5.4. 使用 CLI 创建 ClusterLogging 对象
此默认日志记录配置支持广泛的环境。参阅有关调优和配置组件的主题,以了解有关您可以进行的修改的信息。
先决条件
- 已安装 Red Hat OpenShift Logging Operator。
- 您已为日志存储安装了 OpenShift Elasticsearch Operator。
-
已安装 OpenShift CLI(
oc
)。
流程
将
ClusterLogging
对象创建为 YAML 文件:ClusterLogging
对象示例apiVersion: logging.openshift.io/v1 kind: ClusterLogging metadata: name: instance 1 namespace: openshift-logging spec: managementState: Managed 2 logStore: type: elasticsearch 3 retentionPolicy: 4 application: maxAge: 1d infra: maxAge: 7d audit: maxAge: 7d elasticsearch: nodeCount: 3 5 storage: storageClassName: <storage_class_name> 6 size: 200G resources: 7 limits: memory: 16Gi requests: memory: 16Gi proxy: 8 resources: limits: memory: 256Mi requests: memory: 256Mi redundancyPolicy: SingleRedundancy visualization: type: kibana 9 kibana: replicas: 1 collection: type: fluentd 10 fluentd: {}
- 1
- 名称必须是
instance
。 - 2
- OpenShift Logging 管理状态。在一些数情况下,如果更改了 OpenShift Logging 的默认值,则必须将其设置为
Unmanaged
。但是,非受管部署不接收更新,直到 OpenShift Logging 重新变为受管状态为止。 - 3
- 用于配置 Elasticsearch 的设置。通过使用 CR,您可以配置分片复制策略和持久性存储。
- 4
- 指定 Elasticsearch 应该保留每个日志源的时间长度。输入一个整数和时间单位: 周(w)、小时(h/H)、分钟(m)和秒。例如,
7d
代表 7 天。时间超过maxAge
的旧日志会被删除。您必须为每个日志源指定一个保留策略,否则不会为该源创建 Elasticsearch 索引。 - 5
- 指定 Elasticsearch 节点的数量。请参阅此列表后面的备注。
- 6
- 为 Elasticsearch 存储输入现有存储类的名称。为获得最佳性能,请指定分配块存储的存储类。如果没有指定存储类,OpenShift Logging 将使用临时存储。
- 7
- 根据需要指定 Elasticsearch 的 CPU 和内存请求。如果这些值留白,则 OpenShift Elasticsearch Operator 会设置默认值,它们应足以满足大多数部署的需要。内存请求的默认值为
16Gi
,CPU 请求为1
。 - 8
- 根据需要指定 Elasticsearch 代理的 CPU 和内存请求。如果这些值留白,则 OpenShift Elasticsearch Operator 会设置默认值,它们应足以满足大多数部署的需要。内存请求的默认值为
256Mi
,CPU 请求的默认值为100m
。 - 9
- 用于配置 Kibana 的设置。通过使用 CR,您可以扩展 Kibana 来实现冗余性,并为 Kibana 节点配置 CPU 和内存。如需更多信息,请参阅配置日志可视化工具。
- 10
- 用于配置 Fluentd 的设置。通过使用 CR,您可以配置 Fluentd CPU 和内存限值。如需更多信息,请参阅"配置 Fluentd"。
注意Elasticsearch control plane 节点的最大数量为三个。如果您将
nodeCount
指定为大于3
,OpenShift Container Platform 只会创建三个符合 Master 节点条件的 Elasticsearch 节点(具有 master、client 和 data 角色)。其他 Elasticsearch 节点使用客户端和数据角色作为仅数据节点创建。control plane 节点执行集群范围的操作,如创建或删除索引、分片分配和跟踪节点。数据节点保管分片,并执行与数据相关的操作,如 CRUD、搜索和聚合等。与数据相关的操作会占用大量 I/O、内存和 CPU。务必要监控这些资源,并在当前节点过载时添加更多数据节点。例如,如果
nodeCount = 4
,则创建以下节点:$ oc get deployment
输出示例
NAME READY UP-TO-DATE AVAILABLE AGE cluster-logging-operator 1/1 1 1 18h elasticsearch-cd-x6kdekli-1 1/1 1 1 6m54s elasticsearch-cdm-x6kdekli-1 1/1 1 1 18h elasticsearch-cdm-x6kdekli-2 1/1 1 1 6m49s elasticsearch-cdm-x6kdekli-3 1/1 1 1 6m44s
索引模板的主分片数量等于 Elasticsearch 数据节点的数目。
验证
您可以通过列出 openshift-logging
项目中的 pod 来验证安装。
运行以下命令列出 pod:
$ oc get pods -n openshift-logging
观察日志组件的 pod,类似于以下列表:
输出示例
NAME READY STATUS RESTARTS AGE cluster-logging-operator-66f77ffccb-ppzbg 1/1 Running 0 7m elasticsearch-cdm-ftuhduuw-1-ffc4b9566-q6bhp 2/2 Running 0 2m40s elasticsearch-cdm-ftuhduuw-2-7b4994dbfc-rd2gc 2/2 Running 0 2m36s elasticsearch-cdm-ftuhduuw-3-84b5ff7ff8-gqnm2 2/2 Running 0 2m4s collector-587vb 1/1 Running 0 2m26s collector-7mpb9 1/1 Running 0 2m30s collector-flm6j 1/1 Running 0 2m33s collector-gn4rn 1/1 Running 0 2m26s collector-nlgb6 1/1 Running 0 2m30s collector-snpkt 1/1 Running 0 2m28s kibana-d6d5668c5-rppqm 2/2 Running 0 2m39s