Chapter 3. Installer-provisioned infrastructure


3.1. Preparing to install a cluster on Azure

To prepare for installation of an OpenShift Container Platform cluster on Azure, complete the following steps:

3.1.1. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.17, you require access to the internet to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
  • Access Quay.io to obtain the packages that are required to install your cluster.
  • Obtain the packages that are required to perform cluster updates.
Important

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

3.1.2. Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Important

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

Note

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure

  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
    Note

    If you plan to install an OpenShift Container Platform cluster that uses the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    Note

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"

      Example output

      Agent pid 31874

      Note

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> 1
    1
    Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

    Example output

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

Next steps

  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

3.1.3. Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on the host you are using for installation.

Prerequisites

  • You have a computer that runs Linux or macOS, with at least 1.2 GB of local disk space.

Procedure

  1. Go to the Cluster Type page on the Red Hat Hybrid Cloud Console. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
  2. Select your infrastructure provider from the Run it yourself section of the page.
  3. Select your host operating system and architecture from the dropdown menus under OpenShift Installer and click Download Installer.
  4. Place the downloaded file in the directory where you want to store the installation configuration files.

    Important
    • The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both of the files are required to delete the cluster.
    • Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
  5. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  6. Download your installation pull secret from Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
Tip

Alternatively, you can retrieve the installation program from the Red Hat Customer Portal, where you can specify a version of the installation program to download. However, you must have an active subscription to access this page.

3.1.4. Installing the OpenShift CLI

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

Important

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.17. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the architecture from the Product Variant drop-down list.
  3. Select the appropriate version from the Version drop-down list.
  4. Click Download Now next to the OpenShift v4.17 Linux Clients entry and save the file.
  5. Unpack the archive:

    $ tar xvf <file>
  6. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>
Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.17 Windows Client entry and save the file.
  4. Unzip the archive with a ZIP program.
  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    C:\> oc <command>
Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.17 macOS Clients entry and save the file.

    Note

    For macOS arm64, choose the OpenShift v4.17 macOS arm64 Client entry.

  4. Unpack and unzip the archive.
  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH

Verification

  • Verify your installation by using an oc command:

    $ oc <command>

3.1.5. Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.17, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

3.1.6. Preparing an Azure Disk Encryption Set

The OpenShift Container Platform installer can use an existing Disk Encryption Set with a user-managed key. To enable this feature, you can create a Disk Encryption Set in Azure and provide the key to the installer.

Procedure

  1. Set the following environment variables for the Azure resource group by running the following command:

    $ export RESOURCEGROUP="<resource_group>" \1
        LOCATION="<location>" 2
    1
    Specifies the name of the Azure resource group where you will create the Disk Encryption Set and encryption key. To avoid losing access to your keys after destroying the cluster, you should create the Disk Encryption Set in a different resource group than the resource group where you install the cluster.
    2
    Specifies the Azure location where you will create the resource group.
  2. Set the following environment variables for the Azure Key Vault and Disk Encryption Set by running the following command:

    $ export KEYVAULT_NAME="<keyvault_name>" \1
        KEYVAULT_KEY_NAME="<keyvault_key_name>" \2
        DISK_ENCRYPTION_SET_NAME="<disk_encryption_set_name>" 3
    1
    Specifies the name of the Azure Key Vault you will create.
    2
    Specifies the name of the encryption key you will create.
    3
    Specifies the name of the disk encryption set you will create.
  3. Set the environment variable for the ID of your Azure Service Principal by running the following command:

    $ export CLUSTER_SP_ID="<service_principal_id>" 1
    1
    Specifies the ID of the service principal you will use for this installation.
  4. Enable host-level encryption in Azure by running the following commands:

    $ az feature register --namespace "Microsoft.Compute" --name "EncryptionAtHost"
    $ az feature show --namespace Microsoft.Compute --name EncryptionAtHost
    $ az provider register -n Microsoft.Compute
  5. Create an Azure Resource Group to hold the disk encryption set and associated resources by running the following command:

    $ az group create --name $RESOURCEGROUP --location $LOCATION
  6. Create an Azure key vault by running the following command:

    $ az keyvault create -n $KEYVAULT_NAME -g $RESOURCEGROUP -l $LOCATION \
        --enable-purge-protection true
  7. Create an encryption key in the key vault by running the following command:

    $ az keyvault key create --vault-name $KEYVAULT_NAME -n $KEYVAULT_KEY_NAME \
        --protection software
  8. Capture the ID of the key vault by running the following command:

    $ KEYVAULT_ID=$(az keyvault show --name $KEYVAULT_NAME --query "[id]" -o tsv)
  9. Capture the key URL in the key vault by running the following command:

    $ KEYVAULT_KEY_URL=$(az keyvault key show --vault-name $KEYVAULT_NAME --name \
        $KEYVAULT_KEY_NAME --query "[key.kid]" -o tsv)
  10. Create a disk encryption set by running the following command:

    $ az disk-encryption-set create -n $DISK_ENCRYPTION_SET_NAME -l $LOCATION -g \
        $RESOURCEGROUP --source-vault $KEYVAULT_ID --key-url $KEYVAULT_KEY_URL
  11. Grant the DiskEncryptionSet resource access to the key vault by running the following commands:

    $ DES_IDENTITY=$(az disk-encryption-set show -n $DISK_ENCRYPTION_SET_NAME -g \
        $RESOURCEGROUP --query "[identity.principalId]" -o tsv)
    $ az keyvault set-policy -n $KEYVAULT_NAME -g $RESOURCEGROUP --object-id \
        $DES_IDENTITY --key-permissions wrapkey unwrapkey get
  12. Grant the Azure Service Principal permission to read the DiskEncryptionSet by running the following commands:

    $ DES_RESOURCE_ID=$(az disk-encryption-set show -n $DISK_ENCRYPTION_SET_NAME -g \
        $RESOURCEGROUP --query "[id]" -o tsv)
    $ az role assignment create --assignee $CLUSTER_SP_ID --role "<reader_role>" \1
        --scope $DES_RESOURCE_ID -o jsonc
    1
    Specifies an Azure role with read permissions to the disk encryption set. You can use the Owner role or a custom role with the necessary permissions.

3.2. Installing a cluster on Azure

You can install a cluster on Microsoft Azure that uses the default configuration options.

3.2.1. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have an Azure subscription ID and tenant ID.
  • You have the application ID and password of a service principal.

Procedure

  1. Optional: If you have run the installation program on this computer before, and want to use an alternative service principal, go to the ~/.azure/ directory and delete the osServicePrincipal.json configuration file.

    Deleting this file prevents the installation program from automatically reusing subscription and authentication values from a previous installation.

  2. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the directory name to store the files that the installation program creates.
    2
    To view different installation details, specify warn, debug, or error instead of info.

    When specifying the directory:

    • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.
    • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
  3. Provide values at the prompts:

    1. Optional: Select an SSH key to use to access your cluster machines.

      Note

      For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

    2. Select azure as the platform to target.

      If the installation program cannot locate the osServicePrincipal.json configuration file from a previous installation, you are prompted for Azure subscription and authentication values.

    3. Specify the following Azure parameter values for your subscription and service principal:

      • azure subscription id: Enter the subscription ID to use for the cluster.
      • azure tenant id: Enter the tenant ID.
      • azure service principal client id: Enter its application ID.
      • azure service principal client secret: Enter its password.
    4. Select the region to deploy the cluster to.
    5. Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
    6. Enter a descriptive name for your cluster.

      Important

      All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.

    7. Paste the pull secret from Red Hat OpenShift Cluster Manager.

If previously not detected, the installation program creates an osServicePrincipal.json configuration file and stores this file in the ~/.azure/ directory on your computer. This ensures that the installation program can load the profile when it is creating an OpenShift Container Platform cluster on the target platform.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.
  • Credential information also outputs to <installation_directory>/.openshift_install.log.
Important

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

Important
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

3.2.2. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

Additional resources

  • For more information about accessing and understanding the OpenShift Container Platform web console, see Accessing the web console.

3.2.3. Next steps

3.3. Installing a cluster on Azure with customizations

You can install a customized cluster on infrastructure that the installation program provisions on Microsoft Azure. To customize the installation, modify parameters in the install-config.yaml file before you install the cluster.

3.3.1. Using the Azure Marketplace offering

Using the Azure Marketplace offering lets you deploy an OpenShift Container Platform cluster, which is billed on pay-per-use basis (hourly, per core) through Azure, while still being supported directly by Red Hat.

To deploy an OpenShift Container Platform cluster using the Azure Marketplace offering, you must first obtain the Azure Marketplace image. The installation program uses this image to deploy worker or control plane nodes. When obtaining your image, consider the following:

  • While the images are the same, the Azure Marketplace publisher is different depending on your region. If you are located in North America, specify redhat as the publisher. If you are located in EMEA, specify redhat-limited as the publisher.
  • The offer includes a rh-ocp-worker SKU and a rh-ocp-worker-gen1 SKU. The rh-ocp-worker SKU represents a Hyper-V generation version 2 VM image. The default instance types used in OpenShift Container Platform are version 2 compatible. If you plan to use an instance type that is only version 1 compatible, use the image associated with the rh-ocp-worker-gen1 SKU. The rh-ocp-worker-gen1 SKU represents a Hyper-V version 1 VM image.
Important

Installing images with the Azure marketplace is not supported on clusters with 64-bit ARM instances.

Prerequisites

  • You have installed the Azure CLI client (az).
  • Your Azure account is entitled for the offer and you have logged into this account with the Azure CLI client.

Procedure

  1. Display all of the available OpenShift Container Platform images by running one of the following commands:

    • North America:

      $  az vm image list --all --offer rh-ocp-worker --publisher redhat -o table

      Example output

      Offer          Publisher       Sku                 Urn                                                             Version
      -------------  --------------  ------------------  --------------------------------------------------------------  -----------------
      rh-ocp-worker  RedHat          rh-ocp-worker       RedHat:rh-ocp-worker:rh-ocp-worker:4.15.2024072409              4.15.2024072409
      rh-ocp-worker  RedHat          rh-ocp-worker-gen1  RedHat:rh-ocp-worker:rh-ocp-worker-gen1:4.15.2024072409         4.15.2024072409

    • EMEA:

      $  az vm image list --all --offer rh-ocp-worker --publisher redhat-limited -o table

      Example output

      Offer          Publisher       Sku                 Urn                                                                     Version
      -------------  --------------  ------------------  --------------------------------------------------------------          -----------------
      rh-ocp-worker  redhat-limited  rh-ocp-worker       redhat-limited:rh-ocp-worker:rh-ocp-worker:4.15.2024072409              4.15.2024072409
      rh-ocp-worker  redhat-limited  rh-ocp-worker-gen1  redhat-limited:rh-ocp-worker:rh-ocp-worker-gen1:4.15.2024072409         4.15.2024072409

    Note

    Use the latest image that is available for compute and control plane nodes. If required, your VMs are automatically upgraded as part of the installation process.

  2. Inspect the image for your offer by running one of the following commands:

    • North America:

      $ az vm image show --urn redhat:rh-ocp-worker:rh-ocp-worker:<version>
    • EMEA:

      $ az vm image show --urn redhat-limited:rh-ocp-worker:rh-ocp-worker:<version>
  3. Review the terms of the offer by running one of the following commands:

    • North America:

      $ az vm image terms show --urn redhat:rh-ocp-worker:rh-ocp-worker:<version>
    • EMEA:

      $ az vm image terms show --urn redhat-limited:rh-ocp-worker:rh-ocp-worker:<version>
  4. Accept the terms of the offering by running one of the following commands:

    • North America:

      $ az vm image terms accept --urn redhat:rh-ocp-worker:rh-ocp-worker:<version>
    • EMEA:

      $ az vm image terms accept --urn redhat-limited:rh-ocp-worker:rh-ocp-worker:<version>
  5. Record the image details of your offer. You must update the compute section in the install-config.yaml file with values for publisher, offer, sku, and version before deploying the cluster. You may also update the controlPlane section to deploy control plane machines with the specified image details, or the defaultMachinePlatform section to deploy both control plane and compute machines with the specified image details. Use the latest available image for control plane and compute nodes.

Sample install-config.yaml file with the Azure Marketplace compute nodes

apiVersion: v1
baseDomain: example.com
compute:
- hyperthreading: Enabled
  name: worker
  platform:
    azure:
      type: Standard_D4s_v5
      osImage:
        publisher: redhat
        offer: rh-ocp-worker
        sku: rh-ocp-worker
        version: 413.92.2023101700
  replicas: 3

3.3.2. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.

Prerequisites

  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have an Azure subscription ID and tenant ID.
  • If you are installing the cluster using a service principal, you have its application ID and password.
  • If you are installing the cluster using a system-assigned managed identity, you have enabled it on the virtual machine that you will run the installation program from.
  • If you are installing the cluster using a user-assigned managed identity, you have met these prerequisites:

    • You have its client ID.
    • You have assigned it to the virtual machine that you will run the installation program from.

Procedure

  1. Optional: If you have run the installation program on this computer before, and want to use an alternative service principal or managed identity, go to the ~/.azure/ directory and delete the osServicePrincipal.json configuration file.

    Deleting this file prevents the installation program from automatically reusing subscription and authentication values from a previous installation.

  2. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> 1
      1
      For <installation_directory>, specify the directory name to store the files that the installation program creates.

      When specifying the directory:

      • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.
      • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        Note

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select azure as the platform to target.

        If the installation program cannot locate the osServicePrincipal.json configuration file from a previous installation, you are prompted for Azure subscription and authentication values.

      3. Enter the following Azure parameter values for your subscription:

        • azure subscription id: Enter the subscription ID to use for the cluster.
        • azure tenant id: Enter the tenant ID.
      4. Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client id:

        • If you are using a service principal, enter its application ID.
        • If you are using a system-assigned managed identity, leave this value blank.
        • If you are using a user-assigned managed identity, specify its client ID.
      5. Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client secret:

        • If you are using a service principal, enter its password.
        • If you are using a system-assigned managed identity, leave this value blank.
        • If you are using a user-assigned managed identity, leave this value blank.
      6. Select the region to deploy the cluster to.
      7. Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
      8. Enter a descriptive name for your cluster.

        Important

        All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.

  3. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.

    Note

    If you are installing a three-node cluster, be sure to set the compute.replicas parameter to 0. This ensures that the cluster’s control planes are schedulable. For more information, see "Installing a three-node cluster on Azure".

  4. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

If previously not detected, the installation program creates an osServicePrincipal.json configuration file and stores this file in the ~/.azure/ directory on your computer. This ensures that the installation program can load the profile when it is creating an OpenShift Container Platform cluster on the target platform.

3.3.2.1. Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 3.1. Minimum resource requirements
MachineOperating SystemvCPU [1]Virtual RAMStorageInput/Output Per Second (IOPS)[2]

Bootstrap

RHCOS

4

16 GB

100 GB

300

Control plane

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS, RHEL 8.6 and later [3]

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
  2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
  3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
Note

As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA
  • ARM64 architecture requires ARMv8.0-A ISA
  • IBM Power architecture requires Power 9 ISA
  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

Important

You are required to use Azure virtual machines that have the premiumIO parameter set to true.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

Additional resources

3.3.2.2. Tested instance types for Azure

The following Microsoft Azure instance types have been tested with OpenShift Container Platform.

Example 3.1. Machine types based on 64-bit x86 architecture

  • standardBasv2Family
  • standardBSFamily
  • standardBsv2Family
  • standardDADSv5Family
  • standardDASv4Family
  • standardDASv5Family
  • standardDCACCV5Family
  • standardDCADCCV5Family
  • standardDCADSv5Family
  • standardDCASv5Family
  • standardDCSv3Family
  • standardDCSv2Family
  • standardDDCSv3Family
  • standardDDSv4Family
  • standardDDSv5Family
  • standardDLDSv5Family
  • standardDLSv5Family
  • standardDSFamily
  • standardDSv2Family
  • standardDSv2PromoFamily
  • standardDSv3Family
  • standardDSv4Family
  • standardDSv5Family
  • standardEADSv5Family
  • standardEASv4Family
  • standardEASv5Family
  • standardEBDSv5Family
  • standardEBSv5Family
  • standardECACCV5Family
  • standardECADCCV5Family
  • standardECADSv5Family
  • standardECASv5Family
  • standardEDSv4Family
  • standardEDSv5Family
  • standardEIADSv5Family
  • standardEIASv4Family
  • standardEIASv5Family
  • standardEIBDSv5Family
  • standardEIBSv5Family
  • standardEIDSv5Family
  • standardEISv3Family
  • standardEISv5Family
  • standardESv3Family
  • standardESv4Family
  • standardESv5Family
  • standardFXMDVSFamily
  • standardFSFamily
  • standardFSv2Family
  • standardGSFamily
  • standardHBrsv2Family
  • standardHBSFamily
  • standardHBv4Family
  • standardHCSFamily
  • standardHXFamily
  • standardLASv3Family
  • standardLSFamily
  • standardLSv2Family
  • standardLSv3Family
  • standardMDSHighMemoryv3Family
  • standardMDSMediumMemoryv2Family
  • standardMDSMediumMemoryv3Family
  • standardMIDSHighMemoryv3Family
  • standardMIDSMediumMemoryv2Family
  • standardMISHighMemoryv3Family
  • standardMISMediumMemoryv2Family
  • standardMSFamily
  • standardMSHighMemoryv3Family
  • standardMSMediumMemoryv2Family
  • standardMSMediumMemoryv3Family
  • StandardNCADSA100v4Family
  • Standard NCASv3_T4 Family
  • standardNCSv3Family
  • standardNDSv2Family
  • StandardNGADSV620v1Family
  • standardNPSFamily
  • StandardNVADSA10v5Family
  • standardNVSv3Family
  • standardXEISv4Family

3.3.2.3. Tested instance types for Azure on 64-bit ARM infrastructures

The following Microsoft Azure ARM64 instance types have been tested with OpenShift Container Platform.

Example 3.2. Machine types based on 64-bit ARM architecture

  • standardBpsv2Family
  • standardDPSv5Family
  • standardDPDSv5Family
  • standardDPLDSv5Family
  • standardDPLSv5Family
  • standardEPSv5Family
  • standardEPDSv5Family

3.3.2.4. Enabling trusted launch for Azure VMs

You can enable two trusted launch features when installing your cluster on Azure: secure boot and virtualized Trusted Platform Modules.

For more information about the sizes of virtual machines that support the trusted launch features, see Virtual machine sizes.

Important

Trusted launch is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Edit the install-config.yaml file before deploying your cluster:

    • Enable trusted launch only on control plane by adding the following stanza:

      controlPlane:
        platform:
          azure:
            settings:
              securityType: TrustedLaunch
              trustedLaunch:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
    • Enable trusted launch only on compute node by adding the following stanza:

      compute:
        platform:
          azure:
            settings:
              securityType: TrustedLaunch
              trustedLaunch:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
    • Enable trusted launch on all nodes by adding the following stanza:

      platform:
        azure:
          settings:
            securityType: TrustedLaunch
            trustedLaunch:
              uefiSettings:
                secureBoot: Enabled
                virtualizedTrustedPlatformModule: Enabled

3.3.2.5. Enabling confidential VMs

You can enable confidential VMs when installing your cluster. You can enable confidential VMs for compute nodes, control plane nodes, or all nodes.

Important

Using confidential VMs is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

You can use confidential VMs with the following VM sizes:

  • DCasv5-series
  • DCadsv5-series
  • ECasv5-series
  • ECadsv5-series
Important

Confidential VMs are currently not supported on 64-bit ARM architectures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Edit the install-config.yaml file before deploying your cluster:

    • Enable confidential VMs only on control plane by adding the following stanza:

      controlPlane:
        platform:
          azure:
            settings:
              securityType: ConfidentialVM
              confidentialVM:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
            osDisk:
              securityProfile:
                securityEncryptionType: VMGuestStateOnly
    • Enable confidential VMs only on compute nodes by adding the following stanza:

      compute:
        platform:
          azure:
            settings:
              securityType: ConfidentialVM
              confidentialVM:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
            osDisk:
              securityProfile:
                securityEncryptionType: VMGuestStateOnly
    • Enable confidential VMs on all nodes by adding the following stanza:

      platform:
        azure:
          settings:
            securityType: ConfidentialVM
            confidentialVM:
              uefiSettings:
                secureBoot: Enabled
                virtualizedTrustedPlatformModule: Enabled
          osDisk:
            securityProfile:
              securityEncryptionType: VMGuestStateOnly

3.3.2.6. Sample customized install-config.yaml file for Azure

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

Important

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com 1
controlPlane: 2
  hyperthreading: Enabled 3 4
  name: master
  platform:
    azure:
      encryptionAtHost: true
      ultraSSDCapability: Enabled
      osDisk:
        diskSizeGB: 1024 5
        diskType: Premium_LRS
        diskEncryptionSet:
          resourceGroup: disk_encryption_set_resource_group
          name: disk_encryption_set_name
          subscriptionId: secondary_subscription_id
      osImage:
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      type: Standard_D8s_v3
  replicas: 3
compute: 6
- hyperthreading: Enabled 7 8
  name: worker
  platform:
    azure:
      ultraSSDCapability: Enabled
      type: Standard_D2s_v3
      encryptionAtHost: true
      osDisk:
        diskSizeGB: 512 9
        diskType: Standard_LRS
        diskEncryptionSet:
          resourceGroup: disk_encryption_set_resource_group
          name: disk_encryption_set_name
          subscriptionId: secondary_subscription_id
      osImage:
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      zones: 10
      - "1"
      - "2"
      - "3"
  replicas: 5
metadata:
  name: test-cluster 11
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OVNKubernetes 12
  serviceNetwork:
  - 172.30.0.0/16
platform:
  azure:
    defaultMachinePlatform:
      osImage: 13
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      ultraSSDCapability: Enabled
    baseDomainResourceGroupName: resource_group 14
    region: centralus 15
    resourceGroupName: existing_resource_group 16
    outboundType: Loadbalancer
    cloudName: AzurePublicCloud
pullSecret: '{"auths": ...}' 17
fips: false 18
sshKey: ssh-ed25519 AAAA... 19
1 11 15 17
Required. The installation program prompts you for this value.
2 6
If you do not provide these parameters and values, the installation program provides the default value.
3 7
The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
4 8
Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as Standard_D8s_v3, for your machines if you disable simultaneous multithreading.

5 9
You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes is 1024 GB.
10
Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
12
The cluster network plugin to install. The default value OVNKubernetes is the only supported value.
13
Optional: A custom Red Hat Enterprise Linux CoreOS (RHCOS) image that should be used to boot control plane and compute machines. The publisher, offer, sku, and version parameters under platform.azure.defaultMachinePlatform.osImage apply to both control plane and compute machines. If the parameters under controlPlane.platform.azure.osImage or compute.platform.azure.osImage are set, they override the platform.azure.defaultMachinePlatform.osImage parameters.
14
Specify the name of the resource group that contains the DNS zone for your base domain.
16
Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
18
Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
Important

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Switching RHEL to FIPS mode.

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

19
You can optionally provide the sshKey value that you use to access the machines in your cluster.
Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

3.3.2.7. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.
  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    Note

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4
    If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5
    Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.
    Note

    The installation program does not support the proxy readinessEndpoints field.

    Note

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

Additional resources

3.3.3. Configuring user-defined tags for Azure

In OpenShift Container Platform, you can use tags for grouping resources and for managing resource access and cost. Tags are applied only to the resources created by the OpenShift Container Platform installation program and its core Operators such as Machine API Operator, Cluster Ingress Operator, Cluster Image Registry Operator. The OpenShift Container Platform consists of the following types of tags:

OpenShift Container Platform tags
By default, OpenShift Container Platform installation program attaches the OpenShift Container Platform tags to the Azure resources. These OpenShift Container Platform tags are not accessible to the users. The format of the OpenShift Container Platform tags is kubernetes.io_cluster.<cluster_id>:owned, where <cluster_id> is the value of .status.infrastructureName in the infrastructure resource for the cluster.
User-defined tags

User-defined tags are manually created in install-config.yaml file during installation. When creating the user-defined tags, you must consider the following points:

  • User-defined tags on Azure resources can only be defined during OpenShift Container Platform cluster creation, and cannot be modified after the cluster is created.
  • Support for user-defined tags is available only for the resources created in the Azure Public Cloud.
  • User-defined tags are not supported for the OpenShift Container Platform clusters upgraded to OpenShift Container Platform 4.17.

3.3.3.1. Creating user-defined tags for Azure

To define the list of user-defined tags, edit the .platform.azure.userTags field in the install-config.yaml file.

Procedure

  • Specify the .platform.azure.userTags field as shown in the following install-config.yaml file:

    apiVersion: v1
    baseDomain: example.com
    #...
    platform:
      azure:
        userTags: 1
          <key>: <value> 2
    #...
    1
    Defines the additional keys and values that the installation program adds as tags to all Azure resources that it creates.
    2
    Specify the key and value. You can configure a maximum of 10 tags for resource group and resources. Tag keys are case-insensitive. For more information on requirements for specifying user-defined tags, see "User-defined tags requirements" section.

    Example install-config.yaml file

    apiVersion: v1
    baseDomain: example.com
    #...
    platform:
      azure:
        userTags:
          createdBy: user
          environment: dev
    #...

Verification

  • Access the list of created user-defined tags for the Azure resources by running the following command:

    $ oc get infrastructures.config.openshift.io cluster -o=jsonpath-as-json='{.status.platformStatus.azure.resourceTags}'

    Example output

    [
        [
            {
                "key": "createdBy",
                "value": "user"
            },
            {
                "key": "environment",
                "value": "dev"
            }
        ]
    ]

3.3.3.2. User-defined tags requirements

The user-defined tags have the following requirements:

  • A tag key must have a maximum of 128 characters.
  • A tag key must begin with a letter.
  • A tag key must end with a letter, number or underscore.
  • A tag key must contain only letters, numbers, underscores(_), periods(.), and hyphens(-).
  • A tag key must not be specified as name.
  • A tag key must not have the following prefixes:

    • kubernetes.io
    • openshift.io
    • microsoft
    • azure
    • windows
  • A tag value must have a maximum of 256 characters.

For more information about Azure tags, see Azure user-defined tags.

3.3.4. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the following alternatives:

3.3.4.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.

Procedure

  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  2. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.

    This command creates a YAML file for each CredentialsRequest object.

    Sample CredentialsRequest object

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: AzureProviderSpec
        roleBindings:
        - role: Contributor
      ...

  5. Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each CredentialsRequest object.

    Sample CredentialsRequest object with secrets

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: AzureProviderSpec
        roleBindings:
        - role: Contributor
          ...
      secretRef:
        name: <component_secret>
        namespace: <component_namespace>
      ...

    Sample Secret object

    apiVersion: v1
    kind: Secret
    metadata:
      name: <component_secret>
      namespace: <component_namespace>
    data:
      azure_subscription_id: <base64_encoded_azure_subscription_id>
      azure_client_id: <base64_encoded_azure_client_id>
      azure_client_secret: <base64_encoded_azure_client_secret>
      azure_tenant_id: <base64_encoded_azure_tenant_id>
      azure_resource_prefix: <base64_encoded_azure_resource_prefix>
      azure_resourcegroup: <base64_encoded_azure_resourcegroup>
      azure_region: <base64_encoded_azure_region>

Important

Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state.

3.3.4.2. Configuring an Azure cluster to use short-term credentials

To install a cluster that uses Microsoft Entra Workload ID, you must configure the Cloud Credential Operator utility and create the required Azure resources for your cluster.

3.3.4.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

Note

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

  • You have access to an OpenShift Container Platform account with cluster administrator access.
  • You have installed the OpenShift CLI (oc).
  • You have created a global Microsoft Azure account for the ccoctl utility to use with the following permissions:

    Example 3.3. Required Azure permissions

    • Microsoft.Resources/subscriptions/resourceGroups/read
    • Microsoft.Resources/subscriptions/resourceGroups/write
    • Microsoft.Resources/subscriptions/resourceGroups/delete
    • Microsoft.Authorization/roleAssignments/read
    • Microsoft.Authorization/roleAssignments/delete
    • Microsoft.Authorization/roleAssignments/write
    • Microsoft.Authorization/roleDefinitions/read
    • Microsoft.Authorization/roleDefinitions/write
    • Microsoft.Authorization/roleDefinitions/delete
    • Microsoft.Storage/storageAccounts/listkeys/action
    • Microsoft.Storage/storageAccounts/delete
    • Microsoft.Storage/storageAccounts/read
    • Microsoft.Storage/storageAccounts/write
    • Microsoft.Storage/storageAccounts/blobServices/containers/write
    • Microsoft.Storage/storageAccounts/blobServices/containers/delete
    • Microsoft.Storage/storageAccounts/blobServices/containers/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/delete
    • Microsoft.ManagedIdentity/userAssignedIdentities/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/write
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/write
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/delete
    • Microsoft.Storage/register/action
    • Microsoft.ManagedIdentity/register/action

Procedure

  1. Set a variable for the OpenShift Container Platform release image by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Obtain the CCO container image from the OpenShift Container Platform release image by running the following command:

    $ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
    Note

    Ensure that the architecture of the $RELEASE_IMAGE matches the architecture of the environment in which you will use the ccoctl tool.

  3. Extract the ccoctl binary from the CCO container image within the OpenShift Container Platform release image by running the following command:

    $ oc image extract $CCO_IMAGE \
      --file="/usr/bin/ccoctl.<rhel_version>" \1
      -a ~/.pull-secret
    1
    For <rhel_version>, specify the value that corresponds to the version of Red Hat Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by default. The following values are valid:
    • rhel8: Specify this value for hosts that use RHEL 8.
    • rhel9: Specify this value for hosts that use RHEL 9.
  4. Change the permissions to make ccoctl executable by running the following command:

    $ chmod 775 ccoctl.<rhel_version>

Verification

  • To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run the command, for example:

    $ ./ccoctl.rhel9

    Example output

    OpenShift credentials provisioning tool
    
    Usage:
      ccoctl [command]
    
    Available Commands:
      aws          Manage credentials objects for AWS cloud
      azure        Manage credentials objects for Azure
      gcp          Manage credentials objects for Google cloud
      help         Help about any command
      ibmcloud     Manage credentials objects for {ibm-cloud-title}
      nutanix      Manage credentials objects for Nutanix
    
    Flags:
      -h, --help   help for ccoctl
    
    Use "ccoctl [command] --help" for more information about a command.

3.3.4.2.2. Creating Azure resources with the Cloud Credential Operator utility

You can use the ccoctl azure create-all command to automate the creation of Azure resources.

Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.
  • Access to your Microsoft Azure account by using the Azure CLI.

Procedure

  1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.
    Note

    This command might take a few moments to run.

  3. To enable the ccoctl utility to detect your Azure credentials automatically, log in to the Azure CLI by running the following command:

    $ az login
  4. Use the ccoctl tool to process all CredentialsRequest objects by running the following command:

    $ ccoctl azure create-all \
      --name=<azure_infra_name> \1
      --output-dir=<ccoctl_output_dir> \2
      --region=<azure_region> \3
      --subscription-id=<azure_subscription_id> \4
      --credentials-requests-dir=<path_to_credentials_requests_directory> \5
      --dnszone-resource-group-name=<azure_dns_zone_resource_group_name> \6
      --tenant-id=<azure_tenant_id> 7
    1
    Specify the user-defined name for all created Azure resources used for tracking.
    2
    Optional: Specify the directory in which you want the ccoctl utility to create objects. By default, the utility creates objects in the directory in which the commands are run.
    3
    Specify the Azure region in which cloud resources will be created.
    4
    Specify the Azure subscription ID to use.
    5
    Specify the directory containing the files for the component CredentialsRequest objects.
    6
    Specify the name of the resource group containing the cluster’s base domain Azure DNS zone.
    7
    Specify the Azure tenant ID to use.
    Note

    If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

    To see additional optional parameters and explanations of how to use them, run the azure create-all --help command.

Verification

  • To verify that the OpenShift Container Platform secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests directory:

    $ ls <path_to_ccoctl_output_dir>/manifests

    Example output

    azure-ad-pod-identity-webhook-config.yaml
    cluster-authentication-02-config.yaml
    openshift-cloud-controller-manager-azure-cloud-credentials-credentials.yaml
    openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
    openshift-cluster-api-capz-manager-bootstrap-credentials-credentials.yaml
    openshift-cluster-csi-drivers-azure-disk-credentials-credentials.yaml
    openshift-cluster-csi-drivers-azure-file-credentials-credentials.yaml
    openshift-image-registry-installer-cloud-credentials-credentials.yaml
    openshift-ingress-operator-cloud-credentials-credentials.yaml
    openshift-machine-api-azure-cloud-credentials-credentials.yaml

    You can verify that the Microsoft Entra ID service accounts are created by querying Azure. For more information, refer to Azure documentation on listing Entra ID service accounts.

3.3.4.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the correct directories for the installation program.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have configured the Cloud Credential Operator utility (ccoctl).
  • You have created the cloud provider resources that are required for your cluster with the ccoctl utility.

Procedure

  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  2. If you used the ccoctl utility to create a new Azure resource group instead of using an existing resource group, modify the resourceGroupName parameter in the install-config.yaml as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    # ...
    platform:
      azure:
        resourceGroupName: <azure_infra_name> 1
    # ...

    1
    This value must match the user-defined name for Azure resources that was specified with the --name argument of the ccoctl azure create-all command.
  3. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  4. Copy the manifests that the ccoctl utility generated to the manifests directory that the installation program created by running the following command:

    $ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
  5. Copy the tls directory that contains the private key to the installation directory:

    $ cp -a /<path_to_ccoctl_output_dir>/tls .

3.3.5. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have an Azure subscription ID and tenant ID.

Procedure

  • Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.
  • Credential information also outputs to <installation_directory>/.openshift_install.log.
Important

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

Important
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

3.3.6. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

Additional resources

  • See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.

3.3.7. Next steps

3.4. Installing a cluster on Azure with network customizations

In OpenShift Container Platform version 4.17, you can install a cluster with a customized network configuration on infrastructure that the installation program provisions on Microsoft Azure. By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations.

You must set most of the network configuration parameters during installation, and you can modify only kubeProxy configuration parameters in a running cluster.

3.4.1. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.

Prerequisites

  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have an Azure subscription ID and tenant ID.
  • If you are installing the cluster using a service principal, you have its application ID and password.
  • If you are installing the cluster using a system-assigned managed identity, you have enabled it on the virtual machine that you will run the installation program from.
  • If you are installing the cluster using a user-assigned managed identity, you have met these prerequisites:

    • You have its client ID.
    • You have assigned it to the virtual machine that you will run the installation program from.

Procedure

  1. Optional: If you have run the installation program on this computer before, and want to use an alternative service principal or managed identity, go to the ~/.azure/ directory and delete the osServicePrincipal.json configuration file.

    Deleting this file prevents the installation program from automatically reusing subscription and authentication values from a previous installation.

  2. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> 1
      1
      For <installation_directory>, specify the directory name to store the files that the installation program creates.

      When specifying the directory:

      • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.
      • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        Note

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select azure as the platform to target.

        If the installation program cannot locate the osServicePrincipal.json configuration file from a previous installation, you are prompted for Azure subscription and authentication values.

      3. Enter the following Azure parameter values for your subscription:

        • azure subscription id: Enter the subscription ID to use for the cluster.
        • azure tenant id: Enter the tenant ID.
      4. Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client id:

        • If you are using a service principal, enter its application ID.
        • If you are using a system-assigned managed identity, leave this value blank.
        • If you are using a user-assigned managed identity, specify its client ID.
      5. Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client secret:

        • If you are using a service principal, enter its password.
        • If you are using a system-assigned managed identity, leave this value blank.
        • If you are using a user-assigned managed identity, leave this value blank.
      6. Select the region to deploy the cluster to.
      7. Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
      8. Enter a descriptive name for your cluster.

        Important

        All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.

  3. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.
  4. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

If previously not detected, the installation program creates an osServicePrincipal.json configuration file and stores this file in the ~/.azure/ directory on your computer. This ensures that the installation program can load the profile when it is creating an OpenShift Container Platform cluster on the target platform.

3.4.1.1. Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 3.2. Minimum resource requirements
MachineOperating SystemvCPU [1]Virtual RAMStorageInput/Output Per Second (IOPS)[2]

Bootstrap

RHCOS

4

16 GB

100 GB

300

Control plane

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS, RHEL 8.6 and later [3]

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
  2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
  3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
Note

As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA
  • ARM64 architecture requires ARMv8.0-A ISA
  • IBM Power architecture requires Power 9 ISA
  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

Important

You are required to use Azure virtual machines that have the premiumIO parameter set to true.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

Additional resources

3.4.1.2. Tested instance types for Azure

The following Microsoft Azure instance types have been tested with OpenShift Container Platform.

Example 3.4. Machine types based on 64-bit x86 architecture

  • standardBasv2Family
  • standardBSFamily
  • standardBsv2Family
  • standardDADSv5Family
  • standardDASv4Family
  • standardDASv5Family
  • standardDCACCV5Family
  • standardDCADCCV5Family
  • standardDCADSv5Family
  • standardDCASv5Family
  • standardDCSv3Family
  • standardDCSv2Family
  • standardDDCSv3Family
  • standardDDSv4Family
  • standardDDSv5Family
  • standardDLDSv5Family
  • standardDLSv5Family
  • standardDSFamily
  • standardDSv2Family
  • standardDSv2PromoFamily
  • standardDSv3Family
  • standardDSv4Family
  • standardDSv5Family
  • standardEADSv5Family
  • standardEASv4Family
  • standardEASv5Family
  • standardEBDSv5Family
  • standardEBSv5Family
  • standardECACCV5Family
  • standardECADCCV5Family
  • standardECADSv5Family
  • standardECASv5Family
  • standardEDSv4Family
  • standardEDSv5Family
  • standardEIADSv5Family
  • standardEIASv4Family
  • standardEIASv5Family
  • standardEIBDSv5Family
  • standardEIBSv5Family
  • standardEIDSv5Family
  • standardEISv3Family
  • standardEISv5Family
  • standardESv3Family
  • standardESv4Family
  • standardESv5Family
  • standardFXMDVSFamily
  • standardFSFamily
  • standardFSv2Family
  • standardGSFamily
  • standardHBrsv2Family
  • standardHBSFamily
  • standardHBv4Family
  • standardHCSFamily
  • standardHXFamily
  • standardLASv3Family
  • standardLSFamily
  • standardLSv2Family
  • standardLSv3Family
  • standardMDSHighMemoryv3Family
  • standardMDSMediumMemoryv2Family
  • standardMDSMediumMemoryv3Family
  • standardMIDSHighMemoryv3Family
  • standardMIDSMediumMemoryv2Family
  • standardMISHighMemoryv3Family
  • standardMISMediumMemoryv2Family
  • standardMSFamily
  • standardMSHighMemoryv3Family
  • standardMSMediumMemoryv2Family
  • standardMSMediumMemoryv3Family
  • StandardNCADSA100v4Family
  • Standard NCASv3_T4 Family
  • standardNCSv3Family
  • standardNDSv2Family
  • StandardNGADSV620v1Family
  • standardNPSFamily
  • StandardNVADSA10v5Family
  • standardNVSv3Family
  • standardXEISv4Family

3.4.1.3. Tested instance types for Azure on 64-bit ARM infrastructures

The following Microsoft Azure ARM64 instance types have been tested with OpenShift Container Platform.

Example 3.5. Machine types based on 64-bit ARM architecture

  • standardBpsv2Family
  • standardDPSv5Family
  • standardDPDSv5Family
  • standardDPLDSv5Family
  • standardDPLSv5Family
  • standardEPSv5Family
  • standardEPDSv5Family

3.4.1.4. Enabling trusted launch for Azure VMs

You can enable two trusted launch features when installing your cluster on Azure: secure boot and virtualized Trusted Platform Modules.

For more information about the sizes of virtual machines that support the trusted launch features, see Virtual machine sizes.

Important

Trusted launch is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Edit the install-config.yaml file before deploying your cluster:

    • Enable trusted launch only on control plane by adding the following stanza:

      controlPlane:
        platform:
          azure:
            settings:
              securityType: TrustedLaunch
              trustedLaunch:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
    • Enable trusted launch only on compute node by adding the following stanza:

      compute:
        platform:
          azure:
            settings:
              securityType: TrustedLaunch
              trustedLaunch:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
    • Enable trusted launch on all nodes by adding the following stanza:

      platform:
        azure:
          settings:
            securityType: TrustedLaunch
            trustedLaunch:
              uefiSettings:
                secureBoot: Enabled
                virtualizedTrustedPlatformModule: Enabled

3.4.1.5. Enabling confidential VMs

You can enable confidential VMs when installing your cluster. You can enable confidential VMs for compute nodes, control plane nodes, or all nodes.

Important

Using confidential VMs is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

You can use confidential VMs with the following VM sizes:

  • DCasv5-series
  • DCadsv5-series
  • ECasv5-series
  • ECadsv5-series
Important

Confidential VMs are currently not supported on 64-bit ARM architectures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Edit the install-config.yaml file before deploying your cluster:

    • Enable confidential VMs only on control plane by adding the following stanza:

      controlPlane:
        platform:
          azure:
            settings:
              securityType: ConfidentialVM
              confidentialVM:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
            osDisk:
              securityProfile:
                securityEncryptionType: VMGuestStateOnly
    • Enable confidential VMs only on compute nodes by adding the following stanza:

      compute:
        platform:
          azure:
            settings:
              securityType: ConfidentialVM
              confidentialVM:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
            osDisk:
              securityProfile:
                securityEncryptionType: VMGuestStateOnly
    • Enable confidential VMs on all nodes by adding the following stanza:

      platform:
        azure:
          settings:
            securityType: ConfidentialVM
            confidentialVM:
              uefiSettings:
                secureBoot: Enabled
                virtualizedTrustedPlatformModule: Enabled
          osDisk:
            securityProfile:
              securityEncryptionType: VMGuestStateOnly

3.4.1.6. Sample customized install-config.yaml file for Azure

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

Important

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com 1
controlPlane: 2
  hyperthreading: Enabled 3 4
  name: master
  platform:
    azure:
      encryptionAtHost: true
      ultraSSDCapability: Enabled
      osDisk:
        diskSizeGB: 1024 5
        diskType: Premium_LRS
        diskEncryptionSet:
          resourceGroup: disk_encryption_set_resource_group
          name: disk_encryption_set_name
          subscriptionId: secondary_subscription_id
      osImage:
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      type: Standard_D8s_v3
  replicas: 3
compute: 6
- hyperthreading: Enabled 7 8
  name: worker
  platform:
    azure:
      ultraSSDCapability: Enabled
      type: Standard_D2s_v3
      encryptionAtHost: true
      osDisk:
        diskSizeGB: 512 9
        diskType: Standard_LRS
        diskEncryptionSet:
          resourceGroup: disk_encryption_set_resource_group
          name: disk_encryption_set_name
          subscriptionId: secondary_subscription_id
      osImage:
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      zones: 10
      - "1"
      - "2"
      - "3"
  replicas: 5
metadata:
  name: test-cluster 11
networking: 12
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OVNKubernetes 13
  serviceNetwork:
  - 172.30.0.0/16
platform:
  azure:
    defaultMachinePlatform:
      osImage: 14
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      ultraSSDCapability: Enabled
    baseDomainResourceGroupName: resource_group 15
    region: centralus 16
    resourceGroupName: existing_resource_group 17
    outboundType: Loadbalancer
    cloudName: AzurePublicCloud
pullSecret: '{"auths": ...}' 18
fips: false 19
sshKey: ssh-ed25519 AAAA... 20
1 11 16 18
Required. The installation program prompts you for this value.
2 6 12
If you do not provide these parameters and values, the installation program provides the default value.
3 7
The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
4 8
Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as Standard_D8s_v3, for your machines if you disable simultaneous multithreading.

5 9
You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes is 1024 GB.
10
Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
13
The cluster network plugin to install. The default value OVNKubernetes is the only supported value.
14
Optional: A custom Red Hat Enterprise Linux CoreOS (RHCOS) image that should be used to boot control plane and compute machines. The publisher, offer, sku, and version parameters under platform.azure.defaultMachinePlatform.osImage apply to both control plane and compute machines. If the parameters under controlPlane.platform.azure.osImage or compute.platform.azure.osImage are set, they override the platform.azure.defaultMachinePlatform.osImage parameters.
15
Specify the name of the resource group that contains the DNS zone for your base domain.
17
Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
19
Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
Important

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Switching RHEL to FIPS mode.

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

20
You can optionally provide the sshKey value that you use to access the machines in your cluster.
Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

3.4.1.7. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.
  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    Note

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4
    If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5
    Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.
    Note

    The installation program does not support the proxy readinessEndpoints field.

    Note

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

3.4.2. Network configuration phases

There are two phases prior to OpenShift Container Platform installation where you can customize the network configuration.

Phase 1

You can customize the following network-related fields in the install-config.yaml file before you create the manifest files:

  • networking.networkType
  • networking.clusterNetwork
  • networking.serviceNetwork
  • networking.machineNetwork

    For more information, see "Installation configuration parameters".

    Note

    Set the networking.machineNetwork to match the Classless Inter-Domain Routing (CIDR) where the preferred subnet is located.

    Important

    The CIDR range 172.17.0.0/16 is reserved by libVirt. You cannot use any other CIDR range that overlaps with the 172.17.0.0/16 CIDR range for networks in your cluster.

Phase 2
After creating the manifest files by running openshift-install create manifests, you can define a customized Cluster Network Operator manifest with only the fields you want to modify. You can use the manifest to specify advanced network configuration.

During phase 2, you cannot override the values that you specified in phase 1 in the install-config.yaml file. However, you can customize the network plugin during phase 2.

3.4.3. Specifying advanced network configuration

You can use advanced network configuration for your network plugin to integrate your cluster into your existing network environment.

You can specify advanced network configuration only before you install the cluster.

Important

Customizing your network configuration by modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported.

Prerequisites

  • You have created the install-config.yaml file and completed any modifications to it.

Procedure

  1. Change to the directory that contains the installation program and create the manifests:

    $ ./openshift-install create manifests --dir <installation_directory> 1
    1
    <installation_directory> specifies the name of the directory that contains the install-config.yaml file for your cluster.
  2. Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
  3. Specify the advanced network configuration for your cluster in the cluster-network-03-config.yml file, such as in the following example:

    Enable IPsec for the OVN-Kubernetes network provider

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
      defaultNetwork:
        ovnKubernetesConfig:
          ipsecConfig:
            mode: Full

  4. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program consumes the manifests/ directory when you create the Ignition config files.

3.4.4. Cluster Network Operator configuration

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the fields for the Network API in the operator.openshift.io API group.

The CNO configuration inherits the following fields during cluster installation from the Network API in the Network.config.openshift.io API group:

clusterNetwork
IP address pools from which pod IP addresses are allocated.
serviceNetwork
IP address pool for services.
defaultNetwork.type
Cluster network plugin. OVNKubernetes is the only supported plugin during installation.

You can specify the cluster network plugin configuration for your cluster by setting the fields for the defaultNetwork object in the CNO object named cluster.

3.4.4.1. Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 3.3. Cluster Network Operator configuration object
FieldTypeDescription

metadata.name

string

The name of the CNO object. This name is always cluster.

spec.clusterNetwork

array

A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example:

spec:
  clusterNetwork:
  - cidr: 10.128.0.0/19
    hostPrefix: 23
  - cidr: 10.128.32.0/19
    hostPrefix: 23

spec.serviceNetwork

array

A block of IP addresses for services. The OVN-Kubernetes network plugin supports only a single IP address block for the service network. For example:

spec:
  serviceNetwork:
  - 172.30.0.0/14

You can customize this field only in the install-config.yaml file before you create the manifests. The value is read-only in the manifest file.

spec.defaultNetwork

object

Configures the network plugin for the cluster network.

spec.kubeProxyConfig

object

The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network plugin, the kube-proxy configuration has no effect.

defaultNetwork object configuration

The values for the defaultNetwork object are defined in the following table:

Table 3.4. defaultNetwork object
FieldTypeDescription

type

string

OVNKubernetes. The Red Hat OpenShift Networking network plugin is selected during installation. This value cannot be changed after cluster installation.

Note

OpenShift Container Platform uses the OVN-Kubernetes network plugin by default. OpenShift SDN is no longer available as an installation choice for new clusters.

ovnKubernetesConfig

object

This object is only valid for the OVN-Kubernetes network plugin.

Configuration for the OVN-Kubernetes network plugin

The following table describes the configuration fields for the OVN-Kubernetes network plugin:

Table 3.5. ovnKubernetesConfig object
FieldTypeDescription

mtu

integer

The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU.

If the auto-detected value is not what you expect it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.

If your cluster requires different MTU values for different nodes, you must set this value to 100 less than the lowest MTU value in your cluster. For example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must set this value to 1400.

genevePort

integer

The port to use for all Geneve packets. The default value is 6081. This value cannot be changed after cluster installation.

ipsecConfig

object

Specify a configuration object for customizing the IPsec configuration.

ipv4

object

Specifies a configuration object for IPv4 settings.

ipv6

object

Specifies a configuration object for IPv6 settings.

policyAuditConfig

object

Specify a configuration object for customizing network policy audit logging. If unset, the defaults audit log settings are used.

gatewayConfig

object

Optional: Specify a configuration object for customizing how egress traffic is sent to the node gateway.

Note

While migrating egress traffic, you can expect some disruption to workloads and service traffic until the Cluster Network Operator (CNO) successfully rolls out the changes.

Table 3.6. ovnKubernetesConfig.ipv4 object
FieldTypeDescription

internalTransitSwitchSubnet

string

If your existing network infrastructure overlaps with the 100.88.0.0/16 IPv4 subnet, you can specify a different IP address range for internal use by OVN-Kubernetes. The subnet for the distributed transit switch that enables east-west traffic. This subnet cannot overlap with any other subnets used by OVN-Kubernetes or on the host itself. It must be large enough to accommodate one IP address per node in your cluster.

The default value is 100.88.0.0/16.

internalJoinSubnet

string

If your existing network infrastructure overlaps with the 100.64.0.0/16 IPv4 subnet, you can specify a different IP address range for internal use by OVN-Kubernetes. You must ensure that the IP address range does not overlap with any other subnet used by your OpenShift Container Platform installation. The IP address range must be larger than the maximum number of nodes that can be added to the cluster. For example, if the clusterNetwork.cidr value is 10.128.0.0/14 and the clusterNetwork.hostPrefix value is /23, then the maximum number of nodes is 2^(23-14)=512.

The default value is 100.64.0.0/16.

Table 3.7. ovnKubernetesConfig.ipv6 object
FieldTypeDescription

internalTransitSwitchSubnet

string

If your existing network infrastructure overlaps with the fd97::/64 IPv6 subnet, you can specify a different IP address range for internal use by OVN-Kubernetes. The subnet for the distributed transit switch that enables east-west traffic. This subnet cannot overlap with any other subnets used by OVN-Kubernetes or on the host itself. It must be large enough to accommodate one IP address per node in your cluster.

The default value is fd97::/64.

internalJoinSubnet

string

If your existing network infrastructure overlaps with the fd98::/64 IPv6 subnet, you can specify a different IP address range for internal use by OVN-Kubernetes. You must ensure that the IP address range does not overlap with any other subnet used by your OpenShift Container Platform installation. The IP address range must be larger than the maximum number of nodes that can be added to the cluster.

The default value is fd98::/64.

Table 3.8. policyAuditConfig object
FieldTypeDescription

rateLimit

integer

The maximum number of messages to generate every second per node. The default value is 20 messages per second.

maxFileSize

integer

The maximum size for the audit log in bytes. The default value is 50000000 or 50 MB.

maxLogFiles

integer

The maximum number of log files that are retained.

destination

string

One of the following additional audit log targets:

libc
The libc syslog() function of the journald process on the host.
udp:<host>:<port>
A syslog server. Replace <host>:<port> with the host and port of the syslog server.
unix:<file>
A Unix Domain Socket file specified by <file>.
null
Do not send the audit logs to any additional target.

syslogFacility

string

The syslog facility, such as kern, as defined by RFC5424. The default value is local0.

Table 3.9. gatewayConfig object
FieldTypeDescription

routingViaHost

boolean

Set this field to true to send egress traffic from pods to the host networking stack. For highly-specialized installations and applications that rely on manually configured routes in the kernel routing table, you might want to route egress traffic to the host networking stack. By default, egress traffic is processed in OVN to exit the cluster and is not affected by specialized routes in the kernel routing table. The default value is false.

This field has an interaction with the Open vSwitch hardware offloading feature. If you set this field to true, you do not receive the performance benefits of the offloading because egress traffic is processed by the host networking stack.

ipForwarding

object

You can control IP forwarding for all traffic on OVN-Kubernetes managed interfaces by using the ipForwarding specification in the Network resource. Specify Restricted to only allow IP forwarding for Kubernetes related traffic. Specify Global to allow forwarding of all IP traffic. For new installations, the default is Restricted. For updates to OpenShift Container Platform 4.14 or later, the default is Global.

ipv4

object

Optional: Specify an object to configure the internal OVN-Kubernetes masquerade address for host to service traffic for IPv4 addresses.

ipv6

object

Optional: Specify an object to configure the internal OVN-Kubernetes masquerade address for host to service traffic for IPv6 addresses.

Table 3.10. gatewayConfig.ipv4 object
FieldTypeDescription

internalMasqueradeSubnet

string

The masquerade IPv4 addresses that are used internally to enable host to service traffic. The host is configured with these IP addresses as well as the shared gateway bridge interface. The default value is 169.254.169.0/29.

Important

For OpenShift Container Platform 4.17 and later versions, clusters use 169.254.0.0/17 as the default masquerade subnet. For upgraded clusters, there is no change to the default masquerade subnet.

Table 3.11. gatewayConfig.ipv6 object
FieldTypeDescription

internalMasqueradeSubnet

string

The masquerade IPv6 addresses that are used internally to enable host to service traffic. The host is configured with these IP addresses as well as the shared gateway bridge interface. The default value is fd69::/125.

Important

For OpenShift Container Platform 4.17 and later versions, clusters use fd69::/112 as the default masquerade subnet. For upgraded clusters, there is no change to the default masquerade subnet.

Table 3.12. ipsecConfig object
FieldTypeDescription

mode

string

Specifies the behavior of the IPsec implementation. Must be one of the following values:

  • Disabled: IPsec is not enabled on cluster nodes.
  • External: IPsec is enabled for network traffic with external hosts.
  • Full: IPsec is enabled for pod traffic and network traffic with external hosts.

Example OVN-Kubernetes configuration with IPSec enabled

defaultNetwork:
  type: OVNKubernetes
  ovnKubernetesConfig:
    mtu: 1400
    genevePort: 6081
      ipsecConfig:
        mode: Full

3.4.5. Configuring hybrid networking with OVN-Kubernetes

You can configure your cluster to use hybrid networking with the OVN-Kubernetes network plugin. This allows a hybrid cluster that supports different node networking configurations.

Note

This configuration is necessary to run both Linux and Windows nodes in the same cluster.

Prerequisites

  • You defined OVNKubernetes for the networking.networkType parameter in the install-config.yaml file. See the installation documentation for configuring OpenShift Container Platform network customizations on your chosen cloud provider for more information.

Procedure

  1. Change to the directory that contains the installation program and create the manifests:

    $ ./openshift-install create manifests --dir <installation_directory>

    where:

    <installation_directory>
    Specifies the name of the directory that contains the install-config.yaml file for your cluster.
  2. Create a stub manifest file for the advanced network configuration that is named cluster-network-03-config.yml in the <installation_directory>/manifests/ directory:

    $ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
    EOF

    where:

    <installation_directory>
    Specifies the directory name that contains the manifests/ directory for your cluster.
  3. Open the cluster-network-03-config.yml file in an editor and configure OVN-Kubernetes with hybrid networking, as in the following example:

    Specify a hybrid networking configuration

    apiVersion: operator.openshift.io/v1
    kind: Network
    metadata:
      name: cluster
    spec:
      defaultNetwork:
        ovnKubernetesConfig:
          hybridOverlayConfig:
            hybridClusterNetwork: 1
            - cidr: 10.132.0.0/14
              hostPrefix: 23
            hybridOverlayVXLANPort: 9898 2

    1
    Specify the CIDR configuration used for nodes on the additional overlay network. The hybridClusterNetwork CIDR must not overlap with the clusterNetwork CIDR.
    2
    Specify a custom VXLAN port for the additional overlay network. This is required for running Windows nodes in a cluster installed on vSphere, and must not be configured for any other cloud provider. The custom port can be any open port excluding the default 4789 port. For more information on this requirement, see the Microsoft documentation on Pod-to-pod connectivity between hosts is broken.
    Note

    Windows Server Long-Term Servicing Channel (LTSC): Windows Server 2019 is not supported on clusters with a custom hybridOverlayVXLANPort value because this Windows server version does not support selecting a custom VXLAN port.

  4. Save the cluster-network-03-config.yml file and quit the text editor.
  5. Optional: Back up the manifests/cluster-network-03-config.yml file. The installation program deletes the manifests/ directory when creating the cluster.
Note

For more information about using Linux and Windows nodes in the same cluster, see Understanding Windows container workloads.

Additional resources

3.4.6. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the following alternatives:

3.4.6.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.

Procedure

  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  2. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.

    This command creates a YAML file for each CredentialsRequest object.

    Sample CredentialsRequest object

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: AzureProviderSpec
        roleBindings:
        - role: Contributor
      ...

  5. Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each CredentialsRequest object.

    Sample CredentialsRequest object with secrets

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: AzureProviderSpec
        roleBindings:
        - role: Contributor
          ...
      secretRef:
        name: <component_secret>
        namespace: <component_namespace>
      ...

    Sample Secret object

    apiVersion: v1
    kind: Secret
    metadata:
      name: <component_secret>
      namespace: <component_namespace>
    data:
      azure_subscription_id: <base64_encoded_azure_subscription_id>
      azure_client_id: <base64_encoded_azure_client_id>
      azure_client_secret: <base64_encoded_azure_client_secret>
      azure_tenant_id: <base64_encoded_azure_tenant_id>
      azure_resource_prefix: <base64_encoded_azure_resource_prefix>
      azure_resourcegroup: <base64_encoded_azure_resourcegroup>
      azure_region: <base64_encoded_azure_region>

Important

Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state.

3.4.6.2. Configuring an Azure cluster to use short-term credentials

To install a cluster that uses Microsoft Entra Workload ID, you must configure the Cloud Credential Operator utility and create the required Azure resources for your cluster.

3.4.6.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

Note

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

  • You have access to an OpenShift Container Platform account with cluster administrator access.
  • You have installed the OpenShift CLI (oc).
  • You have created a global Microsoft Azure account for the ccoctl utility to use with the following permissions:

    Example 3.6. Required Azure permissions

    • Microsoft.Resources/subscriptions/resourceGroups/read
    • Microsoft.Resources/subscriptions/resourceGroups/write
    • Microsoft.Resources/subscriptions/resourceGroups/delete
    • Microsoft.Authorization/roleAssignments/read
    • Microsoft.Authorization/roleAssignments/delete
    • Microsoft.Authorization/roleAssignments/write
    • Microsoft.Authorization/roleDefinitions/read
    • Microsoft.Authorization/roleDefinitions/write
    • Microsoft.Authorization/roleDefinitions/delete
    • Microsoft.Storage/storageAccounts/listkeys/action
    • Microsoft.Storage/storageAccounts/delete
    • Microsoft.Storage/storageAccounts/read
    • Microsoft.Storage/storageAccounts/write
    • Microsoft.Storage/storageAccounts/blobServices/containers/write
    • Microsoft.Storage/storageAccounts/blobServices/containers/delete
    • Microsoft.Storage/storageAccounts/blobServices/containers/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/delete
    • Microsoft.ManagedIdentity/userAssignedIdentities/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/write
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/write
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/delete
    • Microsoft.Storage/register/action
    • Microsoft.ManagedIdentity/register/action

Procedure

  1. Set a variable for the OpenShift Container Platform release image by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Obtain the CCO container image from the OpenShift Container Platform release image by running the following command:

    $ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
    Note

    Ensure that the architecture of the $RELEASE_IMAGE matches the architecture of the environment in which you will use the ccoctl tool.

  3. Extract the ccoctl binary from the CCO container image within the OpenShift Container Platform release image by running the following command:

    $ oc image extract $CCO_IMAGE \
      --file="/usr/bin/ccoctl.<rhel_version>" \1
      -a ~/.pull-secret
    1
    For <rhel_version>, specify the value that corresponds to the version of Red Hat Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by default. The following values are valid:
    • rhel8: Specify this value for hosts that use RHEL 8.
    • rhel9: Specify this value for hosts that use RHEL 9.
  4. Change the permissions to make ccoctl executable by running the following command:

    $ chmod 775 ccoctl.<rhel_version>

Verification

  • To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run the command, for example:

    $ ./ccoctl.rhel9

    Example output

    OpenShift credentials provisioning tool
    
    Usage:
      ccoctl [command]
    
    Available Commands:
      aws          Manage credentials objects for AWS cloud
      azure        Manage credentials objects for Azure
      gcp          Manage credentials objects for Google cloud
      help         Help about any command
      ibmcloud     Manage credentials objects for {ibm-cloud-title}
      nutanix      Manage credentials objects for Nutanix
    
    Flags:
      -h, --help   help for ccoctl
    
    Use "ccoctl [command] --help" for more information about a command.

3.4.6.2.2. Creating Azure resources with the Cloud Credential Operator utility

You can use the ccoctl azure create-all command to automate the creation of Azure resources.

Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.
  • Access to your Microsoft Azure account by using the Azure CLI.

Procedure

  1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.
    Note

    This command might take a few moments to run.

  3. To enable the ccoctl utility to detect your Azure credentials automatically, log in to the Azure CLI by running the following command:

    $ az login
  4. Use the ccoctl tool to process all CredentialsRequest objects by running the following command:

    $ ccoctl azure create-all \
      --name=<azure_infra_name> \1
      --output-dir=<ccoctl_output_dir> \2
      --region=<azure_region> \3
      --subscription-id=<azure_subscription_id> \4
      --credentials-requests-dir=<path_to_credentials_requests_directory> \5
      --dnszone-resource-group-name=<azure_dns_zone_resource_group_name> \6
      --tenant-id=<azure_tenant_id> 7
    1
    Specify the user-defined name for all created Azure resources used for tracking.
    2
    Optional: Specify the directory in which you want the ccoctl utility to create objects. By default, the utility creates objects in the directory in which the commands are run.
    3
    Specify the Azure region in which cloud resources will be created.
    4
    Specify the Azure subscription ID to use.
    5
    Specify the directory containing the files for the component CredentialsRequest objects.
    6
    Specify the name of the resource group containing the cluster’s base domain Azure DNS zone.
    7
    Specify the Azure tenant ID to use.
    Note

    If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

    To see additional optional parameters and explanations of how to use them, run the azure create-all --help command.

Verification

  • To verify that the OpenShift Container Platform secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests directory:

    $ ls <path_to_ccoctl_output_dir>/manifests

    Example output

    azure-ad-pod-identity-webhook-config.yaml
    cluster-authentication-02-config.yaml
    openshift-cloud-controller-manager-azure-cloud-credentials-credentials.yaml
    openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
    openshift-cluster-api-capz-manager-bootstrap-credentials-credentials.yaml
    openshift-cluster-csi-drivers-azure-disk-credentials-credentials.yaml
    openshift-cluster-csi-drivers-azure-file-credentials-credentials.yaml
    openshift-image-registry-installer-cloud-credentials-credentials.yaml
    openshift-ingress-operator-cloud-credentials-credentials.yaml
    openshift-machine-api-azure-cloud-credentials-credentials.yaml

    You can verify that the Microsoft Entra ID service accounts are created by querying Azure. For more information, refer to Azure documentation on listing Entra ID service accounts.

3.4.6.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the correct directories for the installation program.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have configured the Cloud Credential Operator utility (ccoctl).
  • You have created the cloud provider resources that are required for your cluster with the ccoctl utility.

Procedure

  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  2. If you used the ccoctl utility to create a new Azure resource group instead of using an existing resource group, modify the resourceGroupName parameter in the install-config.yaml as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    # ...
    platform:
      azure:
        resourceGroupName: <azure_infra_name> 1
    # ...

    1
    This value must match the user-defined name for Azure resources that was specified with the --name argument of the ccoctl azure create-all command.
  3. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  4. Copy the manifests that the ccoctl utility generated to the manifests directory that the installation program created by running the following command:

    $ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
  5. Copy the tls directory that contains the private key to the installation directory:

    $ cp -a /<path_to_ccoctl_output_dir>/tls .

3.4.7. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have an Azure subscription ID and tenant ID.

Procedure

  • Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.
  • Credential information also outputs to <installation_directory>/.openshift_install.log.
Important

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

Important
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

3.4.8. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

Additional resources

  • See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.

3.4.9. Next steps

3.5. Installing a cluster on Azure in a restricted network

In OpenShift Container Platform version 4.17, you can install a cluster on Microsoft Azure in a restricted network by creating an internal mirror of the installation release content on an existing Azure Virtual Network (VNet).

Important

You can install an OpenShift Container Platform cluster by using mirrored installation release content, but your cluster requires internet access to use the Azure APIs.

3.5.1. Prerequisites

  • You mirrored the images for a disconnected installation to your registry and obtained the imageContentSources data for your version of OpenShift Container Platform.

    Important

    Because the installation media is on the mirror host, you can use that computer to complete all installation steps.

  • You have an existing VNet in Azure. While installing a cluster in a restricted network that uses installer-provisioned infrastructure, you cannot use the installer-provisioned VNet. You must use a user-provisioned VNet that satisfies one of the following requirements:

    • The VNet contains the mirror registry.
    • The VNet has firewall rules or a peering connection to access the mirror registry hosted elsewhere.

3.5.2. About installations in restricted networks

In OpenShift Container Platform 4.17, you can perform an installation that does not require an active connection to the internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.

If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less internet access for an installation on bare metal hardware, Nutanix, or on VMware vSphere.

To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift image registry and contains the installation media. You can create this registry on a mirror host, which can access both the internet and your closed network, or by using other methods that meet your restrictions.

3.5.2.1. Additional limits

Clusters in restricted networks have the following additional limitations and restrictions:

  • The ClusterVersion status includes an Unable to retrieve available updates error.
  • By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.

3.5.2.2. User-defined outbound routing

In OpenShift Container Platform, you can choose your own outbound routing for a cluster to connect to the internet. This allows you to skip the creation of public IP addresses and the public load balancer.

You can configure user-defined routing by modifying parameters in the install-config.yaml file before installing your cluster. A pre-existing VNet is required to use outbound routing when installing a cluster; the installation program is not responsible for configuring this.

When configuring a cluster to use user-defined routing, the installation program does not create the following resources:

  • Outbound rules for access to the internet.
  • Public IPs for the public load balancer.
  • Kubernetes Service object to add the cluster machines to the public load balancer for outbound requests.

You must ensure the following items are available before setting user-defined routing:

  • Egress to the internet is possible to pull container images, unless using an OpenShift image registry mirror.
  • The cluster can access Azure APIs.
  • Various allowlist endpoints are configured. You can reference these endpoints in the Configuring your firewall section.

There are several pre-existing networking setups that are supported for internet access using user-defined routing.

Restricted cluster with Azure Firewall

You can use Azure Firewall to restrict the outbound routing for the Virtual Network (VNet) that is used to install the OpenShift Container Platform cluster. For more information, see providing user-defined routing with Azure Firewall. You can create a OpenShift Container Platform cluster in a restricted network by using VNet with Azure Firewall and configuring the user-defined routing.

Important

If you are using Azure Firewall for restricting internet access, you must set the publish field to Internal in the install-config.yaml file. This is because Azure Firewall does not work properly with Azure public load balancers.

3.5.3. About reusing a VNet for your OpenShift Container Platform cluster

In OpenShift Container Platform 4.17, you can deploy a cluster into an existing Azure Virtual Network (VNet) in Microsoft Azure. If you do, you must also use existing subnets within the VNet and routing rules.

By deploying OpenShift Container Platform into an existing Azure VNet, you might be able to avoid service limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. This is a good option to use if you cannot obtain the infrastructure creation permissions that are required to create the VNet.

3.5.3.1. Requirements for using your VNet

When you deploy a cluster by using an existing VNet, you must perform additional network configuration before you install the cluster. In installer-provisioned infrastructure clusters, the installer usually creates the following components, but it does not create them when you install into an existing VNet:

  • Subnets
  • Route tables
  • VNets
  • Network Security Groups
Note

The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.

If you use a custom VNet, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VNet options like DHCP, so you must do so before you install the cluster.

The cluster must be able to access the resource group that contains the existing VNet and subnets. While all of the resources that the cluster creates are placed in a separate resource group that it creates, some network resources are used from a separate group. Some cluster Operators must be able to access resources in both resource groups. For example, the Machine API controller attaches NICS for the virtual machines that it creates to subnets from the networking resource group.

Your VNet must meet the following characteristics:

  • The VNet’s CIDR block must contain the Networking.MachineCIDR range, which is the IP address pool for cluster machines.
  • The VNet and its subnets must belong to the same resource group, and the subnets must be configured to use Azure-assigned DHCP IP addresses instead of static IP addresses.

You must provide two subnets within your VNet, one for the control plane machines and one for the compute machines. Because Azure distributes machines in different availability zones within the region that you specify, your cluster will have high availability by default.

Note

By default, if you specify availability zones in the install-config.yaml file, the installation program distributes the control plane machines and the compute machines across these availability zones within a region. To ensure high availability for your cluster, select a region with at least three availability zones. If your region contains fewer than three availability zones, the installation program places more than one control plane machine in the available zones.

To ensure that the subnets that you provide are suitable, the installation program confirms the following data:

  • All the specified subnets exist.
  • There are two private subnets, one for the control plane machines and one for the compute machines.
  • The subnet CIDRs belong to the machine CIDR that you specified. Machines are not provisioned in availability zones that you do not provide private subnets for. If required, the installation program creates public load balancers that manage the control plane and worker nodes, and Azure allocates a public IP address to them.
Note

If you destroy a cluster that uses an existing VNet, the VNet is not deleted.

3.5.3.1.1. Network security group requirements

The network security groups for the subnets that host the compute and control plane machines require specific access to ensure that the cluster communication is correct. You must create rules to allow access to the required cluster communication ports.

Important

The network security group rules must be in place before you install the cluster. If you attempt to install a cluster without the required access, the installation program cannot reach the Azure APIs, and installation fails.

Table 3.13. Required ports
PortDescriptionControl planeCompute

80

Allows HTTP traffic

 

x

443

Allows HTTPS traffic

 

x

6443

Allows communication to the control plane machines

x

 

22623

Allows internal communication to the machine config server for provisioning machines

x

 

*

Allows connections to Azure APIs. You must set a Destination Service Tag to AzureCloud. [1]

x

x

*

Denies connections to the internet. You must set a Destination Service Tag to Internet. [1]

x

x

  1. If you are using Azure Firewall to restrict the internet access, then you can configure Azure Firewall to allow the Azure APIs. A network security group rule is not needed. For more information, see "Configuring your firewall" in "Additional resources".
Important

Currently, there is no supported way to block or restrict the machine config server endpoint. The machine config server must be exposed to the network so that newly-provisioned machines, which have no existing configuration or state, are able to fetch their configuration. In this model, the root of trust is the certificate signing requests (CSR) endpoint, which is where the kubelet sends its certificate signing request for approval to join the cluster. Because of this, machine configs should not be used to distribute sensitive information, such as secrets and certificates.

To ensure that the machine config server endpoints, ports 22623 and 22624, are secured in bare metal scenarios, customers must configure proper network policies.

Because cluster components do not modify the user-provided network security groups, which the Kubernetes controllers update, a pseudo-network security group is created for the Kubernetes controller to modify without impacting the rest of the environment.

Table 3.14. Ports used for all-machine to all-machine communications
ProtocolPortDescription

ICMP

N/A

Network reachability tests

TCP

1936

Metrics

9000-9999

Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.

10250-10259

The default ports that Kubernetes reserves

UDP

4789

VXLAN

6081

Geneve

9000-9999

Host level services, including the node exporter on ports 9100-9101.

500

IPsec IKE packets

4500

IPsec NAT-T packets

123

Network Time Protocol (NTP) on UDP port 123

If you configure an external NTP time server, you must open UDP port 123.

TCP/UDP

30000-32767

Kubernetes node port

ESP

N/A

IPsec Encapsulating Security Payload (ESP)

Table 3.15. Ports used for control plane machine to control plane machine communications
ProtocolPortDescription

TCP

2379-2380

etcd server and peer ports

3.5.3.2. Division of permissions

Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resources in your clouds than others. For example, you might be able to create application-specific items, like instances, storage, and load balancers, but not networking-related components such as VNets, subnet, or ingress rules.

The Azure credentials that you use when you create your cluster do not need the networking permissions that are required to make VNets and core networking components within the VNet, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as load balancers, security groups, storage accounts, and nodes.

3.5.3.3. Isolation between clusters

Because the cluster is unable to modify network security groups in an existing subnet, there is no way to isolate clusters from each other on the VNet.

3.5.4. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.

Prerequisites

  • You have the OpenShift Container Platform installation program and the pull secret for your cluster. For a restricted network installation, these files are on your mirror host.
  • You have the imageContentSources values that were generated during mirror registry creation.
  • You have obtained the contents of the certificate for your mirror registry.
  • You have retrieved a Red Hat Enterprise Linux CoreOS (RHCOS) image and uploaded it to an accessible location.
  • You have an Azure subscription ID and tenant ID.
  • If you are installing the cluster using a service principal, you have its application ID and password.
  • If you are installing the cluster using a system-assigned managed identity, you have enabled it on the virtual machine that you will run the installation program from.
  • If you are installing the cluster using a user-assigned managed identity, you have met these prerequisites:

    • You have its client ID.
    • You have assigned it to the virtual machine that you will run the installation program from.

Procedure

  1. Optional: If you have run the installation program on this computer before, and want to use an alternative service principal or managed identity, go to the ~/.azure/ directory and delete the osServicePrincipal.json configuration file.

    Deleting this file prevents the installation program from automatically reusing subscription and authentication values from a previous installation.

  2. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> 1
      1
      For <installation_directory>, specify the directory name to store the files that the installation program creates.

      When specifying the directory:

      • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.
      • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        Note

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select azure as the platform to target.

        If the installation program cannot locate the osServicePrincipal.json configuration file from a previous installation, you are prompted for Azure subscription and authentication values.

      3. Enter the following Azure parameter values for your subscription:

        • azure subscription id: Enter the subscription ID to use for the cluster.
        • azure tenant id: Enter the tenant ID.
      4. Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client id:

        • If you are using a service principal, enter its application ID.
        • If you are using a system-assigned managed identity, leave this value blank.
        • If you are using a user-assigned managed identity, specify its client ID.
      5. Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client secret:

        • If you are using a service principal, enter its password.
        • If you are using a system-assigned managed identity, leave this value blank.
        • If you are using a user-assigned managed identity, leave this value blank.
      6. Select the region to deploy the cluster to.
      7. Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
      8. Enter a descriptive name for your cluster.

        Important

        All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.

      9. Paste the pull secret from Red Hat OpenShift Cluster Manager.
  3. Edit the install-config.yaml file to give the additional information that is required for an installation in a restricted network.

    1. Update the pullSecret value to contain the authentication information for your registry:

      pullSecret: '{"auths":{"<mirror_host_name>:5000": {"auth": "<credentials>","email": "you@example.com"}}}'

      For <mirror_host_name>, specify the registry domain name that you specified in the certificate for your mirror registry, and for <credentials>, specify the base64-encoded user name and password for your mirror registry.

    2. Add the additionalTrustBundle parameter and value.

      additionalTrustBundle: |
        -----BEGIN CERTIFICATE-----
        ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
        -----END CERTIFICATE-----

      The value must be the contents of the certificate file that you used for your mirror registry. The certificate file can be an existing, trusted certificate authority, or the self-signed certificate that you generated for the mirror registry.

    3. Define the network and subnets for the VNet to install the cluster under the platform.azure field:

      networkResourceGroupName: <vnet_resource_group> 1
      virtualNetwork: <vnet> 2
      controlPlaneSubnet: <control_plane_subnet> 3
      computeSubnet: <compute_subnet> 4
      1
      Replace <vnet_resource_group> with the resource group name that contains the existing virtual network (VNet).
      2
      Replace <vnet> with the existing virtual network name.
      3
      Replace <control_plane_subnet> with the existing subnet name to deploy the control plane machines.
      4
      Replace <compute_subnet> with the existing subnet name to deploy compute machines.
    4. Add the image content resources, which resemble the following YAML excerpt:

      imageContentSources:
      - mirrors:
        - <mirror_host_name>:5000/<repo_name>/release
        source: quay.io/openshift-release-dev/ocp-release
      - mirrors:
        - <mirror_host_name>:5000/<repo_name>/release
        source: registry.redhat.io/ocp/release

      For these values, use the imageContentSources that you recorded during mirror registry creation.

    5. Optional: Set the publishing strategy to Internal:

      publish: Internal

      By setting this option, you create an internal Ingress Controller and a private load balancer.

      Important

      Azure Firewall does not work seamlessly with Azure Public Load balancers. Thus, when using Azure Firewall for restricting internet access, the publish field in install-config.yaml should be set to Internal.

  4. Make any other modifications to the install-config.yaml file that you require.

    For more information about the parameters, see "Installation configuration parameters".

  5. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

If previously not detected, the installation program creates an osServicePrincipal.json configuration file and stores this file in the ~/.azure/ directory on your computer. This ensures that the installation program can load the profile when it is creating an OpenShift Container Platform cluster on the target platform.

3.5.4.1. Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 3.16. Minimum resource requirements
MachineOperating SystemvCPU [1]Virtual RAMStorageInput/Output Per Second (IOPS)[2]

Bootstrap

RHCOS

4

16 GB

100 GB

300

Control plane

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS, RHEL 8.6 and later [3]

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
  2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
  3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
Note

As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA
  • ARM64 architecture requires ARMv8.0-A ISA
  • IBM Power architecture requires Power 9 ISA
  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

Important

You are required to use Azure virtual machines that have the premiumIO parameter set to true.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

3.5.4.2. Tested instance types for Azure

The following Microsoft Azure instance types have been tested with OpenShift Container Platform.

Example 3.7. Machine types based on 64-bit x86 architecture

  • standardBasv2Family
  • standardBSFamily
  • standardBsv2Family
  • standardDADSv5Family
  • standardDASv4Family
  • standardDASv5Family
  • standardDCACCV5Family
  • standardDCADCCV5Family
  • standardDCADSv5Family
  • standardDCASv5Family
  • standardDCSv3Family
  • standardDCSv2Family
  • standardDDCSv3Family
  • standardDDSv4Family
  • standardDDSv5Family
  • standardDLDSv5Family
  • standardDLSv5Family
  • standardDSFamily
  • standardDSv2Family
  • standardDSv2PromoFamily
  • standardDSv3Family
  • standardDSv4Family
  • standardDSv5Family
  • standardEADSv5Family
  • standardEASv4Family
  • standardEASv5Family
  • standardEBDSv5Family
  • standardEBSv5Family
  • standardECACCV5Family
  • standardECADCCV5Family
  • standardECADSv5Family
  • standardECASv5Family
  • standardEDSv4Family
  • standardEDSv5Family
  • standardEIADSv5Family
  • standardEIASv4Family
  • standardEIASv5Family
  • standardEIBDSv5Family
  • standardEIBSv5Family
  • standardEIDSv5Family
  • standardEISv3Family
  • standardEISv5Family
  • standardESv3Family
  • standardESv4Family
  • standardESv5Family
  • standardFXMDVSFamily
  • standardFSFamily
  • standardFSv2Family
  • standardGSFamily
  • standardHBrsv2Family
  • standardHBSFamily
  • standardHBv4Family
  • standardHCSFamily
  • standardHXFamily
  • standardLASv3Family
  • standardLSFamily
  • standardLSv2Family
  • standardLSv3Family
  • standardMDSHighMemoryv3Family
  • standardMDSMediumMemoryv2Family
  • standardMDSMediumMemoryv3Family
  • standardMIDSHighMemoryv3Family
  • standardMIDSMediumMemoryv2Family
  • standardMISHighMemoryv3Family
  • standardMISMediumMemoryv2Family
  • standardMSFamily
  • standardMSHighMemoryv3Family
  • standardMSMediumMemoryv2Family
  • standardMSMediumMemoryv3Family
  • StandardNCADSA100v4Family
  • Standard NCASv3_T4 Family
  • standardNCSv3Family
  • standardNDSv2Family
  • StandardNGADSV620v1Family
  • standardNPSFamily
  • StandardNVADSA10v5Family
  • standardNVSv3Family
  • standardXEISv4Family

3.5.4.3. Tested instance types for Azure on 64-bit ARM infrastructures

The following Microsoft Azure ARM64 instance types have been tested with OpenShift Container Platform.

Example 3.8. Machine types based on 64-bit ARM architecture

  • standardBpsv2Family
  • standardDPSv5Family
  • standardDPDSv5Family
  • standardDPLDSv5Family
  • standardDPLSv5Family
  • standardEPSv5Family
  • standardEPDSv5Family

3.5.4.4. Enabling trusted launch for Azure VMs

You can enable two trusted launch features when installing your cluster on Azure: secure boot and virtualized Trusted Platform Modules.

For more information about the sizes of virtual machines that support the trusted launch features, see Virtual machine sizes.

Important

Trusted launch is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Edit the install-config.yaml file before deploying your cluster:

    • Enable trusted launch only on control plane by adding the following stanza:

      controlPlane:
        platform:
          azure:
            settings:
              securityType: TrustedLaunch
              trustedLaunch:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
    • Enable trusted launch only on compute node by adding the following stanza:

      compute:
        platform:
          azure:
            settings:
              securityType: TrustedLaunch
              trustedLaunch:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
    • Enable trusted launch on all nodes by adding the following stanza:

      platform:
        azure:
          settings:
            securityType: TrustedLaunch
            trustedLaunch:
              uefiSettings:
                secureBoot: Enabled
                virtualizedTrustedPlatformModule: Enabled

3.5.4.5. Enabling confidential VMs

You can enable confidential VMs when installing your cluster. You can enable confidential VMs for compute nodes, control plane nodes, or all nodes.

Important

Using confidential VMs is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

You can use confidential VMs with the following VM sizes:

  • DCasv5-series
  • DCadsv5-series
  • ECasv5-series
  • ECadsv5-series
Important

Confidential VMs are currently not supported on 64-bit ARM architectures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Edit the install-config.yaml file before deploying your cluster:

    • Enable confidential VMs only on control plane by adding the following stanza:

      controlPlane:
        platform:
          azure:
            settings:
              securityType: ConfidentialVM
              confidentialVM:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
            osDisk:
              securityProfile:
                securityEncryptionType: VMGuestStateOnly
    • Enable confidential VMs only on compute nodes by adding the following stanza:

      compute:
        platform:
          azure:
            settings:
              securityType: ConfidentialVM
              confidentialVM:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
            osDisk:
              securityProfile:
                securityEncryptionType: VMGuestStateOnly
    • Enable confidential VMs on all nodes by adding the following stanza:

      platform:
        azure:
          settings:
            securityType: ConfidentialVM
            confidentialVM:
              uefiSettings:
                secureBoot: Enabled
                virtualizedTrustedPlatformModule: Enabled
          osDisk:
            securityProfile:
              securityEncryptionType: VMGuestStateOnly

3.5.4.6. Sample customized install-config.yaml file for Azure

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

Important

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com 1
controlPlane: 2
  hyperthreading: Enabled 3 4
  name: master
  platform:
    azure:
      encryptionAtHost: true
      ultraSSDCapability: Enabled
      osDisk:
        diskSizeGB: 1024 5
        diskType: Premium_LRS
        diskEncryptionSet:
          resourceGroup: disk_encryption_set_resource_group
          name: disk_encryption_set_name
          subscriptionId: secondary_subscription_id
      osImage:
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      type: Standard_D8s_v3
  replicas: 3
compute: 6
- hyperthreading: Enabled 7 8
  name: worker
  platform:
    azure:
      ultraSSDCapability: Enabled
      type: Standard_D2s_v3
      encryptionAtHost: true
      osDisk:
        diskSizeGB: 512 9
        diskType: Standard_LRS
        diskEncryptionSet:
          resourceGroup: disk_encryption_set_resource_group
          name: disk_encryption_set_name
          subscriptionId: secondary_subscription_id
      osImage:
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      zones: 10
      - "1"
      - "2"
      - "3"
  replicas: 5
metadata:
  name: test-cluster 11
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OVNKubernetes 12
  serviceNetwork:
  - 172.30.0.0/16
platform:
  azure:
    defaultMachinePlatform:
      osImage: 13
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      ultraSSDCapability: Enabled
    baseDomainResourceGroupName: resource_group 14
    region: centralus 15
    resourceGroupName: existing_resource_group 16
    networkResourceGroupName: vnet_resource_group 17
    virtualNetwork: vnet 18
    controlPlaneSubnet: control_plane_subnet 19
    computeSubnet: compute_subnet 20
    outboundType: UserDefinedRouting 21
    cloudName: AzurePublicCloud
pullSecret: '{"auths": ...}' 22
fips: false 23
sshKey: ssh-ed25519 AAAA... 24
additionalTrustBundle: | 25
    -----BEGIN CERTIFICATE-----
    <MY_TRUSTED_CA_CERT>
    -----END CERTIFICATE-----
imageContentSources: 26
- mirrors:
  - <local_registry>/<local_repository_name>/release
  source: quay.io/openshift-release-dev/ocp-release
- mirrors:
  - <local_registry>/<local_repository_name>/release
  source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
publish: Internal 27
1 11 15 22
Required. The installation program prompts you for this value.
2 6
If you do not provide these parameters and values, the installation program provides the default value.
3 7
The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
4 8
Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as Standard_D8s_v3, for your machines if you disable simultaneous multithreading.

5 9
You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes is 1024 GB.
10
Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
12
The cluster network plugin to install. The default value OVNKubernetes is the only supported value.
13
Optional: A custom Red Hat Enterprise Linux CoreOS (RHCOS) image that should be used to boot control plane and compute machines. The publisher, offer, sku, and version parameters under platform.azure.defaultMachinePlatform.osImage apply to both control plane and compute machines. If the parameters under controlPlane.platform.azure.osImage or compute.platform.azure.osImage are set, they override the platform.azure.defaultMachinePlatform.osImage parameters.
14
Specify the name of the resource group that contains the DNS zone for your base domain.
16
Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
17
If you use an existing VNet, specify the name of the resource group that contains it.
18
If you use an existing VNet, specify its name.
19
If you use an existing VNet, specify the name of the subnet to host the control plane machines.
20
If you use an existing VNet, specify the name of the subnet to host the compute machines.
21
When using Azure Firewall to restrict Internet access, you must configure outbound routing to send traffic through the Azure Firewall. Configuring user-defined routing prevents exposing external endpoints in your cluster.
23
Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
Important

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Switching RHEL to FIPS mode.

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

24
You can optionally provide the sshKey value that you use to access the machines in your cluster.
Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

25
Provide the contents of the certificate file that you used for your mirror registry.
26
Provide the imageContentSources section from the output of the command to mirror the repository.
27
How to publish the user-facing endpoints of your cluster. When using Azure Firewall to restrict Internet access, set publish to Internal to deploy a private cluster. The user-facing endpoints then cannot be accessed from the internet. The default value is External.

3.5.4.7. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.
  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    Note

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4
    If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5
    Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.
    Note

    The installation program does not support the proxy readinessEndpoints field.

    Note

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

3.5.5. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the following alternatives:

3.5.5.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.

Procedure

  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  2. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.

    This command creates a YAML file for each CredentialsRequest object.

    Sample CredentialsRequest object

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: AzureProviderSpec
        roleBindings:
        - role: Contributor
      ...

  5. Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each CredentialsRequest object.

    Sample CredentialsRequest object with secrets

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: AzureProviderSpec
        roleBindings:
        - role: Contributor
          ...
      secretRef:
        name: <component_secret>
        namespace: <component_namespace>
      ...

    Sample Secret object

    apiVersion: v1
    kind: Secret
    metadata:
      name: <component_secret>
      namespace: <component_namespace>
    data:
      azure_subscription_id: <base64_encoded_azure_subscription_id>
      azure_client_id: <base64_encoded_azure_client_id>
      azure_client_secret: <base64_encoded_azure_client_secret>
      azure_tenant_id: <base64_encoded_azure_tenant_id>
      azure_resource_prefix: <base64_encoded_azure_resource_prefix>
      azure_resourcegroup: <base64_encoded_azure_resourcegroup>
      azure_region: <base64_encoded_azure_region>

Important

Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state.

3.5.5.2. Configuring an Azure cluster to use short-term credentials

To install a cluster that uses Microsoft Entra Workload ID, you must configure the Cloud Credential Operator utility and create the required Azure resources for your cluster.

3.5.5.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

Note

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

  • You have access to an OpenShift Container Platform account with cluster administrator access.
  • You have installed the OpenShift CLI (oc).
  • You have created a global Microsoft Azure account for the ccoctl utility to use with the following permissions:

    Example 3.9. Required Azure permissions

    • Microsoft.Resources/subscriptions/resourceGroups/read
    • Microsoft.Resources/subscriptions/resourceGroups/write
    • Microsoft.Resources/subscriptions/resourceGroups/delete
    • Microsoft.Authorization/roleAssignments/read
    • Microsoft.Authorization/roleAssignments/delete
    • Microsoft.Authorization/roleAssignments/write
    • Microsoft.Authorization/roleDefinitions/read
    • Microsoft.Authorization/roleDefinitions/write
    • Microsoft.Authorization/roleDefinitions/delete
    • Microsoft.Storage/storageAccounts/listkeys/action
    • Microsoft.Storage/storageAccounts/delete
    • Microsoft.Storage/storageAccounts/read
    • Microsoft.Storage/storageAccounts/write
    • Microsoft.Storage/storageAccounts/blobServices/containers/write
    • Microsoft.Storage/storageAccounts/blobServices/containers/delete
    • Microsoft.Storage/storageAccounts/blobServices/containers/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/delete
    • Microsoft.ManagedIdentity/userAssignedIdentities/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/write
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/write
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/delete
    • Microsoft.Storage/register/action
    • Microsoft.ManagedIdentity/register/action

Procedure

  1. Set a variable for the OpenShift Container Platform release image by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Obtain the CCO container image from the OpenShift Container Platform release image by running the following command:

    $ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
    Note

    Ensure that the architecture of the $RELEASE_IMAGE matches the architecture of the environment in which you will use the ccoctl tool.

  3. Extract the ccoctl binary from the CCO container image within the OpenShift Container Platform release image by running the following command:

    $ oc image extract $CCO_IMAGE \
      --file="/usr/bin/ccoctl.<rhel_version>" \1
      -a ~/.pull-secret
    1
    For <rhel_version>, specify the value that corresponds to the version of Red Hat Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by default. The following values are valid:
    • rhel8: Specify this value for hosts that use RHEL 8.
    • rhel9: Specify this value for hosts that use RHEL 9.
  4. Change the permissions to make ccoctl executable by running the following command:

    $ chmod 775 ccoctl.<rhel_version>

Verification

  • To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run the command, for example:

    $ ./ccoctl.rhel9

    Example output

    OpenShift credentials provisioning tool
    
    Usage:
      ccoctl [command]
    
    Available Commands:
      aws          Manage credentials objects for AWS cloud
      azure        Manage credentials objects for Azure
      gcp          Manage credentials objects for Google cloud
      help         Help about any command
      ibmcloud     Manage credentials objects for {ibm-cloud-title}
      nutanix      Manage credentials objects for Nutanix
    
    Flags:
      -h, --help   help for ccoctl
    
    Use "ccoctl [command] --help" for more information about a command.

3.5.5.2.2. Creating Azure resources with the Cloud Credential Operator utility

You can use the ccoctl azure create-all command to automate the creation of Azure resources.

Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.
  • Access to your Microsoft Azure account by using the Azure CLI.

Procedure

  1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.
    Note

    This command might take a few moments to run.

  3. To enable the ccoctl utility to detect your Azure credentials automatically, log in to the Azure CLI by running the following command:

    $ az login
  4. Use the ccoctl tool to process all CredentialsRequest objects by running the following command:

    $ ccoctl azure create-all \
      --name=<azure_infra_name> \1
      --output-dir=<ccoctl_output_dir> \2
      --region=<azure_region> \3
      --subscription-id=<azure_subscription_id> \4
      --credentials-requests-dir=<path_to_credentials_requests_directory> \5
      --dnszone-resource-group-name=<azure_dns_zone_resource_group_name> \6
      --tenant-id=<azure_tenant_id> 7
    1
    Specify the user-defined name for all created Azure resources used for tracking.
    2
    Optional: Specify the directory in which you want the ccoctl utility to create objects. By default, the utility creates objects in the directory in which the commands are run.
    3
    Specify the Azure region in which cloud resources will be created.
    4
    Specify the Azure subscription ID to use.
    5
    Specify the directory containing the files for the component CredentialsRequest objects.
    6
    Specify the name of the resource group containing the cluster’s base domain Azure DNS zone.
    7
    Specify the Azure tenant ID to use.
    Note

    If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

    To see additional optional parameters and explanations of how to use them, run the azure create-all --help command.

Verification

  • To verify that the OpenShift Container Platform secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests directory:

    $ ls <path_to_ccoctl_output_dir>/manifests

    Example output

    azure-ad-pod-identity-webhook-config.yaml
    cluster-authentication-02-config.yaml
    openshift-cloud-controller-manager-azure-cloud-credentials-credentials.yaml
    openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
    openshift-cluster-api-capz-manager-bootstrap-credentials-credentials.yaml
    openshift-cluster-csi-drivers-azure-disk-credentials-credentials.yaml
    openshift-cluster-csi-drivers-azure-file-credentials-credentials.yaml
    openshift-image-registry-installer-cloud-credentials-credentials.yaml
    openshift-ingress-operator-cloud-credentials-credentials.yaml
    openshift-machine-api-azure-cloud-credentials-credentials.yaml

    You can verify that the Microsoft Entra ID service accounts are created by querying Azure. For more information, refer to Azure documentation on listing Entra ID service accounts.

3.5.5.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the correct directories for the installation program.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have configured the Cloud Credential Operator utility (ccoctl).
  • You have created the cloud provider resources that are required for your cluster with the ccoctl utility.

Procedure

  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  2. If you used the ccoctl utility to create a new Azure resource group instead of using an existing resource group, modify the resourceGroupName parameter in the install-config.yaml as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    # ...
    platform:
      azure:
        resourceGroupName: <azure_infra_name> 1
    # ...

    1
    This value must match the user-defined name for Azure resources that was specified with the --name argument of the ccoctl azure create-all command.
  3. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  4. Copy the manifests that the ccoctl utility generated to the manifests directory that the installation program created by running the following command:

    $ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
  5. Copy the tls directory that contains the private key to the installation directory:

    $ cp -a /<path_to_ccoctl_output_dir>/tls .

3.5.6. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have an Azure subscription ID and tenant ID.

Procedure

  • Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.
  • Credential information also outputs to <installation_directory>/.openshift_install.log.
Important

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

Important
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

3.5.7. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

3.5.8. Next steps

3.6. Installing a cluster on Azure into an existing VNet

In OpenShift Container Platform version 4.17, you can install a cluster into an existing Azure Virtual Network (VNet) on Microsoft Azure. The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.

3.6.1. About reusing a VNet for your OpenShift Container Platform cluster

In OpenShift Container Platform 4.17, you can deploy a cluster into an existing Azure Virtual Network (VNet) in Microsoft Azure. If you do, you must also use existing subnets within the VNet and routing rules.

By deploying OpenShift Container Platform into an existing Azure VNet, you might be able to avoid service limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. This is a good option to use if you cannot obtain the infrastructure creation permissions that are required to create the VNet.

3.6.1.1. Requirements for using your VNet

When you deploy a cluster by using an existing VNet, you must perform additional network configuration before you install the cluster. In installer-provisioned infrastructure clusters, the installer usually creates the following components, but it does not create them when you install into an existing VNet:

  • Subnets
  • Route tables
  • VNets
  • Network Security Groups
Note

The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.

If you use a custom VNet, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VNet options like DHCP, so you must do so before you install the cluster.

The cluster must be able to access the resource group that contains the existing VNet and subnets. While all of the resources that the cluster creates are placed in a separate resource group that it creates, some network resources are used from a separate group. Some cluster Operators must be able to access resources in both resource groups. For example, the Machine API controller attaches NICS for the virtual machines that it creates to subnets from the networking resource group.

Your VNet must meet the following characteristics:

  • The VNet’s CIDR block must contain the Networking.MachineCIDR range, which is the IP address pool for cluster machines.
  • The VNet and its subnets must belong to the same resource group, and the subnets must be configured to use Azure-assigned DHCP IP addresses instead of static IP addresses.

You must provide two subnets within your VNet, one for the control plane machines and one for the compute machines. Because Azure distributes machines in different availability zones within the region that you specify, your cluster will have high availability by default.

Note

By default, if you specify availability zones in the install-config.yaml file, the installation program distributes the control plane machines and the compute machines across these availability zones within a region. To ensure high availability for your cluster, select a region with at least three availability zones. If your region contains fewer than three availability zones, the installation program places more than one control plane machine in the available zones.

To ensure that the subnets that you provide are suitable, the installation program confirms the following data:

  • All the specified subnets exist.
  • There are two private subnets, one for the control plane machines and one for the compute machines.
  • The subnet CIDRs belong to the machine CIDR that you specified. Machines are not provisioned in availability zones that you do not provide private subnets for. If required, the installation program creates public load balancers that manage the control plane and worker nodes, and Azure allocates a public IP address to them.
Note

If you destroy a cluster that uses an existing VNet, the VNet is not deleted.

3.6.1.1.1. Network security group requirements

The network security groups for the subnets that host the compute and control plane machines require specific access to ensure that the cluster communication is correct. You must create rules to allow access to the required cluster communication ports.

Important

The network security group rules must be in place before you install the cluster. If you attempt to install a cluster without the required access, the installation program cannot reach the Azure APIs, and installation fails.

Table 3.17. Required ports
PortDescriptionControl planeCompute

80

Allows HTTP traffic

 

x

443

Allows HTTPS traffic

 

x

6443

Allows communication to the control plane machines

x

 

22623

Allows internal communication to the machine config server for provisioning machines

x

 
  1. If you are using Azure Firewall to restrict the internet access, then you can configure Azure Firewall to allow the Azure APIs. A network security group rule is not needed. For more information, see "Configuring your firewall" in "Additional resources".
Important

Currently, there is no supported way to block or restrict the machine config server endpoint. The machine config server must be exposed to the network so that newly-provisioned machines, which have no existing configuration or state, are able to fetch their configuration. In this model, the root of trust is the certificate signing requests (CSR) endpoint, which is where the kubelet sends its certificate signing request for approval to join the cluster. Because of this, machine configs should not be used to distribute sensitive information, such as secrets and certificates.

To ensure that the machine config server endpoints, ports 22623 and 22624, are secured in bare metal scenarios, customers must configure proper network policies.

Because cluster components do not modify the user-provided network security groups, which the Kubernetes controllers update, a pseudo-network security group is created for the Kubernetes controller to modify without impacting the rest of the environment.

Table 3.18. Ports used for all-machine to all-machine communications
ProtocolPortDescription

ICMP

N/A

Network reachability tests

TCP

1936

Metrics

9000-9999

Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.

10250-10259

The default ports that Kubernetes reserves

UDP

4789

VXLAN

6081

Geneve

9000-9999

Host level services, including the node exporter on ports 9100-9101.

500

IPsec IKE packets

4500

IPsec NAT-T packets

123

Network Time Protocol (NTP) on UDP port 123

If you configure an external NTP time server, you must open UDP port 123.

TCP/UDP

30000-32767

Kubernetes node port

ESP

N/A

IPsec Encapsulating Security Payload (ESP)

Table 3.19. Ports used for control plane machine to control plane machine communications
ProtocolPortDescription

TCP

2379-2380

etcd server and peer ports

3.6.1.2. Division of permissions

Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resources in your clouds than others. For example, you might be able to create application-specific items, like instances, storage, and load balancers, but not networking-related components such as VNets, subnet, or ingress rules.

The Azure credentials that you use when you create your cluster do not need the networking permissions that are required to make VNets and core networking components within the VNet, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as load balancers, security groups, storage accounts, and nodes.

3.6.1.3. Isolation between clusters

Because the cluster is unable to modify network security groups in an existing subnet, there is no way to isolate clusters from each other on the VNet.

3.6.2. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.

Prerequisites

  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have an Azure subscription ID and tenant ID.
  • If you are installing the cluster using a service principal, you have its application ID and password.
  • If you are installing the cluster using a system-assigned managed identity, you have enabled it on the virtual machine that you will run the installation program from.
  • If you are installing the cluster using a user-assigned managed identity, you have met these prerequisites:

    • You have its client ID.
    • You have assigned it to the virtual machine that you will run the installation program from.

Procedure

  1. Optional: If you have run the installation program on this computer before, and want to use an alternative service principal or managed identity, go to the ~/.azure/ directory and delete the osServicePrincipal.json configuration file.

    Deleting this file prevents the installation program from automatically reusing subscription and authentication values from a previous installation.

  2. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> 1
      1
      For <installation_directory>, specify the directory name to store the files that the installation program creates.

      When specifying the directory:

      • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.
      • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        Note

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select azure as the platform to target.

        If the installation program cannot locate the osServicePrincipal.json configuration file from a previous installation, you are prompted for Azure subscription and authentication values.

      3. Enter the following Azure parameter values for your subscription:

        • azure subscription id: Enter the subscription ID to use for the cluster.
        • azure tenant id: Enter the tenant ID.
      4. Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client id:

        • If you are using a service principal, enter its application ID.
        • If you are using a system-assigned managed identity, leave this value blank.
        • If you are using a user-assigned managed identity, specify its client ID.
      5. Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client secret:

        • If you are using a service principal, enter its password.
        • If you are using a system-assigned managed identity, leave this value blank.
        • If you are using a user-assigned managed identity, leave this value blank.
      6. Select the region to deploy the cluster to.
      7. Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
      8. Enter a descriptive name for your cluster.

        Important

        All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.

  3. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.
  4. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

If previously not detected, the installation program creates an osServicePrincipal.json configuration file and stores this file in the ~/.azure/ directory on your computer. This ensures that the installation program can load the profile when it is creating an OpenShift Container Platform cluster on the target platform.

3.6.2.1. Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 3.20. Minimum resource requirements
MachineOperating SystemvCPU [1]Virtual RAMStorageInput/Output Per Second (IOPS)[2]

Bootstrap

RHCOS

4

16 GB

100 GB

300

Control plane

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS, RHEL 8.6 and later [3]

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
  2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
  3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
Note

As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA
  • ARM64 architecture requires ARMv8.0-A ISA
  • IBM Power architecture requires Power 9 ISA
  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

Important

You are required to use Azure virtual machines that have the premiumIO parameter set to true.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

Additional resources

3.6.2.2. Tested instance types for Azure

The following Microsoft Azure instance types have been tested with OpenShift Container Platform.

Example 3.10. Machine types based on 64-bit x86 architecture

  • standardBasv2Family
  • standardBSFamily
  • standardBsv2Family
  • standardDADSv5Family
  • standardDASv4Family
  • standardDASv5Family
  • standardDCACCV5Family
  • standardDCADCCV5Family
  • standardDCADSv5Family
  • standardDCASv5Family
  • standardDCSv3Family
  • standardDCSv2Family
  • standardDDCSv3Family
  • standardDDSv4Family
  • standardDDSv5Family
  • standardDLDSv5Family
  • standardDLSv5Family
  • standardDSFamily
  • standardDSv2Family
  • standardDSv2PromoFamily
  • standardDSv3Family
  • standardDSv4Family
  • standardDSv5Family
  • standardEADSv5Family
  • standardEASv4Family
  • standardEASv5Family
  • standardEBDSv5Family
  • standardEBSv5Family
  • standardECACCV5Family
  • standardECADCCV5Family
  • standardECADSv5Family
  • standardECASv5Family
  • standardEDSv4Family
  • standardEDSv5Family
  • standardEIADSv5Family
  • standardEIASv4Family
  • standardEIASv5Family
  • standardEIBDSv5Family
  • standardEIBSv5Family
  • standardEIDSv5Family
  • standardEISv3Family
  • standardEISv5Family
  • standardESv3Family
  • standardESv4Family
  • standardESv5Family
  • standardFXMDVSFamily
  • standardFSFamily
  • standardFSv2Family
  • standardGSFamily
  • standardHBrsv2Family
  • standardHBSFamily
  • standardHBv4Family
  • standardHCSFamily
  • standardHXFamily
  • standardLASv3Family
  • standardLSFamily
  • standardLSv2Family
  • standardLSv3Family
  • standardMDSHighMemoryv3Family
  • standardMDSMediumMemoryv2Family
  • standardMDSMediumMemoryv3Family
  • standardMIDSHighMemoryv3Family
  • standardMIDSMediumMemoryv2Family
  • standardMISHighMemoryv3Family
  • standardMISMediumMemoryv2Family
  • standardMSFamily
  • standardMSHighMemoryv3Family
  • standardMSMediumMemoryv2Family
  • standardMSMediumMemoryv3Family
  • StandardNCADSA100v4Family
  • Standard NCASv3_T4 Family
  • standardNCSv3Family
  • standardNDSv2Family
  • StandardNGADSV620v1Family
  • standardNPSFamily
  • StandardNVADSA10v5Family
  • standardNVSv3Family
  • standardXEISv4Family

3.6.2.3. Tested instance types for Azure on 64-bit ARM infrastructures

The following Microsoft Azure ARM64 instance types have been tested with OpenShift Container Platform.

Example 3.11. Machine types based on 64-bit ARM architecture

  • standardBpsv2Family
  • standardDPSv5Family
  • standardDPDSv5Family
  • standardDPLDSv5Family
  • standardDPLSv5Family
  • standardEPSv5Family
  • standardEPDSv5Family

3.6.2.4. Enabling trusted launch for Azure VMs

You can enable two trusted launch features when installing your cluster on Azure: secure boot and virtualized Trusted Platform Modules.

For more information about the sizes of virtual machines that support the trusted launch features, see Virtual machine sizes.

Important

Trusted launch is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Edit the install-config.yaml file before deploying your cluster:

    • Enable trusted launch only on control plane by adding the following stanza:

      controlPlane:
        platform:
          azure:
            settings:
              securityType: TrustedLaunch
              trustedLaunch:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
    • Enable trusted launch only on compute node by adding the following stanza:

      compute:
        platform:
          azure:
            settings:
              securityType: TrustedLaunch
              trustedLaunch:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
    • Enable trusted launch on all nodes by adding the following stanza:

      platform:
        azure:
          settings:
            securityType: TrustedLaunch
            trustedLaunch:
              uefiSettings:
                secureBoot: Enabled
                virtualizedTrustedPlatformModule: Enabled

3.6.2.5. Enabling confidential VMs

You can enable confidential VMs when installing your cluster. You can enable confidential VMs for compute nodes, control plane nodes, or all nodes.

Important

Using confidential VMs is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

You can use confidential VMs with the following VM sizes:

  • DCasv5-series
  • DCadsv5-series
  • ECasv5-series
  • ECadsv5-series
Important

Confidential VMs are currently not supported on 64-bit ARM architectures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Edit the install-config.yaml file before deploying your cluster:

    • Enable confidential VMs only on control plane by adding the following stanza:

      controlPlane:
        platform:
          azure:
            settings:
              securityType: ConfidentialVM
              confidentialVM:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
            osDisk:
              securityProfile:
                securityEncryptionType: VMGuestStateOnly
    • Enable confidential VMs only on compute nodes by adding the following stanza:

      compute:
        platform:
          azure:
            settings:
              securityType: ConfidentialVM
              confidentialVM:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
            osDisk:
              securityProfile:
                securityEncryptionType: VMGuestStateOnly
    • Enable confidential VMs on all nodes by adding the following stanza:

      platform:
        azure:
          settings:
            securityType: ConfidentialVM
            confidentialVM:
              uefiSettings:
                secureBoot: Enabled
                virtualizedTrustedPlatformModule: Enabled
          osDisk:
            securityProfile:
              securityEncryptionType: VMGuestStateOnly

3.6.2.6. Sample customized install-config.yaml file for Azure

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

Important

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com 1
controlPlane: 2
  hyperthreading: Enabled 3 4
  name: master
  platform:
    azure:
      encryptionAtHost: true
      ultraSSDCapability: Enabled
      osDisk:
        diskSizeGB: 1024 5
        diskType: Premium_LRS
        diskEncryptionSet:
          resourceGroup: disk_encryption_set_resource_group
          name: disk_encryption_set_name
          subscriptionId: secondary_subscription_id
      osImage:
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      type: Standard_D8s_v3
  replicas: 3
compute: 6
- hyperthreading: Enabled 7 8
  name: worker
  platform:
    azure:
      ultraSSDCapability: Enabled
      type: Standard_D2s_v3
      encryptionAtHost: true
      osDisk:
        diskSizeGB: 512 9
        diskType: Standard_LRS
        diskEncryptionSet:
          resourceGroup: disk_encryption_set_resource_group
          name: disk_encryption_set_name
          subscriptionId: secondary_subscription_id
      osImage:
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      zones: 10
      - "1"
      - "2"
      - "3"
  replicas: 5
metadata:
  name: test-cluster 11
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OVNKubernetes 12
  serviceNetwork:
  - 172.30.0.0/16
platform:
  azure:
    defaultMachinePlatform:
      osImage: 13
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      ultraSSDCapability: Enabled
    baseDomainResourceGroupName: resource_group 14
    region: centralus 15
    resourceGroupName: existing_resource_group 16
    networkResourceGroupName: vnet_resource_group 17
    virtualNetwork: vnet 18
    controlPlaneSubnet: control_plane_subnet 19
    computeSubnet: compute_subnet 20
    outboundType: Loadbalancer
    cloudName: AzurePublicCloud
pullSecret: '{"auths": ...}' 21
fips: false 22
sshKey: ssh-ed25519 AAAA... 23
1 11 15 21
Required. The installation program prompts you for this value.
2 6
If you do not provide these parameters and values, the installation program provides the default value.
3 7
The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
4 8
Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as Standard_D8s_v3, for your machines if you disable simultaneous multithreading.

5 9
You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes is 1024 GB.
10
Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
12
The cluster network plugin to install. The default value OVNKubernetes is the only supported value.
13
Optional: A custom Red Hat Enterprise Linux CoreOS (RHCOS) image that should be used to boot control plane and compute machines. The publisher, offer, sku, and version parameters under platform.azure.defaultMachinePlatform.osImage apply to both control plane and compute machines. If the parameters under controlPlane.platform.azure.osImage or compute.platform.azure.osImage are set, they override the platform.azure.defaultMachinePlatform.osImage parameters.
14
Specify the name of the resource group that contains the DNS zone for your base domain.
16
Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
17
If you use an existing VNet, specify the name of the resource group that contains it.
18
If you use an existing VNet, specify its name.
19
If you use an existing VNet, specify the name of the subnet to host the control plane machines.
20
If you use an existing VNet, specify the name of the subnet to host the compute machines.
22
Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
Important

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Switching RHEL to FIPS mode.

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

23
You can optionally provide the sshKey value that you use to access the machines in your cluster.
Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

3.6.2.7. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.
  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    Note

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4
    If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5
    Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.
    Note

    The installation program does not support the proxy readinessEndpoints field.

    Note

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

Additional resources

3.6.3. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the following alternatives:

3.6.3.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.

Procedure

  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  2. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.

    This command creates a YAML file for each CredentialsRequest object.

    Sample CredentialsRequest object

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: AzureProviderSpec
        roleBindings:
        - role: Contributor
      ...

  5. Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each CredentialsRequest object.

    Sample CredentialsRequest object with secrets

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: AzureProviderSpec
        roleBindings:
        - role: Contributor
          ...
      secretRef:
        name: <component_secret>
        namespace: <component_namespace>
      ...

    Sample Secret object

    apiVersion: v1
    kind: Secret
    metadata:
      name: <component_secret>
      namespace: <component_namespace>
    data:
      azure_subscription_id: <base64_encoded_azure_subscription_id>
      azure_client_id: <base64_encoded_azure_client_id>
      azure_client_secret: <base64_encoded_azure_client_secret>
      azure_tenant_id: <base64_encoded_azure_tenant_id>
      azure_resource_prefix: <base64_encoded_azure_resource_prefix>
      azure_resourcegroup: <base64_encoded_azure_resourcegroup>
      azure_region: <base64_encoded_azure_region>

Important

Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state.

3.6.3.2. Configuring an Azure cluster to use short-term credentials

To install a cluster that uses Microsoft Entra Workload ID, you must configure the Cloud Credential Operator utility and create the required Azure resources for your cluster.

3.6.3.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

Note

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

  • You have access to an OpenShift Container Platform account with cluster administrator access.
  • You have installed the OpenShift CLI (oc).
  • You have created a global Microsoft Azure account for the ccoctl utility to use with the following permissions:

    Example 3.12. Required Azure permissions

    • Microsoft.Resources/subscriptions/resourceGroups/read
    • Microsoft.Resources/subscriptions/resourceGroups/write
    • Microsoft.Resources/subscriptions/resourceGroups/delete
    • Microsoft.Authorization/roleAssignments/read
    • Microsoft.Authorization/roleAssignments/delete
    • Microsoft.Authorization/roleAssignments/write
    • Microsoft.Authorization/roleDefinitions/read
    • Microsoft.Authorization/roleDefinitions/write
    • Microsoft.Authorization/roleDefinitions/delete
    • Microsoft.Storage/storageAccounts/listkeys/action
    • Microsoft.Storage/storageAccounts/delete
    • Microsoft.Storage/storageAccounts/read
    • Microsoft.Storage/storageAccounts/write
    • Microsoft.Storage/storageAccounts/blobServices/containers/write
    • Microsoft.Storage/storageAccounts/blobServices/containers/delete
    • Microsoft.Storage/storageAccounts/blobServices/containers/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/delete
    • Microsoft.ManagedIdentity/userAssignedIdentities/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/write
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/write
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/delete
    • Microsoft.Storage/register/action
    • Microsoft.ManagedIdentity/register/action

Procedure

  1. Set a variable for the OpenShift Container Platform release image by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Obtain the CCO container image from the OpenShift Container Platform release image by running the following command:

    $ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
    Note

    Ensure that the architecture of the $RELEASE_IMAGE matches the architecture of the environment in which you will use the ccoctl tool.

  3. Extract the ccoctl binary from the CCO container image within the OpenShift Container Platform release image by running the following command:

    $ oc image extract $CCO_IMAGE \
      --file="/usr/bin/ccoctl.<rhel_version>" \1
      -a ~/.pull-secret
    1
    For <rhel_version>, specify the value that corresponds to the version of Red Hat Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by default. The following values are valid:
    • rhel8: Specify this value for hosts that use RHEL 8.
    • rhel9: Specify this value for hosts that use RHEL 9.
  4. Change the permissions to make ccoctl executable by running the following command:

    $ chmod 775 ccoctl.<rhel_version>

Verification

  • To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run the command, for example:

    $ ./ccoctl.rhel9

    Example output

    OpenShift credentials provisioning tool
    
    Usage:
      ccoctl [command]
    
    Available Commands:
      aws          Manage credentials objects for AWS cloud
      azure        Manage credentials objects for Azure
      gcp          Manage credentials objects for Google cloud
      help         Help about any command
      ibmcloud     Manage credentials objects for {ibm-cloud-title}
      nutanix      Manage credentials objects for Nutanix
    
    Flags:
      -h, --help   help for ccoctl
    
    Use "ccoctl [command] --help" for more information about a command.

3.6.3.2.2. Creating Azure resources with the Cloud Credential Operator utility

You can use the ccoctl azure create-all command to automate the creation of Azure resources.

Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.
  • Access to your Microsoft Azure account by using the Azure CLI.

Procedure

  1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.
    Note

    This command might take a few moments to run.

  3. To enable the ccoctl utility to detect your Azure credentials automatically, log in to the Azure CLI by running the following command:

    $ az login
  4. Use the ccoctl tool to process all CredentialsRequest objects by running the following command:

    $ ccoctl azure create-all \
      --name=<azure_infra_name> \1
      --output-dir=<ccoctl_output_dir> \2
      --region=<azure_region> \3
      --subscription-id=<azure_subscription_id> \4
      --credentials-requests-dir=<path_to_credentials_requests_directory> \5
      --dnszone-resource-group-name=<azure_dns_zone_resource_group_name> \6
      --tenant-id=<azure_tenant_id> 7
    1
    Specify the user-defined name for all created Azure resources used for tracking.
    2
    Optional: Specify the directory in which you want the ccoctl utility to create objects. By default, the utility creates objects in the directory in which the commands are run.
    3
    Specify the Azure region in which cloud resources will be created.
    4
    Specify the Azure subscription ID to use.
    5
    Specify the directory containing the files for the component CredentialsRequest objects.
    6
    Specify the name of the resource group containing the cluster’s base domain Azure DNS zone.
    7
    Specify the Azure tenant ID to use.
    Note

    If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

    To see additional optional parameters and explanations of how to use them, run the azure create-all --help command.

Verification

  • To verify that the OpenShift Container Platform secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests directory:

    $ ls <path_to_ccoctl_output_dir>/manifests

    Example output

    azure-ad-pod-identity-webhook-config.yaml
    cluster-authentication-02-config.yaml
    openshift-cloud-controller-manager-azure-cloud-credentials-credentials.yaml
    openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
    openshift-cluster-api-capz-manager-bootstrap-credentials-credentials.yaml
    openshift-cluster-csi-drivers-azure-disk-credentials-credentials.yaml
    openshift-cluster-csi-drivers-azure-file-credentials-credentials.yaml
    openshift-image-registry-installer-cloud-credentials-credentials.yaml
    openshift-ingress-operator-cloud-credentials-credentials.yaml
    openshift-machine-api-azure-cloud-credentials-credentials.yaml

    You can verify that the Microsoft Entra ID service accounts are created by querying Azure. For more information, refer to Azure documentation on listing Entra ID service accounts.

3.6.3.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the correct directories for the installation program.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have configured the Cloud Credential Operator utility (ccoctl).
  • You have created the cloud provider resources that are required for your cluster with the ccoctl utility.

Procedure

  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  2. If you used the ccoctl utility to create a new Azure resource group instead of using an existing resource group, modify the resourceGroupName parameter in the install-config.yaml as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    # ...
    platform:
      azure:
        resourceGroupName: <azure_infra_name> 1
    # ...

    1
    This value must match the user-defined name for Azure resources that was specified with the --name argument of the ccoctl azure create-all command.
  3. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  4. Copy the manifests that the ccoctl utility generated to the manifests directory that the installation program created by running the following command:

    $ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
  5. Copy the tls directory that contains the private key to the installation directory:

    $ cp -a /<path_to_ccoctl_output_dir>/tls .

3.6.4. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have an Azure subscription ID and tenant ID.

Procedure

  • Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.
  • Credential information also outputs to <installation_directory>/.openshift_install.log.
Important

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

Important
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

Additional resources

  • See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.

3.6.5. Next steps

3.7. Installing a private cluster on Azure

In OpenShift Container Platform version 4.17, you can install a private cluster into an existing Azure Virtual Network (VNet) on Microsoft Azure. The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.

3.7.1. Private clusters

You can deploy a private OpenShift Container Platform cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the internet.

By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.

Important

If the cluster has any public subnets, load balancer services created by administrators might be publicly accessible. To ensure cluster security, verify that these services are explicitly annotated as private.

To deploy a private cluster, you must:

  • Use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
  • Deploy from a machine that has access to:

    • The API services for the cloud to which you provision.
    • The hosts on the network that you provision.
    • The internet to obtain installation media.

You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.

3.7.1.1. Private clusters in Azure

To create a private cluster on Microsoft Azure, you must provide an existing private VNet and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for only internal traffic.

Depending how your network connects to the private VNET, you might need to use a DNS forwarder to resolve the cluster’s private DNS records. The cluster’s machines use 168.63.129.16 internally for DNS resolution. For more information, see What is Azure Private DNS? and What is IP address 168.63.129.16? in the Azure documentation.

The cluster still requires access to internet to access the Azure APIs.

The following items are not required or created when you install a private cluster:

  • A BaseDomainResourceGroup, since the cluster does not create public records
  • Public IP addresses
  • Public DNS records
  • Public endpoints

    The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.
3.7.1.1.1. Limitations

Private clusters on Azure are subject to only the limitations that are associated with the use of an existing VNet.

3.7.1.2. User-defined outbound routing

In OpenShift Container Platform, you can choose your own outbound routing for a cluster to connect to the internet. This allows you to skip the creation of public IP addresses and the public load balancer.

You can configure user-defined routing by modifying parameters in the install-config.yaml file before installing your cluster. A pre-existing VNet is required to use outbound routing when installing a cluster; the installation program is not responsible for configuring this.

When configuring a cluster to use user-defined routing, the installation program does not create the following resources:

  • Outbound rules for access to the internet.
  • Public IPs for the public load balancer.
  • Kubernetes Service object to add the cluster machines to the public load balancer for outbound requests.

You must ensure the following items are available before setting user-defined routing:

  • Egress to the internet is possible to pull container images, unless using an OpenShift image registry mirror.
  • The cluster can access Azure APIs.
  • Various allowlist endpoints are configured. You can reference these endpoints in the Configuring your firewall section.

There are several pre-existing networking setups that are supported for internet access using user-defined routing.

Private cluster with network address translation

You can use Azure VNET network address translation (NAT) to provide outbound internet access for the subnets in your cluster. You can reference Create a NAT gateway using Azure CLI in the Azure documentation for configuration instructions.

When using a VNet setup with Azure NAT and user-defined routing configured, you can create a private cluster with no public endpoints.

Private cluster with Azure Firewall

You can use Azure Firewall to provide outbound routing for the VNet used to install the cluster. You can learn more about providing user-defined routing with Azure Firewall in the Azure documentation.

When using a VNet setup with Azure Firewall and user-defined routing configured, you can create a private cluster with no public endpoints.

Private cluster with a proxy configuration

You can use a proxy with user-defined routing to allow egress to the internet. You must ensure that cluster Operators do not access Azure APIs using a proxy; Operators must have access to Azure APIs outside of the proxy.

When using the default route table for subnets, with 0.0.0.0/0 populated automatically by Azure, all Azure API requests are routed over Azure’s internal network even though the IP addresses are public. As long as the Network Security Group rules allow egress to Azure API endpoints, proxies with user-defined routing configured allow you to create private clusters with no public endpoints.

Private cluster with no internet access

You can install a private network that restricts all access to the internet, except the Azure API. This is accomplished by mirroring the release image registry locally. Your cluster must have access to the following:

  • An OpenShift image registry mirror that allows for pulling container images
  • Access to Azure APIs

With these requirements available, you can use user-defined routing to create private clusters with no public endpoints.

3.7.2. About reusing a VNet for your OpenShift Container Platform cluster

In OpenShift Container Platform 4.17, you can deploy a cluster into an existing Azure Virtual Network (VNet) in Microsoft Azure. If you do, you must also use existing subnets within the VNet and routing rules.

By deploying OpenShift Container Platform into an existing Azure VNet, you might be able to avoid service limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. This is a good option to use if you cannot obtain the infrastructure creation permissions that are required to create the VNet.

3.7.2.1. Requirements for using your VNet

When you deploy a cluster by using an existing VNet, you must perform additional network configuration before you install the cluster. In installer-provisioned infrastructure clusters, the installer usually creates the following components, but it does not create them when you install into an existing VNet:

  • Subnets
  • Route tables
  • VNets
  • Network Security Groups
Note

The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.

If you use a custom VNet, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VNet options like DHCP, so you must do so before you install the cluster.

The cluster must be able to access the resource group that contains the existing VNet and subnets. While all of the resources that the cluster creates are placed in a separate resource group that it creates, some network resources are used from a separate group. Some cluster Operators must be able to access resources in both resource groups. For example, the Machine API controller attaches NICS for the virtual machines that it creates to subnets from the networking resource group.

Your VNet must meet the following characteristics:

  • The VNet’s CIDR block must contain the Networking.MachineCIDR range, which is the IP address pool for cluster machines.
  • The VNet and its subnets must belong to the same resource group, and the subnets must be configured to use Azure-assigned DHCP IP addresses instead of static IP addresses.

You must provide two subnets within your VNet, one for the control plane machines and one for the compute machines. Because Azure distributes machines in different availability zones within the region that you specify, your cluster will have high availability by default.

Note

By default, if you specify availability zones in the install-config.yaml file, the installation program distributes the control plane machines and the compute machines across these availability zones within a region. To ensure high availability for your cluster, select a region with at least three availability zones. If your region contains fewer than three availability zones, the installation program places more than one control plane machine in the available zones.

To ensure that the subnets that you provide are suitable, the installation program confirms the following data:

  • All the specified subnets exist.
  • There are two private subnets, one for the control plane machines and one for the compute machines.
  • The subnet CIDRs belong to the machine CIDR that you specified. Machines are not provisioned in availability zones that you do not provide private subnets for.
Note

If you destroy a cluster that uses an existing VNet, the VNet is not deleted.

3.7.2.1.1. Network security group requirements

The network security groups for the subnets that host the compute and control plane machines require specific access to ensure that the cluster communication is correct. You must create rules to allow access to the required cluster communication ports.

Important

The network security group rules must be in place before you install the cluster. If you attempt to install a cluster without the required access, the installation program cannot reach the Azure APIs, and installation fails.

Table 3.21. Required ports
PortDescriptionControl planeCompute

80

Allows HTTP traffic

 

x

443

Allows HTTPS traffic

 

x

6443

Allows communication to the control plane machines

x

 

22623

Allows internal communication to the machine config server for provisioning machines

x

 
  1. If you are using Azure Firewall to restrict the internet access, then you can configure Azure Firewall to allow the Azure APIs. A network security group rule is not needed. For more information, see "Configuring your firewall" in "Additional resources".
Important

Currently, there is no supported way to block or restrict the machine config server endpoint. The machine config server must be exposed to the network so that newly-provisioned machines, which have no existing configuration or state, are able to fetch their configuration. In this model, the root of trust is the certificate signing requests (CSR) endpoint, which is where the kubelet sends its certificate signing request for approval to join the cluster. Because of this, machine configs should not be used to distribute sensitive information, such as secrets and certificates.

To ensure that the machine config server endpoints, ports 22623 and 22624, are secured in bare metal scenarios, customers must configure proper network policies.

Because cluster components do not modify the user-provided network security groups, which the Kubernetes controllers update, a pseudo-network security group is created for the Kubernetes controller to modify without impacting the rest of the environment.

Table 3.22. Ports used for all-machine to all-machine communications
ProtocolPortDescription

ICMP

N/A

Network reachability tests

TCP

1936

Metrics

9000-9999

Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.

10250-10259

The default ports that Kubernetes reserves

UDP

4789

VXLAN

6081

Geneve

9000-9999

Host level services, including the node exporter on ports 9100-9101.

500

IPsec IKE packets

4500

IPsec NAT-T packets

123

Network Time Protocol (NTP) on UDP port 123

If you configure an external NTP time server, you must open UDP port 123.

TCP/UDP

30000-32767

Kubernetes node port

ESP

N/A

IPsec Encapsulating Security Payload (ESP)

Table 3.23. Ports used for control plane machine to control plane machine communications
ProtocolPortDescription

TCP

2379-2380

etcd server and peer ports

3.7.2.2. Division of permissions

Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resources in your clouds than others. For example, you might be able to create application-specific items, like instances, storage, and load balancers, but not networking-related components such as VNets, subnet, or ingress rules.

The Azure credentials that you use when you create your cluster do not need the networking permissions that are required to make VNets and core networking components within the VNet, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as load balancers, security groups, storage accounts, and nodes.

3.7.2.3. Isolation between clusters

Because the cluster is unable to modify network security groups in an existing subnet, there is no way to isolate clusters from each other on the VNet.

3.7.3. Manually creating the installation configuration file

Installing the cluster requires that you manually create the installation configuration file.

Prerequisites

  • You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.
  • You have obtained the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure

  1. Create an installation directory to store your required installation assets in:

    $ mkdir <installation_directory>
    Important

    You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

  2. Customize the sample install-config.yaml file template that is provided and save it in the <installation_directory>.

    Note

    You must name this configuration file install-config.yaml.

  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.

3.7.3.1. Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 3.24. Minimum resource requirements
MachineOperating SystemvCPU [1]Virtual RAMStorageInput/Output Per Second (IOPS)[2]

Bootstrap

RHCOS

4

16 GB

100 GB

300

Control plane

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS, RHEL 8.6 and later [3]

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
  2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
  3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
Note

As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA
  • ARM64 architecture requires ARMv8.0-A ISA
  • IBM Power architecture requires Power 9 ISA
  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

Important

You are required to use Azure virtual machines that have the premiumIO parameter set to true.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

Additional resources

3.7.3.2. Tested instance types for Azure

The following Microsoft Azure instance types have been tested with OpenShift Container Platform.

Example 3.13. Machine types based on 64-bit x86 architecture

  • standardBasv2Family
  • standardBSFamily
  • standardBsv2Family
  • standardDADSv5Family
  • standardDASv4Family
  • standardDASv5Family
  • standardDCACCV5Family
  • standardDCADCCV5Family
  • standardDCADSv5Family
  • standardDCASv5Family
  • standardDCSv3Family
  • standardDCSv2Family
  • standardDDCSv3Family
  • standardDDSv4Family
  • standardDDSv5Family
  • standardDLDSv5Family
  • standardDLSv5Family
  • standardDSFamily
  • standardDSv2Family
  • standardDSv2PromoFamily
  • standardDSv3Family
  • standardDSv4Family
  • standardDSv5Family
  • standardEADSv5Family
  • standardEASv4Family
  • standardEASv5Family
  • standardEBDSv5Family
  • standardEBSv5Family
  • standardECACCV5Family
  • standardECADCCV5Family
  • standardECADSv5Family
  • standardECASv5Family
  • standardEDSv4Family
  • standardEDSv5Family
  • standardEIADSv5Family
  • standardEIASv4Family
  • standardEIASv5Family
  • standardEIBDSv5Family
  • standardEIBSv5Family
  • standardEIDSv5Family
  • standardEISv3Family
  • standardEISv5Family
  • standardESv3Family
  • standardESv4Family
  • standardESv5Family
  • standardFXMDVSFamily
  • standardFSFamily
  • standardFSv2Family
  • standardGSFamily
  • standardHBrsv2Family
  • standardHBSFamily
  • standardHBv4Family
  • standardHCSFamily
  • standardHXFamily
  • standardLASv3Family
  • standardLSFamily
  • standardLSv2Family
  • standardLSv3Family
  • standardMDSHighMemoryv3Family
  • standardMDSMediumMemoryv2Family
  • standardMDSMediumMemoryv3Family
  • standardMIDSHighMemoryv3Family
  • standardMIDSMediumMemoryv2Family
  • standardMISHighMemoryv3Family
  • standardMISMediumMemoryv2Family
  • standardMSFamily
  • standardMSHighMemoryv3Family
  • standardMSMediumMemoryv2Family
  • standardMSMediumMemoryv3Family
  • StandardNCADSA100v4Family
  • Standard NCASv3_T4 Family
  • standardNCSv3Family
  • standardNDSv2Family
  • StandardNGADSV620v1Family
  • standardNPSFamily
  • StandardNVADSA10v5Family
  • standardNVSv3Family
  • standardXEISv4Family

3.7.3.3. Tested instance types for Azure on 64-bit ARM infrastructures

The following Microsoft Azure ARM64 instance types have been tested with OpenShift Container Platform.

Example 3.14. Machine types based on 64-bit ARM architecture

  • standardBpsv2Family
  • standardDPSv5Family
  • standardDPDSv5Family
  • standardDPLDSv5Family
  • standardDPLSv5Family
  • standardEPSv5Family
  • standardEPDSv5Family

3.7.3.4. Enabling trusted launch for Azure VMs

You can enable two trusted launch features when installing your cluster on Azure: secure boot and virtualized Trusted Platform Modules.

For more information about the sizes of virtual machines that support the trusted launch features, see Virtual machine sizes.

Important

Trusted launch is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Edit the install-config.yaml file before deploying your cluster:

    • Enable trusted launch only on control plane by adding the following stanza:

      controlPlane:
        platform:
          azure:
            settings:
              securityType: TrustedLaunch
              trustedLaunch:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
    • Enable trusted launch only on compute node by adding the following stanza:

      compute:
        platform:
          azure:
            settings:
              securityType: TrustedLaunch
              trustedLaunch:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
    • Enable trusted launch on all nodes by adding the following stanza:

      platform:
        azure:
          settings:
            securityType: TrustedLaunch
            trustedLaunch:
              uefiSettings:
                secureBoot: Enabled
                virtualizedTrustedPlatformModule: Enabled

3.7.3.5. Enabling confidential VMs

You can enable confidential VMs when installing your cluster. You can enable confidential VMs for compute nodes, control plane nodes, or all nodes.

Important

Using confidential VMs is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

You can use confidential VMs with the following VM sizes:

  • DCasv5-series
  • DCadsv5-series
  • ECasv5-series
  • ECadsv5-series
Important

Confidential VMs are currently not supported on 64-bit ARM architectures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Edit the install-config.yaml file before deploying your cluster:

    • Enable confidential VMs only on control plane by adding the following stanza:

      controlPlane:
        platform:
          azure:
            settings:
              securityType: ConfidentialVM
              confidentialVM:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
            osDisk:
              securityProfile:
                securityEncryptionType: VMGuestStateOnly
    • Enable confidential VMs only on compute nodes by adding the following stanza:

      compute:
        platform:
          azure:
            settings:
              securityType: ConfidentialVM
              confidentialVM:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
            osDisk:
              securityProfile:
                securityEncryptionType: VMGuestStateOnly
    • Enable confidential VMs on all nodes by adding the following stanza:

      platform:
        azure:
          settings:
            securityType: ConfidentialVM
            confidentialVM:
              uefiSettings:
                secureBoot: Enabled
                virtualizedTrustedPlatformModule: Enabled
          osDisk:
            securityProfile:
              securityEncryptionType: VMGuestStateOnly

3.7.3.6. Sample customized install-config.yaml file for Azure

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

Important

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com 1
controlPlane: 2
  hyperthreading: Enabled 3 4
  name: master
  platform:
    azure:
      encryptionAtHost: true
      ultraSSDCapability: Enabled
      osDisk:
        diskSizeGB: 1024 5
        diskType: Premium_LRS
        diskEncryptionSet:
          resourceGroup: disk_encryption_set_resource_group
          name: disk_encryption_set_name
          subscriptionId: secondary_subscription_id
      osImage:
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      type: Standard_D8s_v3
  replicas: 3
compute: 6
- hyperthreading: Enabled 7 8
  name: worker
  platform:
    azure:
      ultraSSDCapability: Enabled
      type: Standard_D2s_v3
      encryptionAtHost: true
      osDisk:
        diskSizeGB: 512 9
        diskType: Standard_LRS
        diskEncryptionSet:
          resourceGroup: disk_encryption_set_resource_group
          name: disk_encryption_set_name
          subscriptionId: secondary_subscription_id
      osImage:
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      zones: 10
      - "1"
      - "2"
      - "3"
  replicas: 5
metadata:
  name: test-cluster 11
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OVNKubernetes 12
  serviceNetwork:
  - 172.30.0.0/16
platform:
  azure:
    defaultMachinePlatform:
      osImage: 13
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      ultraSSDCapability: Enabled
    baseDomainResourceGroupName: resource_group 14
    region: centralus 15
    resourceGroupName: existing_resource_group 16
    networkResourceGroupName: vnet_resource_group 17
    virtualNetwork: vnet 18
    controlPlaneSubnet: control_plane_subnet 19
    computeSubnet: compute_subnet 20
    outboundType: UserDefinedRouting 21
    cloudName: AzurePublicCloud
pullSecret: '{"auths": ...}' 22
fips: false 23
sshKey: ssh-ed25519 AAAA... 24
publish: Internal 25
1 11 15 22
Required. The installation program prompts you for this value.
2 6
If you do not provide these parameters and values, the installation program provides the default value.
3 7
The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
4 8
Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as Standard_D8s_v3, for your machines if you disable simultaneous multithreading.

5 9
You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes is 1024 GB.
10
Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
12
The cluster network plugin to install. The default value OVNKubernetes is the only supported value.
13
Optional: A custom Red Hat Enterprise Linux CoreOS (RHCOS) image that should be used to boot control plane and compute machines. The publisher, offer, sku, and version parameters under platform.azure.defaultMachinePlatform.osImage apply to both control plane and compute machines. If the parameters under controlPlane.platform.azure.osImage or compute.platform.azure.osImage are set, they override the platform.azure.defaultMachinePlatform.osImage parameters.
14
Specify the name of the resource group that contains the DNS zone for your base domain.
16
Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
17
If you use an existing VNet, specify the name of the resource group that contains it.
18
If you use an existing VNet, specify its name.
19
If you use an existing VNet, specify the name of the subnet to host the control plane machines.
20
If you use an existing VNet, specify the name of the subnet to host the compute machines.
21
You can customize your own outbound routing. Configuring user-defined routing prevents exposing external endpoints in your cluster. User-defined routing for egress requires deploying your cluster to an existing VNet.
23
Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
Important

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Switching RHEL to FIPS mode.

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

24
You can optionally provide the sshKey value that you use to access the machines in your cluster.
Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

25
How to publish the user-facing endpoints of your cluster. Set publish to Internal to deploy a private cluster, which cannot be accessed from the internet. The default value is External.

3.7.3.7. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.
  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    Note

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4
    If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5
    Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.
    Note

    The installation program does not support the proxy readinessEndpoints field.

    Note

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

Additional resources

3.7.4. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the following alternatives:

3.7.4.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.

Procedure

  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  2. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.

    This command creates a YAML file for each CredentialsRequest object.

    Sample CredentialsRequest object

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: AzureProviderSpec
        roleBindings:
        - role: Contributor
      ...

  5. Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each CredentialsRequest object.

    Sample CredentialsRequest object with secrets

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: AzureProviderSpec
        roleBindings:
        - role: Contributor
          ...
      secretRef:
        name: <component_secret>
        namespace: <component_namespace>
      ...

    Sample Secret object

    apiVersion: v1
    kind: Secret
    metadata:
      name: <component_secret>
      namespace: <component_namespace>
    data:
      azure_subscription_id: <base64_encoded_azure_subscription_id>
      azure_client_id: <base64_encoded_azure_client_id>
      azure_client_secret: <base64_encoded_azure_client_secret>
      azure_tenant_id: <base64_encoded_azure_tenant_id>
      azure_resource_prefix: <base64_encoded_azure_resource_prefix>
      azure_resourcegroup: <base64_encoded_azure_resourcegroup>
      azure_region: <base64_encoded_azure_region>

Important

Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state.

3.7.4.2. Configuring an Azure cluster to use short-term credentials

To install a cluster that uses Microsoft Entra Workload ID, you must configure the Cloud Credential Operator utility and create the required Azure resources for your cluster.

3.7.4.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

Note

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

  • You have access to an OpenShift Container Platform account with cluster administrator access.
  • You have installed the OpenShift CLI (oc).
  • You have created a global Microsoft Azure account for the ccoctl utility to use with the following permissions:

    Example 3.15. Required Azure permissions

    • Microsoft.Resources/subscriptions/resourceGroups/read
    • Microsoft.Resources/subscriptions/resourceGroups/write
    • Microsoft.Resources/subscriptions/resourceGroups/delete
    • Microsoft.Authorization/roleAssignments/read
    • Microsoft.Authorization/roleAssignments/delete
    • Microsoft.Authorization/roleAssignments/write
    • Microsoft.Authorization/roleDefinitions/read
    • Microsoft.Authorization/roleDefinitions/write
    • Microsoft.Authorization/roleDefinitions/delete
    • Microsoft.Storage/storageAccounts/listkeys/action
    • Microsoft.Storage/storageAccounts/delete
    • Microsoft.Storage/storageAccounts/read
    • Microsoft.Storage/storageAccounts/write
    • Microsoft.Storage/storageAccounts/blobServices/containers/write
    • Microsoft.Storage/storageAccounts/blobServices/containers/delete
    • Microsoft.Storage/storageAccounts/blobServices/containers/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/delete
    • Microsoft.ManagedIdentity/userAssignedIdentities/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/write
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/read
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/write
    • Microsoft.ManagedIdentity/userAssignedIdentities/federatedIdentityCredentials/delete
    • Microsoft.Storage/register/action
    • Microsoft.ManagedIdentity/register/action

Procedure

  1. Set a variable for the OpenShift Container Platform release image by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Obtain the CCO container image from the OpenShift Container Platform release image by running the following command:

    $ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
    Note

    Ensure that the architecture of the $RELEASE_IMAGE matches the architecture of the environment in which you will use the ccoctl tool.

  3. Extract the ccoctl binary from the CCO container image within the OpenShift Container Platform release image by running the following command:

    $ oc image extract $CCO_IMAGE \
      --file="/usr/bin/ccoctl.<rhel_version>" \1
      -a ~/.pull-secret
    1
    For <rhel_version>, specify the value that corresponds to the version of Red Hat Enterprise Linux (RHEL) that the host uses. If no value is specified, ccoctl.rhel8 is used by default. The following values are valid:
    • rhel8: Specify this value for hosts that use RHEL 8.
    • rhel9: Specify this value for hosts that use RHEL 9.
  4. Change the permissions to make ccoctl executable by running the following command:

    $ chmod 775 ccoctl.<rhel_version>

Verification

  • To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run the command, for example:

    $ ./ccoctl.rhel9

    Example output

    OpenShift credentials provisioning tool
    
    Usage:
      ccoctl [command]
    
    Available Commands:
      aws          Manage credentials objects for AWS cloud
      azure        Manage credentials objects for Azure
      gcp          Manage credentials objects for Google cloud
      help         Help about any command
      ibmcloud     Manage credentials objects for {ibm-cloud-title}
      nutanix      Manage credentials objects for Nutanix
    
    Flags:
      -h, --help   help for ccoctl
    
    Use "ccoctl [command] --help" for more information about a command.

3.7.4.2.2. Creating Azure resources with the Cloud Credential Operator utility

You can use the ccoctl azure create-all command to automate the creation of Azure resources.

Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.
  • Access to your Microsoft Azure account by using the Azure CLI.

Procedure

  1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.
    Note

    This command might take a few moments to run.

  3. To enable the ccoctl utility to detect your Azure credentials automatically, log in to the Azure CLI by running the following command:

    $ az login
  4. Use the ccoctl tool to process all CredentialsRequest objects by running the following command:

    $ ccoctl azure create-all \
      --name=<azure_infra_name> \1
      --output-dir=<ccoctl_output_dir> \2
      --region=<azure_region> \3
      --subscription-id=<azure_subscription_id> \4
      --credentials-requests-dir=<path_to_credentials_requests_directory> \5
      --dnszone-resource-group-name=<azure_dns_zone_resource_group_name> \6
      --tenant-id=<azure_tenant_id> 7
    1
    Specify the user-defined name for all created Azure resources used for tracking.
    2
    Optional: Specify the directory in which you want the ccoctl utility to create objects. By default, the utility creates objects in the directory in which the commands are run.
    3
    Specify the Azure region in which cloud resources will be created.
    4
    Specify the Azure subscription ID to use.
    5
    Specify the directory containing the files for the component CredentialsRequest objects.
    6
    Specify the name of the resource group containing the cluster’s base domain Azure DNS zone.
    7
    Specify the Azure tenant ID to use.
    Note

    If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

    To see additional optional parameters and explanations of how to use them, run the azure create-all --help command.

Verification

  • To verify that the OpenShift Container Platform secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests directory:

    $ ls <path_to_ccoctl_output_dir>/manifests

    Example output

    azure-ad-pod-identity-webhook-config.yaml
    cluster-authentication-02-config.yaml
    openshift-cloud-controller-manager-azure-cloud-credentials-credentials.yaml
    openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
    openshift-cluster-api-capz-manager-bootstrap-credentials-credentials.yaml
    openshift-cluster-csi-drivers-azure-disk-credentials-credentials.yaml
    openshift-cluster-csi-drivers-azure-file-credentials-credentials.yaml
    openshift-image-registry-installer-cloud-credentials-credentials.yaml
    openshift-ingress-operator-cloud-credentials-credentials.yaml
    openshift-machine-api-azure-cloud-credentials-credentials.yaml

    You can verify that the Microsoft Entra ID service accounts are created by querying Azure. For more information, refer to Azure documentation on listing Entra ID service accounts.

3.7.4.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the correct directories for the installation program.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have configured the Cloud Credential Operator utility (ccoctl).
  • You have created the cloud provider resources that are required for your cluster with the ccoctl utility.

Procedure

  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  2. If you used the ccoctl utility to create a new Azure resource group instead of using an existing resource group, modify the resourceGroupName parameter in the install-config.yaml as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    # ...
    platform:
      azure:
        resourceGroupName: <azure_infra_name> 1
    # ...

    1
    This value must match the user-defined name for Azure resources that was specified with the --name argument of the ccoctl azure create-all command.
  3. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  4. Copy the manifests that the ccoctl utility generated to the manifests directory that the installation program created by running the following command:

    $ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
  5. Copy the tls directory that contains the private key to the installation directory:

    $ cp -a /<path_to_ccoctl_output_dir>/tls .

3.7.5. Optional: Preparing a private Microsoft Azure cluster for a private image registry

By installing a private image registry on a private Microsoft Azure cluster, you can create private storage endpoints. Private storage endpoints disable public facing endpoints to the registry’s storage account, adding an extra layer of security to your OpenShift Container Platform deployment.

Important

Do not install a private image registry on Microsoft Azure Red Hat OpenShift (ARO), because the endpoint can put your Microsoft Azure Red Hat OpenShift cluster in an unrecoverable state.

Use the following guide to prepare your private Microsoft Azure cluster for installation with a private image registry.

Prerequisites

  • You have access to an OpenShift Container Platform account with cluster administrator access.
  • You have installed the OpenShift CLI (oc).
  • You have prepared an install-config.yaml that includes the following information:

    • The publish field is set to Internal
  • You have set the permissions for creating a private storage endpoint. For more information, see "Azure permissions for installer-provisioned infrastructure".

Procedure

  1. If you have not previously created installation manifest files, do so by running the following command:

    $ ./openshift-install create manifests --dir <installation_directory>

    This command displays the following messages:

    Example output

    INFO Consuming Install Config from target directory
    INFO Manifests created in: <installation_directory>/manifests and <installation_directory>/openshift

  2. Create an image registry configuration object and pass in the networkResourceGroupName, subnetName, and vnetName provided by Microsoft Azure. For example:

    $ touch imageregistry-config.yaml
    apiVersion: imageregistry.operator.openshift.io/v1
    kind: Config
    metadata:
      name: cluster
    spec:
      managementState: "Managed"
      replicas: 2
      rolloutStrategy: RollingUpdate
      storage:
        azure:
          networkAccess:
            internal:
              networkResourceGroupName: <vnet_resource_group> 1
              subnetName: <subnet_name> 2
              vnetName: <vnet_name> 3
            type: Internal
    1
    Optional. If you have an existing VNet and subnet setup, replace <vnet_resource_group> with the resource group name that contains the existing virtual network (VNet).
    2
    Optional. If you have an existing VNet and subnet setup, replace <subnet_name> with the name of the existing compute subnet within the specified resource group.
    3
    Optional. If you have an existing VNet and subnet setup, replace <vnet_name> with the name of the existing virtual network (VNet) in the specified resource group.
    Note

    The imageregistry-config.yaml file is consumed during the installation process. If desired, you must back it up before installation.

  3. Move the imageregistry-config.yaml file to the <installation_directory/manifests> folder by running the following command:

    $ mv imageregistry-config.yaml <installation_directory/manifests/>

Next steps

  • After you have moved the imageregistry-config.yaml file to the <installation_directory/manifests> folder and set the required permissions, proceed to "Deploying the cluster".

Additional resources

3.7.6. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have an Azure subscription ID and tenant ID.
  • If you are installing the cluster using a service principal, you have its application ID and password.
  • If you are installing the cluster using a system-assigned managed identity, you have enabled it on the virtual machine that you will run the installation program from.
  • If you are installing the cluster using a user-assigned managed identity, you have met these prerequisites:

    • You have its client ID.
    • You have assigned it to the virtual machine that you will run the installation program from.

Procedure

  1. Optional: If you have run the installation program on this computer before, and want to use an alternative service principal or managed identity, go to the ~/.azure/ directory and delete the osServicePrincipal.json configuration file.

    Deleting this file prevents the installation program from automatically reusing subscription and authentication values from a previous installation.

  2. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.

    If the installation program cannot locate the osServicePrincipal.json configuration file from a previous installation, you are prompted for Azure subscription and authentication values.

  3. Enter the following Azure parameter values for your subscription:

    • azure subscription id: Enter the subscription ID to use for the cluster.
    • azure tenant id: Enter the tenant ID.
  4. Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client id:

    • If you are using a service principal, enter its application ID.
    • If you are using a system-assigned managed identity, leave this value blank.
    • If you are using a user-assigned managed identity, specify its client ID.
  5. Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client secret:

    • If you are using a service principal, enter its password.
    • If you are using a system-assigned managed identity, leave this value blank.
    • If you are using a user-assigned managed identity,leave this value blank.

If previously not detected, the installation program creates an osServicePrincipal.json configuration file and stores this file in the ~/.azure/ directory on your computer. This ensures that the installation program can load the profile when it is creating an OpenShift Container Platform cluster on the target platform.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.
  • Credential information also outputs to <installation_directory>/.openshift_install.log.
Important

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

Important
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

3.7.7. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

Additional resources

  • See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.

3.7.8. Next steps

3.8. Installing a cluster on Azure into a government region

In OpenShift Container Platform version 4.17, you can install a cluster on Microsoft Azure into a government region. To configure the government region, you modify parameters in the install-config.yaml file before you install the cluster.

3.8.1. Azure government regions

OpenShift Container Platform supports deploying a cluster to Microsoft Azure Government (MAG) regions. MAG is specifically designed for US government agencies at the federal, state, and local level, as well as contractors, educational institutions, and other US customers that must run sensitive workloads on Azure. MAG is composed of government-only data center regions, all granted an Impact Level 5 Provisional Authorization.

Installing to a MAG region requires manually configuring the Azure Government dedicated cloud instance and region in the install-config.yaml file. You must also update your service principal to reference the appropriate government environment.

Note

The Azure government region cannot be selected using the guided terminal prompts from the installation program. You must define the region manually in the install-config.yaml file. Remember to also set the dedicated cloud instance, like AzureUSGovernmentCloud, based on the region specified.

3.8.2. Private clusters

You can deploy a private OpenShift Container Platform cluster that does not expose external endpoints. Private clusters are accessible from only an internal network and are not visible to the internet.

By default, OpenShift Container Platform is provisioned to use publicly-accessible DNS and endpoints. A private cluster sets the DNS, Ingress Controller, and API server to private when you deploy your cluster. This means that the cluster resources are only accessible from your internal network and are not visible to the internet.

Important

If the cluster has any public subnets, load balancer services created by administrators might be publicly accessible. To ensure cluster security, verify that these services are explicitly annotated as private.

To deploy a private cluster, you must:

  • Use existing networking that meets your requirements. Your cluster resources might be shared between other clusters on the network.
  • Deploy from a machine that has access to:

    • The API services for the cloud to which you provision.
    • The hosts on the network that you provision.
    • The internet to obtain installation media.

You can use any machine that meets these access requirements and follows your company’s guidelines. For example, this machine can be a bastion host on your cloud network or a machine that has access to the network through a VPN.

3.8.2.1. Private clusters in Azure

To create a private cluster on Microsoft Azure, you must provide an existing private VNet and subnets to host the cluster. The installation program must also be able to resolve the DNS records that the cluster requires. The installation program configures the Ingress Operator and API server for only internal traffic.

Depending how your network connects to the private VNET, you might need to use a DNS forwarder to resolve the cluster’s private DNS records. The cluster’s machines use 168.63.129.16 internally for DNS resolution. For more information, see What is Azure Private DNS? and What is IP address 168.63.129.16? in the Azure documentation.

The cluster still requires access to internet to access the Azure APIs.

The following items are not required or created when you install a private cluster:

  • A BaseDomainResourceGroup, since the cluster does not create public records
  • Public IP addresses
  • Public DNS records
  • Public endpoints

    The cluster is configured so that the Operators do not create public records for the cluster and all cluster machines are placed in the private subnets that you specify.
3.8.2.1.1. Limitations

Private clusters on Azure are subject to only the limitations that are associated with the use of an existing VNet.

3.8.2.2. User-defined outbound routing

In OpenShift Container Platform, you can choose your own outbound routing for a cluster to connect to the internet. This allows you to skip the creation of public IP addresses and the public load balancer.

You can configure user-defined routing by modifying parameters in the install-config.yaml file before installing your cluster. A pre-existing VNet is required to use outbound routing when installing a cluster; the installation program is not responsible for configuring this.

When configuring a cluster to use user-defined routing, the installation program does not create the following resources:

  • Outbound rules for access to the internet.
  • Public IPs for the public load balancer.
  • Kubernetes Service object to add the cluster machines to the public load balancer for outbound requests.

You must ensure the following items are available before setting user-defined routing:

  • Egress to the internet is possible to pull container images, unless using an OpenShift image registry mirror.
  • The cluster can access Azure APIs.
  • Various allowlist endpoints are configured. You can reference these endpoints in the Configuring your firewall section.

There are several pre-existing networking setups that are supported for internet access using user-defined routing.

3.8.3. About reusing a VNet for your OpenShift Container Platform cluster

In OpenShift Container Platform 4.17, you can deploy a cluster into an existing Azure Virtual Network (VNet) in Microsoft Azure. If you do, you must also use existing subnets within the VNet and routing rules.

By deploying OpenShift Container Platform into an existing Azure VNet, you might be able to avoid service limit constraints in new accounts or more easily abide by the operational constraints that your company’s guidelines set. This is a good option to use if you cannot obtain the infrastructure creation permissions that are required to create the VNet.

3.8.3.1. Requirements for using your VNet

When you deploy a cluster by using an existing VNet, you must perform additional network configuration before you install the cluster. In installer-provisioned infrastructure clusters, the installer usually creates the following components, but it does not create them when you install into an existing VNet:

  • Subnets
  • Route tables
  • VNets
  • Network Security Groups
Note

The installation program requires that you use the cloud-provided DNS server. Using a custom DNS server is not supported and causes the installation to fail.

If you use a custom VNet, you must correctly configure it and its subnets for the installation program and the cluster to use. The installation program cannot subdivide network ranges for the cluster to use, set route tables for the subnets, or set VNet options like DHCP, so you must do so before you install the cluster.

The cluster must be able to access the resource group that contains the existing VNet and subnets. While all of the resources that the cluster creates are placed in a separate resource group that it creates, some network resources are used from a separate group. Some cluster Operators must be able to access resources in both resource groups. For example, the Machine API controller attaches NICS for the virtual machines that it creates to subnets from the networking resource group.

Your VNet must meet the following characteristics:

  • The VNet’s CIDR block must contain the Networking.MachineCIDR range, which is the IP address pool for cluster machines.
  • The VNet and its subnets must belong to the same resource group, and the subnets must be configured to use Azure-assigned DHCP IP addresses instead of static IP addresses.

You must provide two subnets within your VNet, one for the control plane machines and one for the compute machines. Because Azure distributes machines in different availability zones within the region that you specify, your cluster will have high availability by default.

Note

By default, if you specify availability zones in the install-config.yaml file, the installation program distributes the control plane machines and the compute machines across these availability zones within a region. To ensure high availability for your cluster, select a region with at least three availability zones. If your region contains fewer than three availability zones, the installation program places more than one control plane machine in the available zones.

To ensure that the subnets that you provide are suitable, the installation program confirms the following data:

  • All the specified subnets exist.
  • There are two private subnets, one for the control plane machines and one for the compute machines.
  • The subnet CIDRs belong to the machine CIDR that you specified. Machines are not provisioned in availability zones that you do not provide private subnets for. If required, the installation program creates public load balancers that manage the control plane and worker nodes, and Azure allocates a public IP address to them.
Note

If you destroy a cluster that uses an existing VNet, the VNet is not deleted.

3.8.3.1.1. Network security group requirements

The network security groups for the subnets that host the compute and control plane machines require specific access to ensure that the cluster communication is correct. You must create rules to allow access to the required cluster communication ports.

Important

The network security group rules must be in place before you install the cluster. If you attempt to install a cluster without the required access, the installation program cannot reach the Azure APIs, and installation fails.

Table 3.25. Required ports
PortDescriptionControl planeCompute

80

Allows HTTP traffic

 

x

443

Allows HTTPS traffic

 

x

6443

Allows communication to the control plane machines

x

 

22623

Allows internal communication to the machine config server for provisioning machines

x

 
  1. If you are using Azure Firewall to restrict the internet access, then you can configure Azure Firewall to allow the Azure APIs. A network security group rule is not needed. For more information, see "Configuring your firewall" in "Additional resources".
Important

Currently, there is no supported way to block or restrict the machine config server endpoint. The machine config server must be exposed to the network so that newly-provisioned machines, which have no existing configuration or state, are able to fetch their configuration. In this model, the root of trust is the certificate signing requests (CSR) endpoint, which is where the kubelet sends its certificate signing request for approval to join the cluster. Because of this, machine configs should not be used to distribute sensitive information, such as secrets and certificates.

To ensure that the machine config server endpoints, ports 22623 and 22624, are secured in bare metal scenarios, customers must configure proper network policies.

Because cluster components do not modify the user-provided network security groups, which the Kubernetes controllers update, a pseudo-network security group is created for the Kubernetes controller to modify without impacting the rest of the environment.

Table 3.26. Ports used for all-machine to all-machine communications
ProtocolPortDescription

ICMP

N/A

Network reachability tests

TCP

1936

Metrics

9000-9999

Host level services, including the node exporter on ports 9100-9101 and the Cluster Version Operator on port 9099.

10250-10259

The default ports that Kubernetes reserves

UDP

4789

VXLAN

6081

Geneve

9000-9999

Host level services, including the node exporter on ports 9100-9101.

500

IPsec IKE packets

4500

IPsec NAT-T packets

123

Network Time Protocol (NTP) on UDP port 123

If you configure an external NTP time server, you must open UDP port 123.

TCP/UDP

30000-32767

Kubernetes node port

ESP

N/A

IPsec Encapsulating Security Payload (ESP)

Table 3.27. Ports used for control plane machine to control plane machine communications
ProtocolPortDescription

TCP

2379-2380

etcd server and peer ports

3.8.3.2. Division of permissions

Starting with OpenShift Container Platform 4.3, you do not need all of the permissions that are required for an installation program-provisioned infrastructure cluster to deploy a cluster. This change mimics the division of permissions that you might have at your company: some individuals can create different resources in your clouds than others. For example, you might be able to create application-specific items, like instances, storage, and load balancers, but not networking-related components such as VNets, subnet, or ingress rules.

The Azure credentials that you use when you create your cluster do not need the networking permissions that are required to make VNets and core networking components within the VNet, such as subnets, routing tables, internet gateways, NAT, and VPN. You still need permission to make the application resources that the machines within the cluster require, such as load balancers, security groups, storage accounts, and nodes.

3.8.3.3. Isolation between clusters

Because the cluster is unable to modify network security groups in an existing subnet, there is no way to isolate clusters from each other on the VNet.

3.8.4. Manually creating the installation configuration file

Installing the cluster requires that you manually create the installation configuration file.

Prerequisites

  • You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.
  • You have obtained the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure

  1. Create an installation directory to store your required installation assets in:

    $ mkdir <installation_directory>
    Important

    You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

  2. Customize the sample install-config.yaml file template that is provided and save it in the <installation_directory>.

    Note

    You must name this configuration file install-config.yaml.

  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the next step of the installation process. You must back it up now.

3.8.4.1. Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 3.28. Minimum resource requirements
MachineOperating SystemvCPU [1]Virtual RAMStorageInput/Output Per Second (IOPS)[2]

Bootstrap

RHCOS

4

16 GB

100 GB

300

Control plane

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS, RHEL 8.6 and later [3]

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
  2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
  3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
Note

As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA
  • ARM64 architecture requires ARMv8.0-A ISA
  • IBM Power architecture requires Power 9 ISA
  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

Important

You are required to use Azure virtual machines that have the premiumIO parameter set to true.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

Additional resources

3.8.4.2. Tested instance types for Azure

The following Microsoft Azure instance types have been tested with OpenShift Container Platform.

Example 3.16. Machine types based on 64-bit x86 architecture

  • standardBasv2Family
  • standardBSFamily
  • standardBsv2Family
  • standardDADSv5Family
  • standardDASv4Family
  • standardDASv5Family
  • standardDCACCV5Family
  • standardDCADCCV5Family
  • standardDCADSv5Family
  • standardDCASv5Family
  • standardDCSv3Family
  • standardDCSv2Family
  • standardDDCSv3Family
  • standardDDSv4Family
  • standardDDSv5Family
  • standardDLDSv5Family
  • standardDLSv5Family
  • standardDSFamily
  • standardDSv2Family
  • standardDSv2PromoFamily
  • standardDSv3Family
  • standardDSv4Family
  • standardDSv5Family
  • standardEADSv5Family
  • standardEASv4Family
  • standardEASv5Family
  • standardEBDSv5Family
  • standardEBSv5Family
  • standardECACCV5Family
  • standardECADCCV5Family
  • standardECADSv5Family
  • standardECASv5Family
  • standardEDSv4Family
  • standardEDSv5Family
  • standardEIADSv5Family
  • standardEIASv4Family
  • standardEIASv5Family
  • standardEIBDSv5Family
  • standardEIBSv5Family
  • standardEIDSv5Family
  • standardEISv3Family
  • standardEISv5Family
  • standardESv3Family
  • standardESv4Family
  • standardESv5Family
  • standardFXMDVSFamily
  • standardFSFamily
  • standardFSv2Family
  • standardGSFamily
  • standardHBrsv2Family
  • standardHBSFamily
  • standardHBv4Family
  • standardHCSFamily
  • standardHXFamily
  • standardLASv3Family
  • standardLSFamily
  • standardLSv2Family
  • standardLSv3Family
  • standardMDSHighMemoryv3Family
  • standardMDSMediumMemoryv2Family
  • standardMDSMediumMemoryv3Family
  • standardMIDSHighMemoryv3Family
  • standardMIDSMediumMemoryv2Family
  • standardMISHighMemoryv3Family
  • standardMISMediumMemoryv2Family
  • standardMSFamily
  • standardMSHighMemoryv3Family
  • standardMSMediumMemoryv2Family
  • standardMSMediumMemoryv3Family
  • StandardNCADSA100v4Family
  • Standard NCASv3_T4 Family
  • standardNCSv3Family
  • standardNDSv2Family
  • StandardNGADSV620v1Family
  • standardNPSFamily
  • StandardNVADSA10v5Family
  • standardNVSv3Family
  • standardXEISv4Family

3.8.4.3. Enabling trusted launch for Azure VMs

You can enable two trusted launch features when installing your cluster on Azure: secure boot and virtualized Trusted Platform Modules.

For more information about the sizes of virtual machines that support the trusted launch features, see Virtual machine sizes.

Important

Trusted launch is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Edit the install-config.yaml file before deploying your cluster:

    • Enable trusted launch only on control plane by adding the following stanza:

      controlPlane:
        platform:
          azure:
            settings:
              securityType: TrustedLaunch
              trustedLaunch:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
    • Enable trusted launch only on compute node by adding the following stanza:

      compute:
        platform:
          azure:
            settings:
              securityType: TrustedLaunch
              trustedLaunch:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
    • Enable trusted launch on all nodes by adding the following stanza:

      platform:
        azure:
          settings:
            securityType: TrustedLaunch
            trustedLaunch:
              uefiSettings:
                secureBoot: Enabled
                virtualizedTrustedPlatformModule: Enabled

3.8.4.4. Enabling confidential VMs

You can enable confidential VMs when installing your cluster. You can enable confidential VMs for compute nodes, control plane nodes, or all nodes.

Important

Using confidential VMs is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

You can use confidential VMs with the following VM sizes:

  • DCasv5-series
  • DCadsv5-series
  • ECasv5-series
  • ECadsv5-series
Important

Confidential VMs are currently not supported on 64-bit ARM architectures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Edit the install-config.yaml file before deploying your cluster:

    • Enable confidential VMs only on control plane by adding the following stanza:

      controlPlane:
        platform:
          azure:
            settings:
              securityType: ConfidentialVM
              confidentialVM:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
            osDisk:
              securityProfile:
                securityEncryptionType: VMGuestStateOnly
    • Enable confidential VMs only on compute nodes by adding the following stanza:

      compute:
        platform:
          azure:
            settings:
              securityType: ConfidentialVM
              confidentialVM:
                uefiSettings:
                  secureBoot: Enabled
                  virtualizedTrustedPlatformModule: Enabled
            osDisk:
              securityProfile:
                securityEncryptionType: VMGuestStateOnly
    • Enable confidential VMs on all nodes by adding the following stanza:

      platform:
        azure:
          settings:
            securityType: ConfidentialVM
            confidentialVM:
              uefiSettings:
                secureBoot: Enabled
                virtualizedTrustedPlatformModule: Enabled
          osDisk:
            securityProfile:
              securityEncryptionType: VMGuestStateOnly

3.8.4.5. Sample customized install-config.yaml file for Azure

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

Important

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com 1
controlPlane: 2
  hyperthreading: Enabled 3 4
  name: master
  platform:
    azure:
      encryptionAtHost: true
      ultraSSDCapability: Enabled
      osDisk:
        diskSizeGB: 1024 5
        diskType: Premium_LRS
        diskEncryptionSet:
          resourceGroup: disk_encryption_set_resource_group
          name: disk_encryption_set_name
          subscriptionId: secondary_subscription_id
      osImage:
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      type: Standard_D8s_v3
  replicas: 3
compute: 6
- hyperthreading: Enabled 7 8
  name: worker
  platform:
    azure:
      ultraSSDCapability: Enabled
      type: Standard_D2s_v3
      encryptionAtHost: true
      osDisk:
        diskSizeGB: 512 9
        diskType: Standard_LRS
        diskEncryptionSet:
          resourceGroup: disk_encryption_set_resource_group
          name: disk_encryption_set_name
          subscriptionId: secondary_subscription_id
      osImage:
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      zones: 10
      - "1"
      - "2"
      - "3"
  replicas: 5
metadata:
  name: test-cluster 11
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OVNKubernetes 12
  serviceNetwork:
  - 172.30.0.0/16
platform:
  azure:
    defaultMachinePlatform:
      osImage: 13
        publisher: example_publisher_name
        offer: example_image_offer
        sku: example_offer_sku
        version: example_image_version
      ultraSSDCapability: Enabled
    baseDomainResourceGroupName: resource_group 14
    region: usgovvirginia
    resourceGroupName: existing_resource_group 15
    networkResourceGroupName: vnet_resource_group 16
    virtualNetwork: vnet 17
    controlPlaneSubnet: control_plane_subnet 18
    computeSubnet: compute_subnet 19
    outboundType: UserDefinedRouting 20
    cloudName: AzureUSGovernmentCloud 21
pullSecret: '{"auths": ...}' 22
fips: false 23
sshKey: ssh-ed25519 AAAA... 24
publish: Internal 25
1 11 22
Required.
2 6
If you do not provide these parameters and values, the installation program provides the default value.
3 7
The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
4 8
Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger virtual machine types, such as Standard_D8s_v3, for your machines if you disable simultaneous multithreading.

5 9
You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes is 1024 GB.
10
Specify a list of zones to deploy your machines to. For high availability, specify at least two zones.
12
The cluster network plugin to install. The default value OVNKubernetes is the only supported value.
13
Optional: A custom Red Hat Enterprise Linux CoreOS (RHCOS) image that should be used to boot control plane and compute machines. The publisher, offer, sku, and version parameters under platform.azure.defaultMachinePlatform.osImage apply to both control plane and compute machines. If the parameters under controlPlane.platform.azure.osImage or compute.platform.azure.osImage are set, they override the platform.azure.defaultMachinePlatform.osImage parameters.
14
Specify the name of the resource group that contains the DNS zone for your base domain.
15
Specify the name of an already existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster.
16
If you use an existing VNet, specify the name of the resource group that contains it.
17
If you use an existing VNet, specify its name.
18
If you use an existing VNet, specify the name of the subnet to host the control plane machines.
19
If you use an existing VNet, specify the name of the subnet to host the compute machines.
20
You can customize your own outbound routing. Configuring user-defined routing prevents exposing external endpoints in your cluster. User-defined routing for egress requires deploying your cluster to an existing VNet.
21
Specify the name of the Azure cloud environment to deploy your cluster to. Set AzureUSGovernmentCloud to deploy to a Microsoft Azure Government (MAG) region. The default value is AzurePublicCloud.
23
Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
Important

To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Switching RHEL to FIPS mode.

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

24
You can optionally provide the sshKey value that you use to access the machines in your cluster.
Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

25
How to publish the user-facing endpoints of your cluster. Set publish to Internal to deploy a private cluster, which cannot be accessed from the internet. The default value is External.

3.8.4.6. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.
  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    Note

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4
    If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5
    Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.
    Note

    The installation program does not support the proxy readinessEndpoints field.

    Note

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

Additional resources

3.8.5. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have an Azure subscription ID and tenant ID.
  • If you are installing the cluster using a service principal, you have its application ID and password.
  • If you are installing the cluster using a system-assigned managed identity, you have enabled it on the virtual machine that you will run the installation program from.
  • If you are installing the cluster using a user-assigned managed identity, you have met these prerequisites:

    • You have its client ID.
    • You have assigned it to the virtual machine that you will run the installation program from.

Procedure

  1. Optional: If you have run the installation program on this computer before, and want to use an alternative service principal or managed identity, go to the ~/.azure/ directory and delete the osServicePrincipal.json configuration file.

    Deleting this file prevents the installation program from automatically reusing subscription and authentication values from a previous installation.

  2. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.

    If the installation program cannot locate the osServicePrincipal.json configuration file from a previous installation, you are prompted for Azure subscription and authentication values.

  3. Enter the following Azure parameter values for your subscription:

    • azure subscription id: Enter the subscription ID to use for the cluster.
    • azure tenant id: Enter the tenant ID.
  4. Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client id:

    • If you are using a service principal, enter its application ID.
    • If you are using a system-assigned managed identity, leave this value blank.
    • If you are using a user-assigned managed identity, specify its client ID.
  5. Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client secret:

    • If you are using a service principal, enter its password.
    • If you are using a system-assigned managed identity, leave this value blank.
    • If you are using a user-assigned managed identity,leave this value blank.

If previously not detected, the installation program creates an osServicePrincipal.json configuration file and stores this file in the ~/.azure/ directory on your computer. This ensures that the installation program can load the profile when it is creating an OpenShift Container Platform cluster on the target platform.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.
  • Credential information also outputs to <installation_directory>/.openshift_install.log.
Important

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

Important
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

3.8.6. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

Additional resources

  • See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.

3.8.7. Next steps

Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.