoft.Network/publicIPAddresses", "name" : "[variables('sshPublicIpAddressName')]", "location" : "[variables('location')]", "sku": { "name": "Standard" }, "properties" : { "publicIPAllocationMethod" : "Static", "dnsSettings" : { "domainNameLabel" : "[variables('sshPublicIpAddressName')]" } } }, { "apiVersion" : "2018-06-01", "type" : "Microsoft.Network/networkInterfaces", "name" : "[variables('nicName')]", "location" : "[variables('location')]",