Chapter 4. Configuring persistent storage


4.1. Persistent storage using AWS Elastic Block Store

OpenShift Container Platform supports AWS Elastic Block Store volumes (EBS). You can provision your OpenShift Container Platform cluster with persistent storage by using Amazon EC2. Some familiarity with Kubernetes and AWS is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure. AWS Elastic Block Store volumes can be provisioned dynamically. Persistent volumes are not bound to a single project or namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace and can be requested by users.

Important

High-availability of storage in the infrastructure is left to the underlying storage provider.

4.1.1. Additional resources

4.1.2. Creating the EBS storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage class, users can obtain dynamically provisioned persistent volumes.

Procedure

  1. In the OpenShift Container Platform console, click Storage Storage Classes.
  2. In the storage class overview, click Create Storage Class.
  3. Define the desired options on the page that appears.

    1. Enter a name to reference the storage class.
    2. Enter an optional description.
    3. Select the reclaim policy.
    4. Select kubernetes.io/aws-ebs from the drop-down list.

      Note

      To create the storage class with the equivalent CSI driver, select ebs.csi.aws.com from the drop-down list. For more details, see AWS Elastic Block Store CSI Driver Operator.

    5. Enter additional parameters for the storage class as desired.
  4. Click Create to create the storage class.

4.1.3. Creating the persistent volume claim

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform.

Procedure

  1. In the OpenShift Container Platform console, click Storage Persistent Volume Claims.
  2. In the persistent volume claims overview, click Create Persistent Volume Claim.
  3. Define the desired options on the page that appears.

    1. Select the storage class created previously from the drop-down menu.
    2. Enter a unique name for the storage claim.
    3. Select the access mode. This determines the read and write access for the created storage claim.
    4. Define the size of the storage claim.
  4. Click Create to create the persistent volume claim and generate a persistent volume.

4.1.4. Volume format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it contains a file system as specified by the fsType parameter in the persistent volume definition. If the device is not formatted with the file system, all data from the device is erased and the device is automatically formatted with the given file system.

This allows using unformatted AWS volumes as persistent volumes, because OpenShift Container Platform formats them before the first use.

4.1.5. Maximum number of EBS volumes on a node

By default, OpenShift Container Platform supports a maximum of 39 EBS volumes attached to one node. This limit is consistent with the AWS volume limits. The volume limit depends on the instance type.

Important

As a cluster administrator, you must use either in-tree or Container Storage Interface (CSI) volumes and their respective storage classes, but never both volume types at the same time. The maximum attached EBS volume number is counted separately for in-tree and CSI volumes.

4.1.6. Additional resources

4.2. Persistent storage using Azure

OpenShift Container Platform supports Microsoft Azure Disk volumes. You can provision your OpenShift Container Platform cluster with persistent storage using Azure. Some familiarity with Kubernetes and Azure is assumed. The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure. Azure Disk volumes can be provisioned dynamically. Persistent volumes are not bound to a single project or namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace and can be requested by users.

Important

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional resources

4.2.1. Creating the Azure storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage class, users can obtain dynamically provisioned persistent volumes.

Procedure

  1. In the OpenShift Container Platform console, click Storage Storage Classes.
  2. In the storage class overview, click Create Storage Class.
  3. Define the desired options on the page that appears.

    1. Enter a name to reference the storage class.
    2. Enter an optional description.
    3. Select the reclaim policy.
    4. Select kubernetes.io/azure-disk from the drop down list.

      1. Enter the storage account type. This corresponds to your Azure storage account SKU tier. Valid options are Premium_LRS, Standard_LRS, StandardSSD_LRS, and UltraSSD_LRS.
      2. Enter the kind of account. Valid options are shared, dedicated, and managed.

        Important

        Red Hat only supports the use of kind: Managed in the storage class.

        With Shared and Dedicated, Azure creates unmanaged disks, while OpenShift Container Platform creates a managed disk for machine OS (root) disks. But because Azure Disk does not allow the use of both managed and unmanaged disks on a node, unmanaged disks created with Shared or Dedicated cannot be attached to OpenShift Container Platform nodes.

    5. Enter additional parameters for the storage class as desired.
  4. Click Create to create the storage class.

Additional resources

4.2.2. Creating the persistent volume claim

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform.

Procedure

  1. In the OpenShift Container Platform console, click Storage Persistent Volume Claims.
  2. In the persistent volume claims overview, click Create Persistent Volume Claim.
  3. Define the desired options on the page that appears.

    1. Select the storage class created previously from the drop-down menu.
    2. Enter a unique name for the storage claim.
    3. Select the access mode. This determines the read and write access for the created storage claim.
    4. Define the size of the storage claim.
  4. Click Create to create the persistent volume claim and generate a persistent volume.

4.2.3. Volume format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it contains a file system as specified by the fsType parameter in the persistent volume definition. If the device is not formatted with the file system, all data from the device is erased and the device is automatically formatted with the given file system.

This allows using unformatted Azure volumes as persistent volumes, because OpenShift Container Platform formats them before the first use.

4.3. Persistent storage using Azure File

OpenShift Container Platform supports Microsoft Azure File volumes. You can provision your OpenShift Container Platform cluster with persistent storage using Azure. Some familiarity with Kubernetes and Azure is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure. You can provision Azure File volumes dynamically.

Persistent volumes are not bound to a single project or namespace, and you can share them across the OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace, and can be requested by users for use in applications.

Important

High availability of storage in the infrastructure is left to the underlying storage provider.

Important

Azure File volumes use Server Message Block.

Additional resources

4.3.1. Create the Azure File share persistent volume claim

To create the persistent volume claim, you must first define a Secret object that contains the Azure account and key. This secret is used in the PersistentVolume definition, and will be referenced by the persistent volume claim for use in applications.

Prerequisites

  • An Azure File share exists.
  • The credentials to access this share, specifically the storage account and key, are available.

Procedure

  1. Create a Secret object that contains the Azure File credentials:

    $ oc create secret generic <secret-name> --from-literal=azurestorageaccountname=<storage-account> \ 1
      --from-literal=azurestorageaccountkey=<storage-account-key> 2
    1
    The Azure File storage account name.
    2
    The Azure File storage account key.
  2. Create a PersistentVolume object that references the Secret object you created:

    apiVersion: "v1"
    kind: "PersistentVolume"
    metadata:
      name: "pv0001" 1
    spec:
      capacity:
        storage: "5Gi" 2
      accessModes:
        - "ReadWriteOnce"
      storageClassName: azure-file-sc
      azureFile:
        secretName: <secret-name> 3
        shareName: share-1 4
        readOnly: false
    1
    The name of the persistent volume.
    2
    The size of this persistent volume.
    3
    The name of the secret that contains the Azure File share credentials.
    4
    The name of the Azure File share.
  3. Create a PersistentVolumeClaim object that maps to the persistent volume you created:

    apiVersion: "v1"
    kind: "PersistentVolumeClaim"
    metadata:
      name: "claim1" 1
    spec:
      accessModes:
        - "ReadWriteOnce"
      resources:
        requests:
          storage: "5Gi" 2
      storageClassName: azure-file-sc 3
      volumeName: "pv0001" 4
    1
    The name of the persistent volume claim.
    2
    The size of this persistent volume claim.
    3
    The name of the storage class that is used to provision the persistent volume. Specify the storage class used in the PersistentVolume definition.
    4
    The name of the existing PersistentVolume object that references the Azure File share.

4.3.2. Mount the Azure File share in a pod

After the persistent volume claim has been created, it can be used inside by an application. The following example demonstrates mounting this share inside of a pod.

Prerequisites

  • A persistent volume claim exists that is mapped to the underlying Azure File share.

Procedure

  • Create a pod that mounts the existing persistent volume claim:

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-name 1
    spec:
      containers:
        ...
        volumeMounts:
        - mountPath: "/data" 2
          name: azure-file-share
      volumes:
        - name: azure-file-share
          persistentVolumeClaim:
            claimName: claim1 3
    1
    The name of the pod.
    2
    The path to mount the Azure File share inside the pod. Do not mount to the container root, /, or any path that is the same in the host and the container. This can corrupt your host system if the container is sufficiently privileged, such as the host /dev/pts files. It is safe to mount the host by using /host.
    3
    The name of the PersistentVolumeClaim object that has been previously created.

4.4. Persistent storage using Cinder

OpenShift Container Platform supports OpenStack Cinder. Some familiarity with Kubernetes and OpenStack is assumed.

Cinder volumes can be provisioned dynamically. Persistent volumes are not bound to a single project or namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace and can be requested by users.

Additional resources

  • For more information about how OpenStack Block Storage provides persistent block storage management for virtual hard drives, see OpenStack Cinder.

4.4.1. Manual provisioning with Cinder

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform.

Prerequisites

  • OpenShift Container Platform configured for Red Hat OpenStack Platform (RHOSP)
  • Cinder volume ID

4.4.1.1. Creating the persistent volume

You must define your persistent volume (PV) in an object definition before creating it in OpenShift Container Platform:

Procedure

  1. Save your object definition to a file.

    cinder-persistentvolume.yaml

    apiVersion: "v1"
    kind: "PersistentVolume"
    metadata:
      name: "pv0001" 1
    spec:
      capacity:
        storage: "5Gi" 2
      accessModes:
        - "ReadWriteOnce"
      cinder: 3
        fsType: "ext3" 4
        volumeID: "f37a03aa-6212-4c62-a805-9ce139fab180" 5

    1
    The name of the volume that is used by persistent volume claims or pods.
    2
    The amount of storage allocated to this volume.
    3
    Indicates cinder for Red Hat OpenStack Platform (RHOSP) Cinder volumes.
    4
    The file system that is created when the volume is mounted for the first time.
    5
    The Cinder volume to use.
    Important

    Do not change the fstype parameter value after the volume is formatted and provisioned. Changing this value can result in data loss and pod failure.

  2. Create the object definition file you saved in the previous step.

    $ oc create -f cinder-persistentvolume.yaml

4.4.1.2. Persistent volume formatting

You can use unformatted Cinder volumes as PVs because OpenShift Container Platform formats them before the first use.

Before OpenShift Container Platform mounts the volume and passes it to a container, the system checks that it contains a file system as specified by the fsType parameter in the PV definition. If the device is not formatted with the file system, all data from the device is erased and the device is automatically formatted with the given file system.

4.4.1.3. Cinder volume security

If you use Cinder PVs in your application, configure security for their deployment configurations.

Prerequisites

  • An SCC must be created that uses the appropriate fsGroup strategy.

Procedure

  1. Create a service account and add it to the SCC:

    $ oc create serviceaccount <service_account>
    $ oc adm policy add-scc-to-user <new_scc> -z <service_account> -n <project>
  2. In your application’s deployment configuration, provide the service account name and securityContext:

    apiVersion: v1
    kind: ReplicationController
    metadata:
      name: frontend-1
    spec:
      replicas: 1  1
      selector:    2
        name: frontend
      template:    3
        metadata:
          labels:  4
            name: frontend 5
        spec:
          containers:
          - image: openshift/hello-openshift
            name: helloworld
            ports:
            - containerPort: 8080
              protocol: TCP
          restartPolicy: Always
          serviceAccountName: <service_account> 6
          securityContext:
            fsGroup: 7777 7
    1
    The number of copies of the pod to run.
    2
    The label selector of the pod to run.
    3
    A template for the pod that the controller creates.
    4
    The labels on the pod. They must include labels from the label selector.
    5
    The maximum name length after expanding any parameters is 63 characters.
    6
    Specifies the service account you created.
    7
    Specifies an fsGroup for the pods.

4.5. Persistent storage using Fibre Channel

OpenShift Container Platform supports Fibre Channel, allowing you to provision your OpenShift Container Platform cluster with persistent storage using Fibre channel volumes. Some familiarity with Kubernetes and Fibre Channel is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure. Persistent volumes are not bound to a single project or namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace and can be requested by users.

Important

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional resources

4.5.1. Provisioning

To provision Fibre Channel volumes using the PersistentVolume API the following must be available:

  • The targetWWNs (array of Fibre Channel target’s World Wide Names).
  • A valid LUN number.
  • The filesystem type.

A persistent volume and a LUN have a one-to-one mapping between them.

Prerequisites

  • Fibre Channel LUNs must exist in the underlying infrastructure.

PersistentVolume object definition

apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv0001
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteOnce
  fc:
    wwids: [scsi-3600508b400105e210000900000490000] 1
    targetWWNs: ['500a0981891b8dc5', '500a0981991b8dc5'] 2
    lun: 2 3
    fsType: ext4

1
World wide identifiers (WWIDs). Either FC wwids or a combination of FC targetWWNs and lun must be set, but not both simultaneously. The FC WWID identifier is recommended over the WWNs target because it is guaranteed to be unique for every storage device, and independent of the path that is used to access the device. The WWID identifier can be obtained by issuing a SCSI Inquiry to retrieve the Device Identification Vital Product Data (page 0x83) or Unit Serial Number (page 0x80). FC WWIDs are identified as /dev/disk/by-id/ to reference the data on the disk, even if the path to the device changes and even when accessing the device from different systems.
2 3
Fibre Channel WWNs are identified as /dev/disk/by-path/pci-<IDENTIFIER>-fc-0x<WWN>-lun-<LUN#>, but you do not need to provide any part of the path leading up to the WWN, including the 0x, and anything after, including the - (hyphen).
Important

Changing the value of the fstype parameter after the volume has been formatted and provisioned can result in data loss and pod failure.

4.5.1.1. Enforcing disk quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is mapped to a single persistent volume, and unique names must be used for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount, such as 10Gi, and be matched with a corresponding volume of equal or greater capacity.

4.5.1.2. Fibre Channel volume security

Users request storage with a persistent volume claim. This claim only lives in the user’s namespace, and can only be referenced by a pod within that same namespace. Any attempt to access a persistent volume across a namespace causes the pod to fail.

Each Fibre Channel LUN must be accessible by all nodes in the cluster.

4.6. Persistent storage using FlexVolume

OpenShift Container Platform supports FlexVolume, an out-of-tree plug-in that uses an executable model to interface with drivers.

To use storage from a back-end that does not have a built-in plug-in, you can extend OpenShift Container Platform through FlexVolume drivers and provide persistent storage to applications.

Pods interact with FlexVolume drivers through the flexvolume in-tree plugin.

Additional resources

4.6.1. About FlexVolume drivers

A FlexVolume driver is an executable file that resides in a well-defined directory on all nodes in the cluster. OpenShift Container Platform calls the FlexVolume driver whenever it needs to mount or unmount a volume represented by a PersistentVolume object with flexVolume as the source.

Important

Attach and detach operations are not supported in OpenShift Container Platform for FlexVolume.

4.6.2. FlexVolume driver example

The first command-line argument of the FlexVolume driver is always an operation name. Other parameters are specific to each operation. Most of the operations take a JavaScript Object Notation (JSON) string as a parameter. This parameter is a complete JSON string, and not the name of a file with the JSON data.

The FlexVolume driver contains:

  • All flexVolume.options.
  • Some options from flexVolume prefixed by kubernetes.io/, such as fsType and readwrite.
  • The content of the referenced secret, if specified, prefixed by kubernetes.io/secret/.

FlexVolume driver JSON input example

{
	"fooServer": "192.168.0.1:1234", 1
        "fooVolumeName": "bar",
	"kubernetes.io/fsType": "ext4", 2
	"kubernetes.io/readwrite": "ro", 3
	"kubernetes.io/secret/<key name>": "<key value>", 4
	"kubernetes.io/secret/<another key name>": "<another key value>",
}

1
All options from flexVolume.options.
2
The value of flexVolume.fsType.
3
ro/rw based on flexVolume.readOnly.
4
All keys and their values from the secret referenced by flexVolume.secretRef.

OpenShift Container Platform expects JSON data on standard output of the driver. When not specified, the output describes the result of the operation.

FlexVolume driver default output example

{
	"status": "<Success/Failure/Not supported>",
	"message": "<Reason for success/failure>"
}

Exit code of the driver should be 0 for success and 1 for error.

Operations should be idempotent, which means that the mounting of an already mounted volume should result in a successful operation.

4.6.3. Installing FlexVolume drivers

FlexVolume drivers that are used to extend OpenShift Container Platform are executed only on the node. To implement FlexVolumes, a list of operations to call and the installation path are all that is required.

Prerequisites

  • FlexVolume drivers must implement these operations:

    init

    Initializes the driver. It is called during initialization of all nodes.

    • Arguments: none
    • Executed on: node
    • Expected output: default JSON
    mount

    Mounts a volume to directory. This can include anything that is necessary to mount the volume, including finding the device and then mounting the device.

    • Arguments: <mount-dir> <json>
    • Executed on: node
    • Expected output: default JSON
    unmount

    Unmounts a volume from a directory. This can include anything that is necessary to clean up the volume after unmounting.

    • Arguments: <mount-dir>
    • Executed on: node
    • Expected output: default JSON
    mountdevice
    Mounts a volume’s device to a directory where individual pods can then bind mount.

This call-out does not pass "secrets" specified in the FlexVolume spec. If your driver requires secrets, do not implement this call-out.

  • Arguments: <mount-dir> <json>
  • Executed on: node
  • Expected output: default JSON

    unmountdevice
    Unmounts a volume’s device from a directory.
  • Arguments: <mount-dir>
  • Executed on: node
  • Expected output: default JSON

    • All other operations should return JSON with {"status": "Not supported"} and exit code 1.

Procedure

To install the FlexVolume driver:

  1. Ensure that the executable file exists on all nodes in the cluster.
  2. Place the executable file at the volume plug-in path: /etc/kubernetes/kubelet-plugins/volume/exec/<vendor>~<driver>/<driver>.

For example, to install the FlexVolume driver for the storage foo, place the executable file at: /etc/kubernetes/kubelet-plugins/volume/exec/openshift.com~foo/foo.

4.6.4. Consuming storage using FlexVolume drivers

Each PersistentVolume object in OpenShift Container Platform represents one storage asset in the storage back-end, such as a volume.

Procedure

  • Use the PersistentVolume object to reference the installed storage.

Persistent volume object definition using FlexVolume drivers example

apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv0001 1
spec:
  capacity:
    storage: 1Gi 2
  accessModes:
    - ReadWriteOnce
  flexVolume:
    driver: openshift.com/foo 3
    fsType: "ext4" 4
    secretRef: foo-secret 5
    readOnly: true 6
    options: 7
      fooServer: 192.168.0.1:1234
      fooVolumeName: bar

1
The name of the volume. This is how it is identified through persistent volume claims or from pods. This name can be different from the name of the volume on back-end storage.
2
The amount of storage allocated to this volume.
3
The name of the driver. This field is mandatory.
4
The file system that is present on the volume. This field is optional.
5
The reference to a secret. Keys and values from this secret are provided to the FlexVolume driver on invocation. This field is optional.
6
The read-only flag. This field is optional.
7
The additional options for the FlexVolume driver. In addition to the flags specified by the user in the options field, the following flags are also passed to the executable:
"fsType":"<FS type>",
"readwrite":"<rw>",
"secret/key1":"<secret1>"
...
"secret/keyN":"<secretN>"
Note

Secrets are passed only to mount or unmount call-outs.

4.7. Persistent storage using GCE Persistent Disk

OpenShift Container Platform supports GCE Persistent Disk volumes (gcePD). You can provision your OpenShift Container Platform cluster with persistent storage using GCE. Some familiarity with Kubernetes and GCE is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure.

GCE Persistent Disk volumes can be provisioned dynamically.

Persistent volumes are not bound to a single project or namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace and can be requested by users.

Important

High availability of storage in the infrastructure is left to the underlying storage provider.

Additional resources

4.7.1. Creating the GCE storage class

Storage classes are used to differentiate and delineate storage levels and usages. By defining a storage class, users can obtain dynamically provisioned persistent volumes.

Procedure

  1. In the OpenShift Container Platform console, click Storage Storage Classes.
  2. In the storage class overview, click Create Storage Class.
  3. Define the desired options on the page that appears.

    1. Enter a name to reference the storage class.
    2. Enter an optional description.
    3. Select the reclaim policy.
    4. Select kubernetes.io/gce-pd from the drop-down list.
    5. Enter additional parameters for the storage class as desired.
  4. Click Create to create the storage class.

4.7.2. Creating the persistent volume claim

Prerequisites

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform.

Procedure

  1. In the OpenShift Container Platform console, click Storage Persistent Volume Claims.
  2. In the persistent volume claims overview, click Create Persistent Volume Claim.
  3. Define the desired options on the page that appears.

    1. Select the storage class created previously from the drop-down menu.
    2. Enter a unique name for the storage claim.
    3. Select the access mode. This determines the read and write access for the created storage claim.
    4. Define the size of the storage claim.
  4. Click Create to create the persistent volume claim and generate a persistent volume.

4.7.3. Volume format

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that it contains a file system as specified by the fsType parameter in the persistent volume definition. If the device is not formatted with the file system, all data from the device is erased and the device is automatically formatted with the given file system.

This allows using unformatted GCE volumes as persistent volumes, because OpenShift Container Platform formats them before the first use.

4.8. Persistent storage using hostPath

A hostPath volume in an OpenShift Container Platform cluster mounts a file or directory from the host node’s filesystem into your pod. Most pods will not need a hostPath volume, but it does offer a quick option for testing should an application require it.

Important

The cluster administrator must configure pods to run as privileged. This grants access to pods in the same node.

4.8.1. Overview

OpenShift Container Platform supports hostPath mounting for development and testing on a single-node cluster.

In a production cluster, you would not use hostPath. Instead, a cluster administrator would provision a network resource, such as a GCE Persistent Disk volume, an NFS share, or an Amazon EBS volume. Network resources support the use of storage classes to set up dynamic provisioning.

A hostPath volume must be provisioned statically.

Important

Do not mount to the container root, /, or any path that is the same in the host and the container. This can corrupt your host system if the container is sufficiently privileged. It is safe to mount the host by using /host. The following example shows the / directory from the host being mounted into the container at /host.

apiVersion: v1
kind: Pod
metadata:
  name: test-host-mount
spec:
  containers:
  - image: registry.access.redhat.com/ubi8/ubi
    name: test-container
    command: ['sh', '-c', 'sleep 3600']
    volumeMounts:
    - mountPath: /host
      name: host-slash
  volumes:
   - name: host-slash
     hostPath:
       path: /
       type: ''

4.8.2. Statically provisioning hostPath volumes

A pod that uses a hostPath volume must be referenced by manual (static) provisioning.

Procedure

  1. Define the persistent volume (PV). Create a file, pv.yaml, with the PersistentVolume object definition:

      apiVersion: v1
      kind: PersistentVolume
      metadata:
        name: task-pv-volume 1
        labels:
          type: local
      spec:
        storageClassName: manual 2
        capacity:
          storage: 5Gi
        accessModes:
          - ReadWriteOnce 3
        persistentVolumeReclaimPolicy: Retain
        hostPath:
          path: "/mnt/data" 4
    1
    The name of the volume. This name is how it is identified by persistent volume claims or pods.
    2
    Used to bind persistent volume claim requests to this persistent volume.
    3
    The volume can be mounted as read-write by a single node.
    4
    The configuration file specifies that the volume is at /mnt/data on the cluster’s node. Do not mount to the container root, /, or any path that is the same in the host and the container. This can corrupt your host system. It is safe to mount the host by using /host.
  2. Create the PV from the file:

    $ oc create -f pv.yaml
  3. Define the persistent volume claim (PVC). Create a file, pvc.yaml, with the PersistentVolumeClaim object definition:

    apiVersion: v1
    kind: PersistentVolumeClaim
    metadata:
      name: task-pvc-volume
    spec:
      accessModes:
        - ReadWriteOnce
      resources:
        requests:
          storage: 1Gi
      storageClassName: manual
  4. Create the PVC from the file:

    $ oc create -f pvc.yaml

4.8.3. Mounting the hostPath share in a privileged pod

After the persistent volume claim has been created, it can be used inside by an application. The following example demonstrates mounting this share inside of a pod.

Prerequisites

  • A persistent volume claim exists that is mapped to the underlying hostPath share.

Procedure

  • Create a privileged pod that mounts the existing persistent volume claim:

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-name 1
    spec:
      containers:
        ...
        securityContext:
          privileged: true 2
        volumeMounts:
        - mountPath: /data 3
          name: hostpath-privileged
      ...
      securityContext: {}
      volumes:
        - name: hostpath-privileged
          persistentVolumeClaim:
            claimName: task-pvc-volume 4
    1
    The name of the pod.
    2
    The pod must run as privileged to access the node’s storage.
    3
    The path to mount the host path share inside the privileged pod. Do not mount to the container root, /, or any path that is the same in the host and the container. This can corrupt your host system if the container is sufficiently privileged, such as the host /dev/pts files. It is safe to mount the host by using /host.
    4
    The name of the PersistentVolumeClaim object that has been previously created.

4.9. Persistent storage using iSCSI

You can provision your OpenShift Container Platform cluster with persistent storage using iSCSI. Some familiarity with Kubernetes and iSCSI is assumed.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure.

Important

High-availability of storage in the infrastructure is left to the underlying storage provider.

Important

When you use iSCSI on Amazon Web Services, you must update the default security policy to include TCP traffic between nodes on the iSCSI ports. By default, they are ports 860 and 3260.

Important

Users must ensure that the iSCSI initiator is already configured on all OpenShift Container Platform nodes by installing the iscsi-initiator-utils package and configuring their initiator name in /etc/iscsi/initiatorname.iscsi. The iscsi-initiator-utils package is already installed on deployments that use Red Hat Enterprise Linux CoreOS (RHCOS).

For more information, see Managing Storage Devices.

4.9.1. Provisioning

Verify that the storage exists in the underlying infrastructure before mounting it as a volume in OpenShift Container Platform. All that is required for the iSCSI is the iSCSI target portal, a valid iSCSI Qualified Name (IQN), a valid LUN number, the filesystem type, and the PersistentVolume API.

PersistentVolume object definition

apiVersion: v1
kind: PersistentVolume
metadata:
  name: iscsi-pv
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteOnce
  iscsi:
     targetPortal: 10.16.154.81:3260
     iqn: iqn.2014-12.example.server:storage.target00
     lun: 0
     fsType: 'ext4'

4.9.2. Enforcing disk quotas

Use LUN partitions to enforce disk quotas and size constraints. Each LUN is one persistent volume. Kubernetes enforces unique names for persistent volumes.

Enforcing quotas in this way allows the end user to request persistent storage by a specific amount (for example, 10Gi) and be matched with a corresponding volume of equal or greater capacity.

4.9.3. iSCSI volume security

Users request storage with a PersistentVolumeClaim object. This claim only lives in the user’s namespace and can only be referenced by a pod within that same namespace. Any attempt to access a persistent volume claim across a namespace causes the pod to fail.

Each iSCSI LUN must be accessible by all nodes in the cluster.

4.9.3.1. Challenge Handshake Authentication Protocol (CHAP) configuration

Optionally, OpenShift can use CHAP to authenticate itself to iSCSI targets:

apiVersion: v1
kind: PersistentVolume
metadata:
  name: iscsi-pv
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteOnce
  iscsi:
    targetPortal: 10.0.0.1:3260
    iqn: iqn.2016-04.test.com:storage.target00
    lun: 0
    fsType: ext4
    chapAuthDiscovery: true 1
    chapAuthSession: true 2
    secretRef:
      name: chap-secret 3
1
Enable CHAP authentication of iSCSI discovery.
2
Enable CHAP authentication of iSCSI session.
3
Specify name of Secrets object with user name + password. This Secret object must be available in all namespaces that can use the referenced volume.

4.9.4. iSCSI multipathing

For iSCSI-based storage, you can configure multiple paths by using the same IQN for more than one target portal IP address. Multipathing ensures access to the persistent volume when one or more of the components in a path fail.

To specify multi-paths in the pod specification, use the portals field. For example:

apiVersion: v1
kind: PersistentVolume
metadata:
  name: iscsi-pv
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteOnce
  iscsi:
    targetPortal: 10.0.0.1:3260
    portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260'] 1
    iqn: iqn.2016-04.test.com:storage.target00
    lun: 0
    fsType: ext4
    readOnly: false
1
Add additional target portals using the portals field.

4.9.5. iSCSI custom initiator IQN

Configure the custom initiator iSCSI Qualified Name (IQN) if the iSCSI targets are restricted to certain IQNs, but the nodes that the iSCSI PVs are attached to are not guaranteed to have these IQNs.

To specify a custom initiator IQN, use initiatorName field.

apiVersion: v1
kind: PersistentVolume
metadata:
  name: iscsi-pv
spec:
  capacity:
    storage: 1Gi
  accessModes:
    - ReadWriteOnce
  iscsi:
    targetPortal: 10.0.0.1:3260
    portals: ['10.0.2.16:3260', '10.0.2.17:3260', '10.0.2.18:3260']
    iqn: iqn.2016-04.test.com:storage.target00
    lun: 0
    initiatorName: iqn.2016-04.test.com:custom.iqn 1
    fsType: ext4
    readOnly: false
1
Specify the name of the initiator.

4.10. Persistent storage using local volumes

OpenShift Container Platform can be provisioned with persistent storage by using local volumes. Local persistent volumes allow you to access local storage devices, such as a disk or partition, by using the standard persistent volume claim interface.

Local volumes can be used without manually scheduling pods to nodes because the system is aware of the volume node constraints. However, local volumes are still subject to the availability of the underlying node and are not suitable for all applications.

Note

Local volumes can only be used as a statically created persistent volume.

4.10.1. Installing the Local Storage Operator

The Local Storage Operator is not installed in OpenShift Container Platform by default. Use the following procedure to install and configure this Operator to enable local volumes in your cluster.

Prerequisites

  • Access to the OpenShift Container Platform web console or command-line interface (CLI).

Procedure

  1. Create the openshift-local-storage project:

    $ oc adm new-project openshift-local-storage
  2. Optional: Allow local storage creation on infrastructure nodes.

    You might want to use the Local Storage Operator to create volumes on infrastructure nodes in support of components such as logging and monitoring.

    You must adjust the default node selector so that the Local Storage Operator includes the infrastructure nodes, and not just worker nodes.

    To block the Local Storage Operator from inheriting the cluster-wide default selector, enter the following command:

    $ oc annotate project openshift-local-storage openshift.io/node-selector=''

From the UI

To install the Local Storage Operator from the web console, follow these steps:

  1. Log in to the OpenShift Container Platform web console.
  2. Navigate to Operators OperatorHub.
  3. Type Local Storage into the filter box to locate the Local Storage Operator.
  4. Click Install.
  5. On the Install Operator page, select A specific namespace on the cluster. Select openshift-local-storage from the drop-down menu.
  6. Adjust the values for Update Channel and Approval Strategy to the values that you want.
  7. Click Install.

Once finished, the Local Storage Operator will be listed in the Installed Operators section of the web console.

From the CLI

  1. Install the Local Storage Operator from the CLI.

    1. Run the following command to get the OpenShift Container Platform major and minor version. It is required for the channel value in the next step.

      $ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
          grep -o '[0-9]*[.][0-9]*' | head -1)
    2. Create an object YAML file to define an Operator group and subscription for the Local Storage Operator, such as openshift-local-storage.yaml:

      Example openshift-local-storage.yaml

      apiVersion: operators.coreos.com/v1alpha2
      kind: OperatorGroup
      metadata:
        name: local-operator-group
        namespace: openshift-local-storage
      spec:
        targetNamespaces:
          - openshift-local-storage
      ---
      apiVersion: operators.coreos.com/v1alpha1
      kind: Subscription
      metadata:
        name: local-storage-operator
        namespace: openshift-local-storage
      spec:
        channel: "${OC_VERSION}"
        installPlanApproval: Automatic 1
        name: local-storage-operator
        source: redhat-operators
        sourceNamespace: openshift-marketplace

      1
      The user approval policy for an install plan.
  2. Create the Local Storage Operator object by entering the following command:

    $ oc apply -f openshift-local-storage.yaml

    At this point, the Operator Lifecycle Manager (OLM) is now aware of the Local Storage Operator. A ClusterServiceVersion (CSV) for the Operator should appear in the target namespace, and APIs provided by the Operator should be available for creation.

  3. Verify local storage installation by checking that all pods and the Local Storage Operator have been created:

    1. Check that all the required pods have been created:

      $ oc -n openshift-local-storage get pods

      Example output

      NAME                                      READY   STATUS    RESTARTS   AGE
      local-storage-operator-746bf599c9-vlt5t   1/1     Running   0          19m

    2. Check the ClusterServiceVersion (CSV) YAML manifest to see that the Local Storage Operator is available in the openshift-local-storage project:

      $ oc get csvs -n openshift-local-storage

      Example output

      NAME                                         DISPLAY         VERSION               REPLACES   PHASE
      local-storage-operator.4.2.26-202003230335   Local Storage   4.2.26-202003230335              Succeeded

After all checks have passed, the Local Storage Operator is installed successfully.

4.10.2. Provisioning local volumes by using the Local Storage Operator

Local volumes cannot be created by dynamic provisioning. Instead, persistent volumes can be created by the Local Storage Operator. The local volume provisioner looks for any file system or block volume devices at the paths specified in the defined resource.

Prerequisites

  • The Local Storage Operator is installed.
  • You have a local disk that meets the following conditions:

    • It is attached to a node.
    • It is not mounted.
    • It does not contain partitions.

Procedure

  1. Create the local volume resource. This must define the nodes and paths to the local volumes.

    Note

    Do not use different storage class names for the same device. Doing so will create multiple persistent volumes (PV)s.

    Example: Filesystem

    apiVersion: "local.storage.openshift.io/v1"
    kind: "LocalVolume"
    metadata:
      name: "local-disks"
      namespace: "openshift-local-storage" 1
    spec:
      nodeSelector: 2
        nodeSelectorTerms:
        - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
              - ip-10-0-140-183
              - ip-10-0-158-139
              - ip-10-0-164-33
      storageClassDevices:
        - storageClassName: "local-sc"
          volumeMode: Filesystem 3
          fsType: xfs 4
          devicePaths: 5
            - /path/to/device 6

    1
    The namespace where the Local Storage Operator is installed.
    2
    Optional: A node selector containing a list of nodes where the local storage volumes are attached. This example uses the node hostnames, obtained from oc get node. If a value is not defined, then the Local Storage Operator will attempt to find matching disks on all available nodes.
    3
    The volume mode, either Filesystem or Block, defining the type of the local volumes.
    4
    The file system that is created when the local volume is mounted for the first time.
    5
    The path containing a list of local storage devices to choose from.
    6
    Replace this value with your actual local disks filepath to the LocalVolume resource by-id, such as /dev/disk/by-id/wwn. PVs are created for these local disks when the provisioner is deployed successfully.
    Note

    A raw block volume (volumeMode: block) is not formatted with a file system. You should use this mode only if any application running on the pod can use raw block devices.

    Example: Block

    apiVersion: "local.storage.openshift.io/v1"
    kind: "LocalVolume"
    metadata:
      name: "local-disks"
      namespace: "openshift-local-storage" 1
    spec:
      nodeSelector: 2
        nodeSelectorTerms:
        - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
              - ip-10-0-136-143
              - ip-10-0-140-255
              - ip-10-0-144-180
      storageClassDevices:
        - storageClassName: "localblock-sc"
          volumeMode: Block  3
          devicePaths: 4
            - /path/to/device 5

    1
    The namespace where the Local Storage Operator is installed.
    2
    Optional: A node selector containing a list of nodes where the local storage volumes are attached. This example uses the node hostnames, obtained from oc get node. If a value is not defined, then the Local Storage Operator will attempt to find matching disks on all available nodes.
    3
    The volume mode, either Filesystem or Block, defining the type of the local volumes.
    4
    The path containing a list of local storage devices to choose from.
    5
    Replace this value with your actual local disks filepath to the LocalVolume resource by-id, such as dev/disk/by-id/wwn. PVs are created for these local disks when the provisioner is deployed successfully.
  2. Create the local volume resource in your OpenShift Container Platform cluster, specifying the file you just created:

    $ oc create -f <local-volume>.yaml
  3. Verify that the provisioner was created, and that the corresponding daemon sets were created:

    $ oc get all -n openshift-local-storage

    Example output

    NAME                                          READY   STATUS    RESTARTS   AGE
    pod/local-disks-local-provisioner-h97hj       1/1     Running   0          46m
    pod/local-disks-local-provisioner-j4mnn       1/1     Running   0          46m
    pod/local-disks-local-provisioner-kbdnx       1/1     Running   0          46m
    pod/local-disks-local-diskmaker-ldldw         1/1     Running   0          46m
    pod/local-disks-local-diskmaker-lvrv4         1/1     Running   0          46m
    pod/local-disks-local-diskmaker-phxdq         1/1     Running   0          46m
    pod/local-storage-operator-54564d9988-vxvhx   1/1     Running   0          47m
    
    NAME                              TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)     AGE
    service/local-storage-operator    ClusterIP   172.30.49.90     <none>        60000/TCP   47m
    
    NAME                                           DESIRED   CURRENT   READY   UP-TO-DATE   AVAILABLE   NODE SELECTOR   AGE
    daemonset.apps/local-disks-local-provisioner   3         3         3       3            3           <none>          46m
    daemonset.apps/local-disks-local-diskmaker     3         3         3       3            3           <none>          46m
    
    NAME                                     READY   UP-TO-DATE   AVAILABLE   AGE
    deployment.apps/local-storage-operator   1/1     1            1           47m
    
    NAME                                                DESIRED   CURRENT   READY   AGE
    replicaset.apps/local-storage-operator-54564d9988   1         1         1       47m

    Note the desired and current number of daemon set processes. If the desired count is 0, it indicates that the label selectors were invalid.

  4. Verify that the persistent volumes were created:

    $ oc get pv

    Example output

    NAME                CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM   STORAGECLASS   REASON   AGE
    local-pv-1cec77cf   100Gi      RWO            Delete           Available           local-sc                88m
    local-pv-2ef7cd2a   100Gi      RWO            Delete           Available           local-sc                82m
    local-pv-3fa1c73    100Gi      RWO            Delete           Available           local-sc                48m

Important

Editing the LocalVolume object does not change the fsType or volumeMode of existing persistent volumes because doing so might result in a destructive operation.

4.10.3. Provisioning local volumes without the Local Storage Operator

Local volumes cannot be created by dynamic provisioning. Instead, persistent volumes can be created by defining the persistent volume (PV) in an object definition. The local volume provisioner looks for any file system or block volume devices at the paths specified in the defined resource.

Important

Manual provisioning of PVs includes the risk of potential data leaks across PV reuse when PVCs are deleted. The Local Storage Operator is recommended for automating the life cycle of devices when provisioning local PVs.

Prerequisites

  • Local disks are attached to the OpenShift Container Platform nodes.

Procedure

  1. Define the PV. Create a file, such as example-pv-filesystem.yaml or example-pv-block.yaml, with the PersistentVolume object definition. This resource must define the nodes and paths to the local volumes.

    Note

    Do not use different storage class names for the same device. Doing so will create multiple PVs.

    example-pv-filesystem.yaml

    apiVersion: v1
    kind: PersistentVolume
    metadata:
      name: example-pv-filesystem
    spec:
      capacity:
        storage: 100Gi
      volumeMode: Filesystem 1
      accessModes:
      - ReadWriteOnce
      persistentVolumeReclaimPolicy: Delete
      storageClassName: local-storage 2
      local:
        path: /dev/xvdf 3
      nodeAffinity:
        required:
          nodeSelectorTerms:
          - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
              - example-node

    1
    The volume mode, either Filesystem or Block, that defines the type of PVs.
    2
    The name of the storage class to use when creating PV resources. Use a storage class that uniquely identifies this set of PVs.
    3
    The path containing a list of local storage devices to choose from.
    Note

    A raw block volume (volumeMode: block) is not formatted with a file system. Use this mode only if any application running on the pod can use raw block devices.

    example-pv-block.yaml

    apiVersion: v1
    kind: PersistentVolume
    metadata:
      name: example-pv-block
    spec:
      capacity:
        storage: 100Gi
      volumeMode: Block 1
      accessModes:
      - ReadWriteOnce
      persistentVolumeReclaimPolicy: Delete
      storageClassName: local-storage 2
      local:
        path: /dev/xvdf 3
      nodeAffinity:
        required:
          nodeSelectorTerms:
          - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
              - example-node

    1
    The volume mode, either Filesystem or Block, that defines the type of PVs.
    2
    The name of the storage class to use when creating PV resources. Be sure to use a storage class that uniquely identifies this set of PVs.
    3
    The path containing a list of local storage devices to choose from.
  2. Create the PV resource in your OpenShift Container Platform cluster. Specify the file you just created:

    $ oc create -f <example-pv>.yaml
  3. Verify that the local PV was created:

    $ oc get pv

    Example output

    NAME                    CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM                STORAGECLASS    REASON   AGE
    example-pv-filesystem   100Gi      RWO            Delete           Available                        local-storage            3m47s
    example-pv1             1Gi        RWO            Delete           Bound       local-storage/pvc1   local-storage            12h
    example-pv2             1Gi        RWO            Delete           Bound       local-storage/pvc2   local-storage            12h
    example-pv3             1Gi        RWO            Delete           Bound       local-storage/pvc3   local-storage            12h

4.10.4. Creating the local volume persistent volume claim

Local volumes must be statically created as a persistent volume claim (PVC) to be accessed by the pod.

Prerequisites

  • Persistent volumes have been created using the local volume provisioner.

Procedure

  1. Create the PVC using the corresponding storage class:

    kind: PersistentVolumeClaim
    apiVersion: v1
    metadata:
      name: local-pvc-name 1
    spec:
      accessModes:
      - ReadWriteOnce
      volumeMode: Filesystem 2
      resources:
        requests:
          storage: 100Gi 3
      storageClassName: local-sc 4
    1
    Name of the PVC.
    2
    The type of the PVC. Defaults to Filesystem.
    3
    The amount of storage available to the PVC.
    4
    Name of the storage class required by the claim.
  2. Create the PVC in the OpenShift Container Platform cluster, specifying the file you just created:

    $ oc create -f <local-pvc>.yaml

4.10.5. Attach the local claim

After a local volume has been mapped to a persistent volume claim it can be specified inside of a resource.

Prerequisites

  • A persistent volume claim exists in the same namespace.

Procedure

  1. Include the defined claim in the resource spec. The following example declares the persistent volume claim inside a pod:

    apiVersion: v1
    kind: Pod
    spec:
      ...
      containers:
        volumeMounts:
        - name: local-disks 1
          mountPath: /data 2
      volumes:
      - name: localpvc
        persistentVolumeClaim:
          claimName: local-pvc-name 3
    1
    The name of the volume to mount.
    2
    The path inside the pod where the volume is mounted. Do not mount to the container root, /, or any path that is the same in the host and the container. This can corrupt your host system if the container is sufficiently privileged, such as the host /dev/pts files. It is safe to mount the host by using /host.
    3
    The name of the existing persistent volume claim to use.
  2. Create the resource in the OpenShift Container Platform cluster, specifying the file you just created:

    $ oc create -f <local-pod>.yaml

4.10.6. Automating discovery and provisioning for local storage devices

The Local Storage Operator automates local storage discovery and provisioning. With this feature, you can simplify installation when dynamic provisioning is not available during deployment, such as with bare metal, VMware, or AWS store instances with attached devices.

Important

Automatic discovery and provisioning is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see https://access.redhat.com/support/offerings/techpreview/.

Use the following procedure to automatically discover local devices, and to automatically provision local volumes for selected devices.

Warning

Use the LocalVolumeSet object with caution. When you automatically provision persistent volumes (PVs) from local disks, the local PVs might claim all devices that match. If you are using a LocalVolumeSet object, make sure the Local Storage Operator is the only entity managing local devices on the node.

Prerequisites

  • You have cluster administrator permissions.
  • You have installed the Local Storage Operator.
  • You have attached local disks to OpenShift Container Platform nodes.
  • You have access to the OpenShift Container Platform web console and the oc command-line interface (CLI).

Procedure

  1. To enable automatic discovery of local devices from the web console:

    1. In the Administrator perspective, navigate to Operators Installed Operators and click on the Local Volume Discovery tab.
    2. Click Create Local Volume Discovery.
    3. Select either All nodes or Select nodes, depending on whether you want to discover available disks on all or specific nodes.

      Note

      Only worker nodes are available, regardless of whether you filter using All nodes or Select nodes.

    4. Click Create.

A local volume discovery instance named auto-discover-devices is displayed.

  1. To display a continuous list of available devices on a node:

    1. Log in to the OpenShift Container Platform web console.
    2. Navigate to Compute Nodes.
    3. Click the node name that you want to open. The "Node Details" page is displayed.
    4. Select the Disks tab to display the list of the selected devices.

      The device list updates continuously as local disks are added or removed. You can filter the devices by name, status, type, model, capacity, and mode.

  2. To automatically provision local volumes for the discovered devices from the web console:

    1. Navigate to Operators Installed Operators and select Local Storage from the list of Operators.
    2. Select Local Volume Set Create Local Volume Set.
    3. Enter a volume set name and a storage class name.
    4. Choose All nodes or Select nodes to apply filters accordingly.

      Note

      Only worker nodes are available, regardless of whether you filter using All nodes or Select nodes.

    5. Select the disk type, mode, size, and limit you want to apply to the local volume set, and click Create.

      A message displays after several minutes, indicating that the "Operator reconciled successfully."

  1. Alternatively, to provision local volumes for the discovered devices from the CLI:

    1. Create an object YAML file to define the local volume set, such as local-volume-set.yaml, as shown in the following example:

      apiVersion: local.storage.openshift.io/v1alpha1
      kind: LocalVolumeSet
      metadata:
        name: example-autodetect
      spec:
        nodeSelector:
          nodeSelectorTerms:
            - matchExpressions:
                - key: kubernetes.io/hostname
                  operator: In
                  values:
                    - worker-0
                    - worker-1
        storageClassName: example-storageclass 1
        volumeMode: Filesystem
        fsType: ext4
        maxDeviceCount: 10
        deviceInclusionSpec:
          deviceTypes: 2
            - disk
            - part
          deviceMechanicalProperties:
            - NonRotational
          minSize: 10G
          maxSize: 100G
          models:
            - SAMSUNG
            - Crucial_CT525MX3
          vendors:
            - ATA
            - ST2000LM
      1
      Determines the storage class that is created for persistent volumes that are provisioned from discovered devices.
      2
      When using the local volume set feature, the Local Storage Operator does not support the use of logical volume management (LVM) devices.
    2. Create the local volume set object:

      $ oc apply -f local-volume-set.yaml
    3. Verify that the local persistent volumes were dynamically provisioned based on the storage class:

      $ oc get pv

      Example output

      NAME                CAPACITY   ACCESS MODES   RECLAIM POLICY   STATUS      CLAIM   STORAGECLASS           REASON   AGE
      local-pv-1cec77cf   100Gi      RWO            Delete           Available           example-storageclass            88m
      local-pv-2ef7cd2a   100Gi      RWO            Delete           Available           example-storageclass            82m
      local-pv-3fa1c73    100Gi      RWO            Delete           Available           example-storageclass            48m

Note

Results are deleted after they are removed from the node. Symlinks must be manually removed.

4.10.7. Using tolerations with Local Storage Operator pods

Taints can be applied to nodes to prevent them from running general workloads. To allow the Local Storage Operator to use tainted nodes, you must add tolerations to the Pod or DaemonSet definition. This allows the created resources to run on these tainted nodes.

You apply tolerations to the Local Storage Operator pod through the LocalVolume resource and apply taints to a node through the node specification. A taint on a node instructs the node to repel all pods that do not tolerate the taint. Using a specific taint that is not on other pods ensures that the Local Storage Operator pod can also run on that node.

Important

Taints and tolerations consist of a key, value, and effect. As an argument, it is expressed as key=value:effect. An operator allows you to leave one of these parameters empty.

Prerequisites

  • The Local Storage Operator is installed.
  • Local disks are attached to OpenShift Container Platform nodes with a taint.
  • Tainted nodes are expected to provision local storage.

Procedure

To configure local volumes for scheduling on tainted nodes:

  1. Modify the YAML file that defines the Pod and add the LocalVolume spec, as shown in the following example:

      apiVersion: "local.storage.openshift.io/v1"
      kind: "LocalVolume"
      metadata:
        name: "local-disks"
        namespace: "openshift-local-storage"
      spec:
        tolerations:
          - key: localstorage 1
            operator: Equal 2
            value: "localstorage" 3
        storageClassDevices:
            - storageClassName: "localblock-sc"
              volumeMode: Block 4
              devicePaths: 5
                - /dev/xvdg
    1
    Specify the key that you added to the node.
    2
    Specify the Equal operator to require the key/value parameters to match. If operator is Exists, the system checks that the key exists and ignores the value. If operator is Equal, then the key and value must match.
    3
    Specify the value local of the tainted node.
    4
    The volume mode, either Filesystem or Block, defining the type of the local volumes.
    5
    The path containing a list of local storage devices to choose from.
  2. Optional: To create local persistent volumes on only tainted nodes, modify the YAML file and add the LocalVolume spec, as shown in the following example:

    spec:
      tolerations:
        - key: node-role.kubernetes.io/master
          operator: Exists

The defined tolerations will be passed to the resulting daemon sets, allowing the diskmaker and provisioner pods to be created for nodes that contain the specified taints.

4.10.8. Deleting the Local Storage Operator resources

4.10.8.1. Removing a local volume or local volume set

Occasionally, local volumes and local volume sets must be deleted. While removing the entry in the resource and deleting the persistent volume is typically enough, if you want to reuse the same device path or have it managed by a different storage class, then additional steps are needed.

Note

The following procedure outlines an example for removing a local volume. The same procedure can also be used to remove symlinks for a local volume set custom resource.

Prerequisites

  • The persistent volume must be in a Released or Available state.

    Warning

    Deleting a persistent volume that is still in use can result in data loss or corruption.

Procedure

  1. Edit the previously created local volume to remove any unwanted disks.

    1. Edit the cluster resource:

      $ oc edit localvolume <name> -n openshift-local-storage
    2. Navigate to the lines under devicePaths, and delete any representing unwanted disks.
  2. Delete any persistent volumes created.

    $ oc delete pv <pv-name>
  3. Delete any symlinks on the node.

    Warning

    The following step involves accessing a node as the root user. Modifying the state of the node beyond the steps in this procedure could result in cluster instability.

    1. Create a debug pod on the node:

      $ oc debug node/<node-name>
    2. Change your root directory to the host:

      $ chroot /host
    3. Navigate to the directory containing the local volume symlinks.

      $ cd /mnt/openshift-local-storage/<sc-name> 1
      1
      The name of the storage class used to create the local volumes.
    4. Delete the symlink belonging to the removed device.

      $ rm <symlink>

4.10.8.2. Uninstalling the Local Storage Operator

To uninstall the Local Storage Operator, you must remove the Operator and all created resources in the openshift-local-storage project.

Warning

Uninstalling the Local Storage Operator while local storage PVs are still in use is not recommended. While the PVs will remain after the Operator’s removal, there might be indeterminate behavior if the Operator is uninstalled and reinstalled without removing the PVs and local storage resources.

Prerequisites

  • Access to the OpenShift Container Platform web console.

Procedure

  1. Delete any local volume resources installed in the project, such as localvolume, localvolumeset, and localvolumediscovery:

    $ oc delete localvolume --all --all-namespaces
    $ oc delete localvolumeset --all --all-namespaces
    $ oc delete localvolumediscovery --all --all-namespaces
  2. Uninstall the Local Storage Operator from the web console.

    1. Log in to the OpenShift Container Platform web console.
    2. Navigate to Operators Installed Operators.
    3. Type Local Storage into the filter box to locate the Local Storage Operator.
    4. Click the Options menu kebab at the end of the Local Storage Operator.
    5. Click Uninstall Operator.
    6. Click Remove in the window that appears.
  3. The PVs created by the Local Storage Operator will remain in the cluster until deleted. Once these volumes are no longer in use, delete them by running the following command:

    $ oc delete pv <pv-name>
  4. Delete the openshift-local-storage project:

    $ oc delete project openshift-local-storage

4.11. Persistent storage using NFS

OpenShift Container Platform clusters can be provisioned with persistent storage using NFS. Persistent volumes (PVs) and persistent volume claims (PVCs) provide a convenient method for sharing a volume across a project. While the NFS-specific information contained in a PV definition could also be defined directly in a Pod definition, doing so does not create the volume as a distinct cluster resource, making the volume more susceptible to conflicts.

Additional resources

4.11.1. Provisioning

Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform. To provision NFS volumes, a list of NFS servers and export paths are all that is required.

Procedure

  1. Create an object definition for the PV:

    apiVersion: v1
    kind: PersistentVolume
    metadata:
      name: pv0001 1
    spec:
      capacity:
        storage: 5Gi 2
      accessModes:
      - ReadWriteOnce 3
      nfs: 4
        path: /tmp 5
        server: 172.17.0.2 6
      persistentVolumeReclaimPolicy: Retain 7
    1
    The name of the volume. This is the PV identity in various oc <command> pod commands.
    2
    The amount of storage allocated to this volume.
    3
    Though this appears to be related to controlling access to the volume, it is actually used similarly to labels and used to match a PVC to a PV. Currently, no access rules are enforced based on the accessModes.
    4
    The volume type being used, in this case the nfs plug-in.
    5
    The path that is exported by the NFS server.
    6
    The hostname or IP address of the NFS server.
    7
    The reclaim policy for the PV. This defines what happens to a volume when released.
    Note

    Each NFS volume must be mountable by all schedulable nodes in the cluster.

  2. Verify that the PV was created:

    $ oc get pv

    Example output

    NAME     LABELS    CAPACITY     ACCESSMODES   STATUS      CLAIM  REASON    AGE
    pv0001   <none>    5Gi          RWO           Available                    31s

  3. Create a persistent volume claim that binds to the new PV:

    apiVersion: v1
    kind: PersistentVolumeClaim
    metadata:
      name: nfs-claim1
    spec:
      accessModes:
        - ReadWriteOnce 1
      resources:
        requests:
          storage: 5Gi 2
      volumeName: pv0001
      storageClassName: ""
    1
    The access modes do not enforce security, but rather act as labels to match a PV to a PVC.
    2
    This claim looks for PVs offering 5Gi or greater capacity.
  4. Verify that the persistent volume claim was created:

    $ oc get pvc

    Example output

    NAME         STATUS   VOLUME   CAPACITY   ACCESS MODES   STORAGECLASS   AGE
    nfs-claim1   Bound    pv0001   5Gi        RWO                           2m

4.11.2. Enforcing disk quotas

You can use disk partitions to enforce disk quotas and size constraints. Each partition can be its own export. Each export is one PV. OpenShift Container Platform enforces unique names for PVs, but the uniqueness of the NFS volume’s server and path is up to the administrator.

Enforcing quotas in this way allows the developer to request persistent storage by a specific amount, such as 10Gi, and be matched with a corresponding volume of equal or greater capacity.

4.11.3. NFS volume security

This section covers NFS volume security, including matching permissions and SELinux considerations. The user is expected to understand the basics of POSIX permissions, process UIDs, supplemental groups, and SELinux.

Developers request NFS storage by referencing either a PVC by name or the NFS volume plug-in directly in the volumes section of their Pod definition.

The /etc/exports file on the NFS server contains the accessible NFS directories. The target NFS directory has POSIX owner and group IDs. The OpenShift Container Platform NFS plug-in mounts the container’s NFS directory with the same POSIX ownership and permissions found on the exported NFS directory. However, the container is not run with its effective UID equal to the owner of the NFS mount, which is the desired behavior.

As an example, if the target NFS directory appears on the NFS server as:

$ ls -lZ /opt/nfs -d

Example output

drwxrws---. nfsnobody 5555 unconfined_u:object_r:usr_t:s0   /opt/nfs

$ id nfsnobody

Example output

uid=65534(nfsnobody) gid=65534(nfsnobody) groups=65534(nfsnobody)

Then the container must match SELinux labels, and either run with a UID of 65534, the nfsnobody owner, or with 5555 in its supplemental groups to access the directory.

Note

The owner ID of 65534 is used as an example. Even though NFS’s root_squash maps root, uid 0, to nfsnobody, uid 65534, NFS exports can have arbitrary owner IDs. Owner 65534 is not required for NFS exports.

4.11.3.1. Group IDs

The recommended way to handle NFS access, assuming it is not an option to change permissions on the NFS export, is to use supplemental groups. Supplemental groups in OpenShift Container Platform are used for shared storage, of which NFS is an example. In contrast, block storage such as iSCSI uses the fsGroup SCC strategy and the fsGroup value in the securityContext of the pod.

Note

To gain access to persistent storage, it is generally preferable to use supplemental group IDs versus user IDs.

Because the group ID on the example target NFS directory is 5555, the pod can define that group ID using supplementalGroups under the securityContext definition of the pod. For example:

spec:
  containers:
    - name:
    ...
  securityContext: 1
    supplementalGroups: [5555] 2
1
securityContext must be defined at the pod level, not under a specific container.
2
An array of GIDs defined for the pod. In this case, there is one element in the array. Additional GIDs would be comma-separated.

Assuming there are no custom SCCs that might satisfy the pod requirements, the pod likely matches the restricted SCC. This SCC has the supplementalGroups strategy set to RunAsAny, meaning that any supplied group ID is accepted without range checking.

As a result, the above pod passes admissions and is launched. However, if group ID range checking is desired, a custom SCC is the preferred solution. A custom SCC can be created such that minimum and maximum group IDs are defined, group ID range checking is enforced, and a group ID of 5555 is allowed.

Note

To use a custom SCC, you must first add it to the appropriate service account. For example, use the default service account in the given project unless another has been specified on the Pod specification.

4.11.3.2. User IDs

User IDs can be defined in the container image or in the Pod definition.

Note

It is generally preferable to use supplemental group IDs to gain access to persistent storage versus using user IDs.

In the example target NFS directory shown above, the container needs its UID set to 65534, ignoring group IDs for the moment, so the following can be added to the Pod definition:

spec:
  containers: 1
  - name:
  ...
    securityContext:
      runAsUser: 65534 2
1
Pods contain a securityContext definition specific to each container and a pod’s securityContext which applies to all containers defined in the pod.
2
65534 is the nfsnobody user.

Assuming that the project is default and the SCC is restricted, the user ID of 65534 as requested by the pod is not allowed. Therefore, the pod fails for the following reasons:

  • It requests 65534 as its user ID.
  • All SCCs available to the pod are examined to see which SCC allows a user ID of 65534. While all policies of the SCCs are checked, the focus here is on user ID.
  • Because all available SCCs use MustRunAsRange for their runAsUser strategy, UID range checking is required.
  • 65534 is not included in the SCC or project’s user ID range.

It is generally considered a good practice not to modify the predefined SCCs. The preferred way to fix this situation is to create a custom SCC A custom SCC can be created such that minimum and maximum user IDs are defined, UID range checking is still enforced, and the UID of 65534 is allowed.

Note

To use a custom SCC, you must first add it to the appropriate service account. For example, use the default service account in the given project unless another has been specified on the Pod specification.

4.11.3.3. SELinux

Red Hat Enterprise Linux (RHEL) and Red Hat Enterprise Linux CoreOS (RHCOS) systems are configured to use SELinux on remote NFS servers by default.

For non-RHEL and non-RHCOS systems, SELinux does not allow writing from a pod to a remote NFS server. The NFS volume mounts correctly but it is read-only. You will need to enable the correct SELinux permissions by using the following procedure.

Prerequisites

  • The container-selinux package must be installed. This package provides the virt_use_nfs SELinux boolean.

Procedure

  • Enable the virt_use_nfs boolean using the following command. The -P option makes this boolean persistent across reboots.

    # setsebool -P virt_use_nfs 1

4.11.3.4. Export settings

To enable arbitrary container users to read and write the volume, each exported volume on the NFS server should conform to the following conditions:

  • Every export must be exported using the following format:

    /<example_fs> *(rw,root_squash)
  • The firewall must be configured to allow traffic to the mount point.

    • For NFSv4, configure the default port 2049 (nfs).

      NFSv4

      # iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT

    • For NFSv3, there are three ports to configure: 2049 (nfs), 20048 (mountd), and 111 (portmapper).

      NFSv3

      # iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT

      # iptables -I INPUT 1 -p tcp --dport 20048 -j ACCEPT
      # iptables -I INPUT 1 -p tcp --dport 111 -j ACCEPT
  • The NFS export and directory must be set up so that they are accessible by the target pods. Either set the export to be owned by the container’s primary UID, or supply the pod group access using supplementalGroups, as shown in the group IDs above.

4.11.4. Reclaiming resources

NFS implements the OpenShift Container Platform Recyclable plug-in interface. Automatic processes handle reclamation tasks based on policies set on each persistent volume.

By default, PVs are set to Retain.

Once claim to a PVC is deleted, and the PV is released, the PV object should not be reused. Instead, a new PV should be created with the same basic volume details as the original.

For example, the administrator creates a PV named nfs1:

apiVersion: v1
kind: PersistentVolume
metadata:
  name: nfs1
spec:
  capacity:
    storage: 1Mi
  accessModes:
    - ReadWriteMany
  nfs:
    server: 192.168.1.1
    path: "/"

The user creates PVC1, which binds to nfs1. The user then deletes PVC1, releasing claim to nfs1. This results in nfs1 being Released. If the administrator wants to make the same NFS share available, they should create a new PV with the same NFS server details, but a different PV name:

apiVersion: v1
kind: PersistentVolume
metadata:
  name: nfs2
spec:
  capacity:
    storage: 1Mi
  accessModes:
    - ReadWriteMany
  nfs:
    server: 192.168.1.1
    path: "/"

Deleting the original PV and re-creating it with the same name is discouraged. Attempting to manually change the status of a PV from Released to Available causes errors and potential data loss.

4.11.5. Additional configuration and troubleshooting

Depending on what version of NFS is being used and how it is configured, there may be additional configuration steps needed for proper export and security mapping. The following are some that may apply:

NFSv4 mount incorrectly shows all files with ownership of nobody:nobody

  • Could be attributed to the ID mapping settings, found in /etc/idmapd.conf on your NFS.
  • See this Red Hat Solution.

Disabling ID mapping on NFSv4

  • On both the NFS client and server, run:

    # echo 'Y' > /sys/module/nfsd/parameters/nfs4_disable_idmapping

4.12. Red Hat OpenShift Container Storage

Red Hat OpenShift Container Storage is a provider of agnostic persistent storage for OpenShift Container Platform supporting file, block, and object storage, either in-house or in hybrid clouds. As a Red Hat storage solution, Red Hat OpenShift Container Storage is completely integrated with OpenShift Container Platform for deployment, management, and monitoring.

Red Hat OpenShift Container Storage provides its own documentation library. The complete set of Red Hat OpenShift Container Storage documentation identified below is available at https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/4.6/

Important

OpenShift Container Storage on top of Red Hat Hyperconverged Infrastructure (RHHI) for Virtualization, which uses hyperconverged nodes that host virtual machines installed with OpenShift Container Platform, is not a supported configuration. For more information about supported platforms, see the Red Hat OpenShift Container Storage Supportability and Interoperability Guide.

If you are looking for Red Hat OpenShift Container Storage information about…​See the following Red Hat OpenShift Container Storage documentation:

Planning

What’s new, known issues, notable bug fixes, and Technology Previews

Red Hat OpenShift Container Storage 4.6 Release Notes

Supported workloads, layouts, hardware and software requirements, sizing and scaling recommendations

Planning your Red Hat OpenShift Container Storage 4.6 deployment

Deploying

Preparing to deploy when your environment is not directly connected to the Internet

Preparing to deploy OpenShift Container Storage 4.6 in a disconnected environment

Deploying Red Hat OpenShift Container Storage using Amazon Web Services for local or cloud storage

Deploying OpenShift Container Storage 4.6 using Amazon Web Services

Deploying Red Hat OpenShift Container Storage to local storage on bare metal infrastructure

Deploying OpenShift Container Storage 4.6 using bare metal infrastructure

Deploying Red Hat OpenShift Container Storage to use an external Red Hat Ceph Storage cluster

Deploying OpenShift Container Storage 4.6 in external mode

Deploying and managing Red Hat OpenShift Container Storage on existing Google Cloud clusters

Deploying and managing OpenShift Container Storage 4.6 using Google Cloud

Deploying and managing Red Hat OpenShift Container Storage to use local storage on IBM Z infrastructure

Deploying and managing OpenShift Container Storage using IBM Z

Deploying and managing Red Hat OpenShift Container Storage on IBM Power Systems

Deploying and managing OpenShift Container Storage using IBM Power Systems

Deploying and managing Red Hat OpenShift Container Storage on Red Hat OpenStack Platform (RHOSP)

Deploying and managing OpenShift Container Storage 4.6 using Red Hat OpenStack Platform

Deploying and managing Red Hat OpenShift Container Storage on Red Hat Virtualization (RHV)

Deploying and managing OpenShift Container Storage 4.6 using Red Hat Virtualization Platform

Deploying Red Hat OpenShift Container Storage on VMware vSphere clusters

Deploying OpenShift Container Storage 4.6 on VMware vSphere

Updating Red Hat OpenShift Container Storage to the latest version

Updating OpenShift Container Storage

Managing

Allocating storage to core services and hosted applications in Red Hat OpenShift Container Storage, including snapshot and clone

Managing and allocating resources

Managing storage resources across a hybrid cloud or multicloud environment using the Multicloud Object Gateway (NooBaa)

Managing hybrid and multicloud resources

Safely replacing storage devices for Red Hat OpenShift Container Storage

Replacing devices

Safely replacing a node in a Red Hat OpenShift Container Storage cluster

Replacing nodes

Scaling operations in Red Hat OpenShift Container Storage

Scaling storage

Monitoring a Red Hat OpenShift Container Storage 4.6 cluster

Monitoring OpenShift Container Storage 4.6

Troubleshooting errors and issues

Troubleshooting OpenShift Container Storage 4.6

Migrating your OpenShift Container Platform cluster from version 3 to version 4

Migration Toolkit for Containers

4.13. Persistent storage using VMware vSphere volumes

OpenShift Container Platform allows use of VMware vSphere’s Virtual Machine Disk (VMDK) volumes. You can provision your OpenShift Container Platform cluster with persistent storage using VMware vSphere. Some familiarity with Kubernetes and VMware vSphere is assumed.

VMware vSphere volumes can be provisioned dynamically. OpenShift Container Platform creates the disk in vSphere and attaches this disk to the correct image.

Note

OpenShift Container Platform provisions new volumes as independent persistent disks that can freely attach and detach the volume on any node in the cluster. Consequently, you cannot back up volumes that use snapshots, or restore volumes from snapshots. See Snapshot Limitations for more information.

The Kubernetes persistent volume framework allows administrators to provision a cluster with persistent storage and gives users a way to request those resources without having any knowledge of the underlying infrastructure.

Persistent volumes are not bound to a single project or namespace; they can be shared across the OpenShift Container Platform cluster. Persistent volume claims are specific to a project or namespace and can be requested by users.

Additional resources

4.13.1. Dynamically provisioning VMware vSphere volumes

Dynamically provisioning VMware vSphere volumes is the recommended method.

4.13.2. Prerequisites

  • An OpenShift Container Platform cluster installed on a VMware vSphere version that meets the requirements for the components that you use. See Installing a cluster on vSphere for information about vSphere version support.

You can use either of the following procedures to dynamically provision these volumes using the default storage class.

4.13.2.1. Dynamically provisioning VMware vSphere volumes using the UI

OpenShift Container Platform installs a default storage class, named thin, that uses the thin disk format for provisioning volumes.

Prerequisites

  • Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform.

Procedure

  1. In the OpenShift Container Platform console, click Storage Persistent Volume Claims.
  2. In the persistent volume claims overview, click Create Persistent Volume Claim.
  3. Define the required options on the resulting page.

    1. Select the thin storage class.
    2. Enter a unique name for the storage claim.
    3. Select the access mode to determine the read and write access for the created storage claim.
    4. Define the size of the storage claim.
  4. Click Create to create the persistent volume claim and generate a persistent volume.

4.13.2.2. Dynamically provisioning VMware vSphere volumes using the CLI

OpenShift Container Platform installs a default StorageClass, named thin, that uses the thin disk format for provisioning volumes.

Prerequisites

  • Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform.

Procedure (CLI)

  1. You can define a VMware vSphere PersistentVolumeClaim by creating a file, pvc.yaml, with the following contents:

    kind: PersistentVolumeClaim
    apiVersion: v1
    metadata:
      name: pvc 1
    spec:
      accessModes:
      - ReadWriteOnce 2
      resources:
        requests:
          storage: 1Gi 3
    1
    A unique name that represents the persistent volume claim.
    2
    The access mode of the persistent volume claim. With ReadWriteOnce, the volume can be mounted with read and write permissions by a single node.
    3
    The size of the persistent volume claim.
  2. Create the PersistentVolumeClaim object from the file:

    $ oc create -f pvc.yaml

4.13.3. Statically provisioning VMware vSphere volumes

To statically provision VMware vSphere volumes you must create the virtual machine disks for reference by the persistent volume framework.

Prerequisites

  • Storage must exist in the underlying infrastructure before it can be mounted as a volume in OpenShift Container Platform.

Procedure

  1. Create the virtual machine disks. Virtual machine disks (VMDKs) must be created manually before statically provisioning VMware vSphere volumes. Use either of the following methods:

    • Create using vmkfstools. Access ESX through Secure Shell (SSH) and then use following command to create a VMDK volume:

      $ vmkfstools -c <size> /vmfs/volumes/<datastore-name>/volumes/<disk-name>.vmdk
    • Create using vmware-diskmanager:

      $ shell vmware-vdiskmanager -c -t 0 -s <size> -a lsilogic <disk-name>.vmdk
  2. Create a persistent volume that references the VMDKs. Create a file, pv1.yaml, with the PersistentVolume object definition:

    apiVersion: v1
    kind: PersistentVolume
    metadata:
      name: pv1 1
    spec:
      capacity:
        storage: 1Gi 2
      accessModes:
        - ReadWriteOnce
      persistentVolumeReclaimPolicy: Retain
      vsphereVolume: 3
        volumePath: "[datastore1] volumes/myDisk"  4
        fsType: ext4  5
    1
    The name of the volume. This name is how it is identified by persistent volume claims or pods.
    2
    The amount of storage allocated to this volume.
    3
    The volume type used, with vsphereVolume for vSphere volumes. The label is used to mount a vSphere VMDK volume into pods. The contents of a volume are preserved when it is unmounted. The volume type supports VMFS and VSAN datastore.
    4
    The existing VMDK volume to use. If you used vmkfstools, you must enclose the datastore name in square brackets, [], in the volume definition, as shown previously.
    5
    The file system type to mount. For example, ext4, xfs, or other file systems.
    Important

    Changing the value of the fsType parameter after the volume is formatted and provisioned can result in data loss and pod failure.

  3. Create the PersistentVolume object from the file:

    $ oc create -f pv1.yaml
  4. Create a persistent volume claim that maps to the persistent volume you created in the previous step. Create a file, pvc1.yaml, with the PersistentVolumeClaim object definition:

    apiVersion: v1
    kind: PersistentVolumeClaim
    metadata:
      name: pvc1 1
    spec:
      accessModes:
        - ReadWriteOnce 2
      resources:
       requests:
         storage: "1Gi" 3
      volumeName: pv1 4
    1
    A unique name that represents the persistent volume claim.
    2
    The access mode of the persistent volume claim. With ReadWriteOnce, the volume can be mounted with read and write permissions by a single node.
    3
    The size of the persistent volume claim.
    4
    The name of the existing persistent volume.
  5. Create the PersistentVolumeClaim object from the file:

    $ oc create -f pvc1.yaml

4.13.3.1. Formatting VMware vSphere volumes

Before OpenShift Container Platform mounts the volume and passes it to a container, it checks that the volume contains a file system that is specified by the fsType parameter value in the PersistentVolume (PV) definition. If the device is not formatted with the file system, all data from the device is erased, and the device is automatically formatted with the specified file system.

Because OpenShift Container Platform formats them before the first use, you can use unformatted vSphere volumes as PVs.

Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.