Chapter 7. Installing on bare metal
7.1. Installing a cluster on bare metal
In OpenShift Container Platform version 4.7, you can install a cluster on bare metal infrastructure that you provision.
While you might be able to follow this procedure to deploy a cluster on virtualized or cloud environments, you must be aware of additional considerations for non-bare metal platforms. Review the information in the guidelines for deploying OpenShift Container Platform on non-tested platforms before you attempt to install an OpenShift Container Platform cluster in such an environment.
7.1.1. Prerequisites
- Review details about the OpenShift Container Platform installation and update processes.
If you use a firewall, you must configure it to allow the sites that your cluster requires access to.
NoteBe sure to also review this site list if you are configuring a proxy.
7.1.2. Internet access for OpenShift Container Platform
In OpenShift Container Platform 4.7, you require access to the Internet to install your cluster.
You must have Internet access to:
- Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
7.1.3. Machine requirements for a cluster with user-provisioned infrastructure
For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
7.1.3.1. Required machines
The smallest OpenShift Container Platform clusters require the following hosts:
- One temporary bootstrap machine
- Three control plane, or master, machines
- At least two compute machines, which are also known as worker machines. If you are running a three-node cluster, running zero compute machines is supported. Running one compute machine is not supported.
The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
7.1.3.2. Network connectivity requirements
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
7.1.3.3. Minimum resource requirements
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | CPU [1] | RAM | Storage | IOPS [2] |
---|---|---|---|---|---|
Bootstrap | RHCOS | 4 | 16 GB | 100 GB | 300 |
Control plane | RHCOS | 4 | 16 GB | 100 GB | 300 |
Compute | RHCOS or RHEL 7.9 | 2 | 8 GB | 100 GB | 300 |
- One CPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = CPUs.
- OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
7.1.3.4. Certificate signing requests management
Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager
only approves the kubelet client CSRs. The machine-approver
cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
7.1.4. Creating the user-provisioned infrastructure
Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
Prerequisites
- Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
Procedure
- Configure DHCP or set static IP addresses on each node.
- Provision the required load balancers.
- Configure the ports for your machines.
- Configure DNS.
- Ensure network connectivity.
7.1.4.1. Networking requirements for user-provisioned infrastructure
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config from the machine config server.
During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster to establish a network connection, which allows them to download their Ignition config files.
It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
Protocol | Port | Description |
---|---|---|
ICMP | N/A | Network reachability tests |
TCP |
| Metrics |
|
Host level services, including the node exporter on ports | |
| The default ports that Kubernetes reserves | |
| openshift-sdn | |
UDP |
| VXLAN and Geneve |
| VXLAN and Geneve | |
|
Host level services, including the node exporter on ports | |
TCP/UDP |
| Kubernetes node port |
Protocol | Port | Description |
---|---|---|
TCP |
| Kubernetes API |
Protocol | Port | Description |
---|---|---|
TCP |
| etcd server and peer ports |
Network topology requirements
The infrastructure that you provision for your cluster must meet the following network topology requirements.
OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
Load balancers
Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
- A stateless load balancing algorithm. The options vary based on the load balancer implementation.
ImportantDo not configure session persistence for an API load balancer.
Configure the following ports on both the front and back of the load balancers:
Table 7.5. API load balancer Port Back-end machines (pool members) Internal External Description 6443
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the
/readyz
endpoint for the API server health check probe.X
X
Kubernetes API server
22623
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
X
Machine config server
NoteThe load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the
/readyz
endpoint to the removal of the API server instance from the pool. Within the time frame after/readyz
returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
- A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
Configure the following ports on both the front and back of the load balancers:
Table 7.6. Application Ingress load balancer Port Back-end machines (pool members) Internal External Description 443
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTPS traffic
80
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTP traffic
If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
NTP configuration
OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
Additional resources
7.1.4.2. User-provisioned DNS requirements
DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name>
is the cluster name and <base_domain>
is the cluster base domain that you specify in the install-config.yaml
file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>.
.
Component | Record | Description |
---|---|---|
Kubernetes API |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster. Important The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods. | |
Routes |
| Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
Bootstrap |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster. |
Master hosts |
| DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster. |
Worker hosts |
| Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster. |
You can use the nslookup <hostname>
command to verify name resolution. You can use the dig -x <ip_address>
command to verify reverse name resolution for the PTR records.
The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
Example 7.1. Sample DNS zone database
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. IN MX 10 smtp.example.com. ; ; ns1 IN A 192.168.1.5 smtp IN A 192.168.1.5 ; helper IN A 192.168.1.5 helper.ocp4 IN A 192.168.1.5 ; ; The api identifies the IP of your load balancer. api.ocp4 IN A 192.168.1.5 api-int.ocp4 IN A 192.168.1.5 ; ; The wildcard also identifies the load balancer. *.apps.ocp4 IN A 192.168.1.5 ; ; Create an entry for the bootstrap host. bootstrap.ocp4 IN A 192.168.1.96 ; ; Create entries for the master hosts. master0.ocp4 IN A 192.168.1.97 master1.ocp4 IN A 192.168.1.98 master2.ocp4 IN A 192.168.1.99 ; ; Create entries for the worker hosts. worker0.ocp4 IN A 192.168.1.11 worker1.ocp4 IN A 192.168.1.7 ; ;EOF
The following example BIND zone file shows sample PTR records for reverse name resolution.
Example 7.2. Sample DNS zone database for reverse records
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. ; ; The syntax is "last octet" and the host must have an FQDN ; with a trailing dot. 97 IN PTR master0.ocp4.example.com. 98 IN PTR master1.ocp4.example.com. 99 IN PTR master2.ocp4.example.com. ; 96 IN PTR bootstrap.ocp4.example.com. ; 5 IN PTR api.ocp4.example.com. 5 IN PTR api-int.ocp4.example.com. ; 11 IN PTR worker0.ocp4.example.com. 7 IN PTR worker1.ocp4.example.com. ; ;EOF
For clusters using installer-provisioned infrastructure, only the DNS records must be added.
7.1.5. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide this key to your cluster’s machines.
7.1.6. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space
Procedure
- Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- Select your infrastructure provider.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf openshift-install-linux.tar.gz
- Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
7.1.7. Installing the OpenShift CLI by downloading the binary
You can install the OpenShift CLI (oc
) to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.7. Download and install the new version of oc
.
7.1.7.1. Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.7 Linux Client entry and save the file.
Unpack the archive:
$ tar xvzf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
7.1.7.2. Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.7 Windows Client entry and save the file.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
7.1.7.3. Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.7 MacOSX Client entry and save the file.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
7.1.8. Manually creating the installation configuration file
For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the access token for your cluster.
Procedure
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
ImportantYou must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
Customize the following
install-config.yaml
file template and save it in the<installation_directory>
.NoteYou must name this configuration file
install-config.yaml
.Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the next step of the installation process. You must back it up now.
7.1.8.1. Installation configuration parameters
Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the install-config.yaml
file.
The openshift-install
command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
7.1.8.1.1. Required configuration parameters
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the | String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource | Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: | Object |
| Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io. |
{ "auths":{ "cloud.openshift.com":{ "auth":"b3Blb=", "email":"you@example.com" }, "quay.io":{ "auth":"b3Blb=", "email":"you@example.com" } } } |
7.1.8.1.2. Network configuration parameters
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values |
---|---|---|
| The configuration for the cluster network. | Object Note
You cannot modify parameters specified by the |
| The cluster network provider Container Network Interface (CNI) plug-in to install. |
Either |
| The IP address blocks for pods.
The default value is If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 |
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between |
|
The subnet prefix length to assign to each individual node. For example, if | A subnet prefix.
The default value is |
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. | An array with an IP address block in CIDR format. For example: networking: serviceNetwork: - 172.30.0.0/16 |
| The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: machineNetwork: - cidr: 10.0.0.0/16 |
|
Required if you use | An IP network block in CIDR notation.
For example, Note
Set the |
7.1.8.1.3. Optional configuration parameters
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. | String |
| The configuration for the machines that comprise the compute nodes. |
Array of |
|
Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
| The configuration for the machines that comprise the control plane. |
Array of |
|
Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of control plane machines to provision. |
The only supported value is |
| The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported. Note Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Cluster Operators reference content. |
|
|
Enable or disable FIPS mode. The default is Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the Note If you are using Azure File storage, you cannot enable FIPS mode. |
|
| Sources and repositories for the release-image content. |
Array of objects. Includes a |
|
Required if you use | String |
| Specify one or more repositories that may also contain the same images. | Array of strings |
| How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
Setting this field to Important
If the value of the field is set to |
| The SSH key or keys to authenticate access your cluster machines. Note
For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your | One or more keys. For example: sshKey: <key1> <key2> <key3> |
7.1.8.2. Sample install-config.yaml file for bare metal
You can customize the install-config.yaml
file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
apiVersion: v1 baseDomain: example.com 1 compute: 2 - hyperthreading: Enabled 3 name: worker replicas: 0 4 controlPlane: 5 hyperthreading: Enabled 6 name: master replicas: 3 7 metadata: name: test 8 networking: clusterNetwork: - cidr: 10.128.0.0/14 9 hostPrefix: 23 10 networkType: OpenShiftSDN serviceNetwork: 11 - 172.30.0.0/16 platform: none: {} 12 fips: false 13 pullSecret: '{"auths": ...}' 14 sshKey: 'ssh-ed25519 AAAA...' 15
- 1
- The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
- 2 5
- The
controlPlane
section is a single mapping, but thecompute
section is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecompute
section must begin with a hyphen,-
, and the first line of thecontrolPlane
section must not. Only one control plane pool is used. - 3 6
- Whether to enable or disable simultaneous multithreading (SMT), or
hyperthreading
. By default, SMT is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled
. If you disable SMT, you must disable it in all cluster machines; this includes both control plane and compute machines.NoteSimultaneous multithreading (SMT) is enabled by default. If SMT is not enabled in your BIOS settings, the
hyperthreading
parameter has no effect.ImportantIf you disable
hyperthreading
, whether in the BIOS or in theinstall-config.yaml
, ensure that your capacity planning accounts for the dramatically decreased machine performance. - 4
- You must set the value of the
replicas
parameter to0
. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform. - 7
- The number of control plane machines that you add to the cluster. Because the cluster uses these values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
- 8
- The cluster name that you specified in your DNS records.
- 9
- A block of IP addresses from which pod IP addresses are allocated. This block must not overlap with existing physical networks. These IP addresses are used for the pod network. If you need to access the pods from an external network, you must configure load balancers and routers to manage the traffic.Note
Class E CIDR range is reserved for a future use. To use the Class E CIDR range, you must ensure your networking environment accepts the IP addresses within the Class E CIDR range.
- 10
- The subnet prefix length to assign to each individual node. For example, if
hostPrefix
is set to23
, then each node is assigned a/23
subnet out of the givencidr
, which allows for 510 (2^(32 - 23) - 2) pod IPs addresses. If you are required to provide access to nodes from an external network, configure load balancers and routers to manage the traffic. - 11
- The IP address pool to use for service IP addresses. You can enter only one IP address pool. This block must not overlap with existing physical networks. If you need to access the services from an external network, configure load balancers and routers to manage the traffic.
- 12
- You must set the platform to
none
. You cannot provide additional platform configuration variables for your platform.WarningRed Hat Virtualization does not currently support installation with user-provisioned infrastructure on the oVirt platform. Therefore, you must set the platform to
none
, allowing OpenShift Container Platform to identify each node as a bare-metal node and the cluster as a bare-metal cluster. This is the same as installing a cluster on any platform, and has the following limitations:- There will be no cluster provider so you must manually add each machine and there will be no node scaling capabilities.
- The oVirt CSI driver will not be installed and there will be no CSI capabilities.
- 13
- Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the
x86_64
architecture. - 14
- The pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
- 15
- The public portion of the default SSH key for the
core
user in Red Hat Enterprise Linux CoreOS (RHCOS).NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.
7.1.8.3. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
For bare metal installations, if you do not assign node IP addresses from the range that is specified in the networking.machineNetwork[].cidr
field in the install-config.yaml
file, you must include them in the proxy.noProxy
field.
Prerequisites
-
You have an existing
install-config.yaml
file. You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- ...
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster.
- 3
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace to hold the additional CA certificates. If you provideadditionalTrustBundle
and at least one proxy setting, theProxy
object is configured to reference theuser-ca-bundle
config map in thetrustedCA
field. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges the contents specified for thetrustedCA
parameter with the RHCOS trust bundle. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
NoteThe installation program does not support the proxy
readinessEndpoints
field.- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
7.1.9. Configuring a three-node cluster
You can optionally install and run three-node clusters in OpenShift Container Platform with no workers. This provides smaller, more resource efficient clusters for cluster administrators and developers to use for development, production, and testing.
Procedure
Edit the
install-config.yaml
file to set the number of compute replicas, which are also known as worker replicas, to0
, as shown in the followingcompute
stanza:compute: - name: worker platform: {} replicas: 0
7.1.10. Creating the Kubernetes manifest and Ignition config files
Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
Prerequisites
- You obtained the OpenShift Container Platform installation program.
-
You created the
install-config.yaml
installation configuration file.
Procedure
Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
$ ./openshift-install create manifests --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the installation directory that contains theinstall-config.yaml
file you created.
WarningIf you are installing a three-node cluster, skip the following step to allow the control plane nodes to be schedulable.
ImportantWhen you configure control plane nodes from the default unschedulable to schedulable, additional subscriptions are required. This is because control plane nodes then become worker nodes.
Check that the
mastersSchedulable
parameter in the<installation_directory>/manifests/cluster-scheduler-02-config.yml
Kubernetes manifest file is set tofalse
. This setting prevents pods from being scheduled on the control plane machines:-
Open the
<installation_directory>/manifests/cluster-scheduler-02-config.yml
file. -
Locate the
mastersSchedulable
parameter and ensure that it is set tofalse
. - Save and exit the file.
-
Open the
To create the Ignition configuration files, run the following command from the directory that contains the installation program:
$ ./openshift-install create ignition-configs --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the same installation directory.
The following files are generated in the directory:
. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
7.1.11. Installing RHCOS and starting the OpenShift Container Platform bootstrap process
To install OpenShift Container Platform on bare metal infrastructure that you provision, you must install Red Hat Enterprise Linux CoreOS (RHCOS) on the machines. When you install RHCOS, you must provide the Ignition config file that was generated by the OpenShift Container Platform installation program for the type of machine you are installing. If you have configured suitable networking, DNS, and load balancing infrastructure, the OpenShift Container Platform bootstrap process begins automatically after the RHCOS machines have rebooted.
To install RHCOS on the machines, follow either the steps to use an ISO image or network PXE booting.
The compute node deployment steps included in this installation document are RHCOS-specific. If you choose instead to deploy RHEL-based compute nodes, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and planned for removal in a future release of OpenShift Container Platform 4.
You can configure RHCOS during ISO and PXE installations by using the following methods:
-
Kernel arguments: You can use kernel arguments to provide installation-specific information. For example, you can specify the locations of the RHCOS installation files that you uploaded to your HTTP server and the location of the Ignition config file for the type of node you are installing. For a PXE installation, you can use the
APPEND
parameter to pass the arguments to the kernel of the live installer. For an ISO installation, you can interrupt the live installation boot process to add the kernel arguments. In both installation cases, you can use specialcoreos.inst.*
arguments to direct the live installer, as well as standard installation boot arguments for turning standard kernel services on or off. -
Ignition configs: OpenShift Container Platform Ignition config files (
*.ign
) are specific to the type of node you are installing. You pass the location of a bootstrap, control plane, or compute node Ignition config file during the RHCOS installation so that it takes effect on first boot. In special cases, you can create a separate, limited Ignition config to pass to the live system. That Ignition config could do a certain set of tasks, such as reporting success to a provisioning system after completing installation. This special Ignition config is consumed by thecoreos-installer
to be applied on first boot of the installed system. Do not provide the standard control plane and compute node Ignition configs to the live ISO directly. -
coreos-installer
: You can boot the live ISO installer to a shell prompt, which allows you to prepare the permanent system in a variety of ways before first boot. In particular, you can run thecoreos-installer
command to identify various artifacts to include, work with disk partitions, and set up networking. In some cases, you can configure features on the live system and copy them to the installed system.
Whether to use an ISO or PXE install depends on your situation. A PXE install requires an available DHCP service and more preparation, but can make the installation process more automated. An ISO install is a more manual process and can be inconvenient if you are setting up more than a few machines.
As of OpenShift Container Platform 4.6, the RHCOS ISO and other installation artifacts provide support for installation on disks with 4K sectors.
7.1.11.1. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines using an ISO image
Before you install a cluster on infrastructure that you provision, you must create RHCOS machines for it to use. You can use an ISO image to create the machines.
Prerequisites
- Obtain the Ignition config files for your cluster.
- Have access to an HTTP server that can be accessed from your computer, and from the machines that you create.
Procedure
Upload the control plane, compute, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
ImportantIf you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
Obtain the RHCOS images that are required for your preferred method of installing operating system instances from the RHCOS image mirror page.
ImportantThe RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available. Use only ISO images for this procedure. RHCOS qcow2 images are not supported for this installation type.
ISO file names resemble the following example:
rhcos-<version>-live.<architecture>.iso
Use the ISO to start the RHCOS installation. Use one of the following installation options:
- Burn the ISO image to a disk and boot it directly.
- Use ISO redirection via a LOM interface.
-
Boot the ISO image. You can interrupt the installation boot process to add kernel arguments. However, for this ISO procedure you should use the
coreos-installer
command instead of adding kernel arguments. If you run the live installer without options or interruption, the installer boots up to a shell prompt on the live system, ready for you to install RHCOS to disk. -
Review the Advanced RHCOS installation reference section for different ways of configuring features, such as networking and disk partitions, before running the
coreos-installer
. Run the
coreos-installer
command. At a minimum, you must identify the Ignition config file location for your node type, and the location of the disk you are installing to. Here is an example:$ sudo coreos-installer install \ --ignition-url=https://host/worker.ign /dev/sda
- After RHCOS installs, the system reboots. During the system reboot, it applies the Ignition config file that you specified.
Continue to create the other machines for your cluster.
ImportantYou must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
7.1.11.2. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines by PXE or iPXE booting
Before you install a cluster that uses manually-provisioned RHCOS nodes, such as bare metal, you must create RHCOS machines for it to use. You can use PXE or iPXE booting to create the machines.
Prerequisites
- Obtain the Ignition config files for your cluster.
- Configure suitable PXE or iPXE infrastructure.
- Have access to an HTTP server that you can access from your computer.
Procedure
Upload the master, worker, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
ImportantYou can add or change configuration settings in your Ignition configs before saving them to your HTTP server. If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
Obtain the RHCOS
kernel
,initramfs
androotfs
files from the RHCOS image mirror page.ImportantThe RHCOS artifacts might not change with every release of OpenShift Container Platform. You must download artifacts with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate
kernel
,initramfs
, androotfs
artifacts described below for this procedure. RHCOS qcow2 images are not supported for this installation type.The file names contain the OpenShift Container Platform version number. They resemble the following examples:
-
kernel
:rhcos-<version>-live-kernel-<architecture>
-
initramfs
:rhcos-<version>-live-initramfs.<architecture>.img
-
rootfs
:rhcos-<version>-live-rootfs.<architecture>.img
-
Upload the additional files that are required for your booting method:
-
For traditional PXE, upload the
kernel
andinitramfs
files to your TFTP server and therootfs
file to your HTTP server. For iPXE, upload the
kernel
,initramfs
, androotfs
files to your HTTP server.ImportantIf you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
-
For traditional PXE, upload the
- Configure the network boot infrastructure so that the machines boot from their local disks after RHCOS is installed on them.
Configure PXE or iPXE installation for the RHCOS images.
Modify one of the following example menu entries for your environment and verify that the image and Ignition files are properly accessible:
For PXE:
DEFAULT pxeboot TIMEOUT 20 PROMPT 0 LABEL pxeboot KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 1 APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 2 3
- 1
- Specify the location of the live
kernel
file that you uploaded to your HTTP server. The URL must be HTTP, TFTP, or FTP; HTTPS and NFS are not supported. - 2
- If you use multiple NICs, specify a single interface in the
ip
option. For example, to use DHCP on a NIC that is namedeno1
, setip=eno1:dhcp
. - 3
- Specify locations of the RHCOS files that you uploaded to your HTTP server. The
initrd
parameter value is the location of theinitramfs
file, thecoreos.live.rootfs_url
parameter value is the location of therootfs
file, and thecoreos.inst.ignition_url
parameter value is the location of the bootstrap Ignition config file. You can also add more kernel arguments to theAPPEND
line to configure networking or other boot options.
NoteThis configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more
console=
arguments to theAPPEND
line. For example, addconsole=tty0 console=ttyS0
to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.For iPXE:
kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 1 2 initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img 3 boot
- 1
- Specify locations of the RHCOS files that you uploaded to your HTTP server. The
kernel
parameter value is the location of thekernel
file, theinitrd=main
argument is needed for booting on UEFI systems, thecoreos.live.rootfs_url
parameter value is the location of therootfs
file, and thecoreos.inst.ignition_url
parameter value is the location of the bootstrap Ignition config file. - 2
- If you use multiple NICs, specify a single interface in the
ip
option. For example, to use DHCP on a NIC that is namedeno1
, setip=eno1:dhcp
. - 3
- Specify the location of the
initramfs
file that you uploaded to your HTTP server.
NoteThis configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more
console=
arguments to thekernel
line. For example, addconsole=tty0 console=ttyS0
to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
If you use PXE UEFI, perform the following actions:
Provide the
shimx64.efi
andgrubx64.efi
EFI binaries and thegrub.cfg
file that are required for booting the system.Extract the necessary EFI binaries by mounting the RHCOS ISO to your host and then mounting the
images/efiboot.img
file to your host:$ mkdir -p /mnt/iso
$ mkdir -p /mnt/efiboot
$ mount -o loop rhcos-installer.x86_64.iso /mnt/iso
$ mount -o loop,ro /mnt/iso/images/efiboot.img /mnt/efiboot
From the
efiboot.img
mount point, copy theEFI/redhat/shimx64.efi
andEFI/redhat/grubx64.efi
files to your TFTP server:$ cp /mnt/efiboot/EFI/redhat/shimx64.efi .
$ cp /mnt/efiboot/EFI/redhat/grubx64.efi .
$ umount /mnt/efiboot
$ umount /mnt/iso
-
Copy the
EFI/redhat/grub.cfg
file that is included in the RHCOS ISO to your TFTP server.
Edit the
grub.cfg
file to include arguments similar to the following:menuentry 'Install Red Hat Enterprise Linux CoreOS' --class fedora --class gnu-linux --class gnu --class os { linuxefi rhcos-<version>-live-kernel-<architecture> coreos.inst.install_dev=/dev/sda coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign initrdefi rhcos-<version>-live-initramfs.<architecture>.img }
where:
rhcos-<version>-live-kernel-<architecture>
-
Specifies the
kernel
file that you uploaded to your TFTP server. http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img
- Specifies the location of the live rootfs image that you uploaded to your HTTP server.
http://<HTTP_server>/bootstrap.ign
- Specifies the location of the bootstrap Ignition config file that you uploaded to your HTTP server.
rhcos-<version>-live-initramfs.<architecture>.img
-
Specifies the location of the
initramfs
file that you uploaded to your TFTP server.
NoteFor more information on how to configure a PXE server for UEFI boot, see the Red Hat Knowledgebase article: How to configure/setup a PXE server for UEFI boot for Red Hat Enterprise Linux?.
Continue to create the machines for your cluster.
ImportantYou must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
7.1.11.3. Advanced Red Hat Enterprise Linux CoreOS (RHCOS) installation configuration
A key benefit for manually provisioning the Red Hat Enterprise Linux CoreOS (RHCOS) nodes for OpenShift Container Platform is to be able to do configuration that is not available through default OpenShift Container Platform installation methods. This section describes some of the configurations that you can do using techniques that include:
- Passing kernel arguments to the live installer
-
Running
coreos-installer
manually from the live system - Embedding Ignition configs in an ISO
The advanced configuration topics for manual Red Hat Enterprise Linux CoreOS (RHCOS) installations detailed in this section relate to disk partitioning, networking, and using Ignition configs in different ways.
7.1.11.3.1. Using advanced networking options for PXE and ISO installations
Networking for OpenShift Container Platform nodes uses DHCP by default to gather all necessary configuration settings. To set up static IP addresses or configure special settings, such as bonding, you can do one of the following:
- Pass special kernel parameters when you boot the live installer.
- Use a machine config to copy networking files to the installed system.
- Configure networking from a live installer shell prompt, then copy those settings to the installed system so that they take effect when the installed system first boots.
To configure a PXE or iPXE installation, use one of the following options:
- See the "Advanced RHCOS installation reference" tables.
- Use a machine config to copy networking files to the installed system.
To configure an ISO installation, use the following procedure.
Procedure
- Boot the ISO installer.
-
From the live system shell prompt, configure networking for the live system using available RHEL tools, such as
nmcli
ornmtui
. Run the
coreos-installer
command to install the system, adding the--copy-network
option to copy networking configuration. For example:$ coreos-installer install --copy-network \ --ignition-url=http://host/worker.ign /dev/sda
ImportantThe
--copy-network
option only copies networking configuration found under/etc/NetworkManager/system-connections
. In particular, it does not copy the system hostname.- Reboot into the installed system.
7.1.11.3.2. Disk partitioning
The disk partitions are created on OpenShift Container Platform cluster nodes during the Red Hat Enterprise Linux CoreOS (RHCOS) installation. Each RHCOS node of a particular architecture uses the same partition layout, unless the default partitioning configuration is overridden. During the RHCOS installation, the size of the root file system is increased to use the remaining available space on the target device.
However, there are two cases where you might want to intervene to override the default partitioning when installing an OpenShift Container Platform node:
Create separate partitions: For greenfield installations on an empty disk, you might want to add separate storage to a partition. This is officially supported for making
/var
or a subdirectory of/var
, such as/var/lib/etcd
, a separate partition, but not both.ImportantKubernetes supports only two filesystem partitions. If you add more than one partition to the original configuration, Kubernetes cannot monitor all of them.
-
Retain existing partitions: For a brownfield installation where you are reinstalling OpenShift Container Platform on an existing node and want to retain data partitions installed from your previous operating system, there are both boot arguments and options to
coreos-installer
that allow you to retain existing data partitions.
7.1.11.3.2.1. Creating a separate /var
partition
In general, disk partitioning for OpenShift Container Platform should be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var
partition or a subdirectory of /var
. For example:
-
/var/lib/containers
: Holds container-related content that can grow as more images and containers are added to a system. -
/var/lib/etcd
: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage. -
/var
: Holds data that you might want to keep separate for purposes such as auditing.
Storing the contents of a /var
directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
Because /var
must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var
partition by creating a machine config that is inserted during the openshift-install
preparation phases of an OpenShift Container Platform installation.
Procedure
Create a directory to hold the OpenShift Container Platform installation files:
$ mkdir $HOME/clusterconfig
Run
openshift-install
to create a set of files in themanifest
andopenshift
subdirectories. Answer the system questions as you are prompted:$ openshift-install create manifests --dir $HOME/clusterconfig ? SSH Public Key ... $ ls $HOME/clusterconfig/openshift/ 99_kubeadmin-password-secret.yaml 99_openshift-cluster-api_master-machines-0.yaml 99_openshift-cluster-api_master-machines-1.yaml 99_openshift-cluster-api_master-machines-2.yaml ...
Create a
MachineConfig
object and add it to a file in theopenshift
directory. For example, name the file98-var-partition.yaml
, change the disk device name to the name of the storage device on theworker
systems, and set the storage size as appropriate. This example places the/var
directory on a separate partition:apiVersion: machineconfiguration.openshift.io/v1 kind: MachineConfig metadata: labels: machineconfiguration.openshift.io/role: worker name: 98-var-partition spec: config: ignition: version: 3.2.0 storage: disks: - device: /dev/<device_name> 1 partitions: - label: var startMiB: <partition_start_offset> 2 sizeMiB: <partition_size> 3 filesystems: - device: /dev/disk/by-partlabel/var path: /var format: xfs systemd: units: - name: var.mount 4 enabled: true contents: | [Unit] Before=local-fs.target [Mount] What=/dev/disk/by-partlabel/var Where=/var Options=defaults,prjquota 5 [Install] WantedBy=local-fs.target
- 1
- The storage device name of the disk that you want to partition.
- 2
- When adding a data partition to the boot disk, a minimum value of 25000 mebibytes is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
- 3
- The size of the data partition in mebibytes.
- 4
- The name of the mount unit must match the directory specified in the
Where=
directive. For example, for a filesystem mounted on/var/lib/containers
, the unit must be namedvar-lib-containers.mount
. - 5
- The
prjquota
mount option must be enabled for filesystems used for container storage.
NoteWhen creating a separate
/var
partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.Run
openshift-install
again to create Ignition configs from a set of files in themanifest
andopenshift
subdirectories:$ openshift-install create ignition-configs --dir $HOME/clusterconfig $ ls $HOME/clusterconfig/ auth bootstrap.ign master.ign metadata.json worker.ign
Now you can use the Ignition config files as input to the ISO or PXE manual installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
7.1.11.3.2.2. Retaining existing partitions
For an ISO installation, you can add options to the coreos-installer
command line that causes the installer to maintain one or more existing partitions. For a PXE installation, you can APPEND
coreos.inst.*
options to preserve partitions.
Saved partitions might be partitions from an existing OpenShift Container Platform system that has data partitions that you want to keep. Here are a few tips:
- If you save existing partitions, and those partitions do not leave enough space for RHCOS, installation will fail without damaging the saved partitions.
- Identify the disk partitions you want to keep either by partition label or by number.
For an ISO installation
This example preserves any partition in which the partition label begins with data
(data*
):
# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \ --save-partlabel 'data*' /dev/sda
The following example illustrates running the coreos-installer
in a way that preserves the sixth (6) partition on the disk:
# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \ --save-partindex 6 /dev/sda
This example preserves partitions 5 and higher:
# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign --save-partindex 5- /dev/sda
In the previous examples where partition saving is used, coreos-installer
recreates the partition immediately.
For a PXE installation
This APPEND
option preserves any partition in which the partition label begins with 'data' ('data*'):
coreos.inst.save_partlabel=data*
This APPEND
option preserves partitions 5 and higher:
coreos.inst.save_partindex=5-
This APPEND
option preserves partition 6:
coreos.inst.save_partindex=6
7.1.11.3.3. Identifying Ignition configs
When doing an RHCOS manual installation, there are two types of Ignition configs that you can provide, with different reasons for providing each one:
Permanent install Ignition config: Every manual RHCOS installation needs to pass one of the Ignition config files generated by
openshift-installer
, such asbootstrap.ign
,master.ign
andworker.ign
, to carry out the installation.ImportantIt is not recommended to modify these files.
For PXE installations, you pass the Ignition configs on the
APPEND
line using thecoreos.inst.ignition_url=
option. For ISO installations, after the ISO boots to the shell prompt, you identify the Ignition config on thecoreos-installer
command line with the--ignition-url=
option. In both cases, only HTTP and HTTPS protocols are supported.Live install Ignition config: This type must be created manually and should be avoided if possible, as it is not supported by Red Hat. With this method, the Ignition config passes to the live install medium, runs immediately upon booting, and performs setup tasks before and/or after the RHCOS system installs to disk. This method should only be used for performing tasks that must be performed once and not applied again later, such as with advanced partitioning that cannot be done using a machine config.
For PXE or ISO boots, you can create the Ignition config and
APPEND
theignition.config.url=
option to identify the location of the Ignition config. You also need to appendignition.firstboot ignition.platform.id=metal
or theignition.config.url
option will be ignored.
7.1.11.3.3.1. Embedding an Ignition config in the RHCOS ISO
You can embed a live install Ignition config directly in an RHCOS ISO image. When the ISO image is booted, the embedded config will be applied automatically.
Procedure
-
Download the
coreos-installer
binary from the following image mirror page: https://mirror.openshift.com/pub/openshift-v4/clients/coreos-installer/latest/. Retrieve the RHCOS ISO image and the Ignition config file, and copy them into an accessible directory, such as
/mnt
:# cp rhcos-<version>-live.x86_64.iso bootstrap.ign /mnt/ # chmod 644 /mnt/rhcos-<version>-live.x86_64.iso
Run the following command to embed the Ignition config into the ISO:
# ./coreos-installer iso ignition embed -i /mnt/bootstrap.ign \ /mnt/rhcos-<version>-live.x86_64.iso
You can now use that ISO to install RHCOS using the specified live install Ignition config.
ImportantUsing
coreos-installer iso ignition embed
to embed a file generated byopenshift-installer
, such asbootstrap.ign
,master.ign
andworker.ign
, is unsupported and not recommended.To show the contents of the embedded Ignition config and direct it into a file, run:
# ./coreos-installer iso ignition show /mnt/rhcos-<version>-live.x86_64.iso > mybootstrap.ign
# diff -s bootstrap.ign mybootstrap.ign
Example output
Files bootstrap.ign and mybootstrap.ign are identical
To remove the Ignition config and return the ISO to its pristine state so you can reuse it, run:
# ./coreos-installer iso ignition remove /mnt/rhcos-<version>-live.x86_64.iso
You can now embed another Ignition config into the ISO or use the ISO in its pristine state.
7.1.11.3.4. Advanced RHCOS installation reference
This section illustrates the networking configuration and other advanced options that allow you to modify the Red Hat Enterprise Linux CoreOS (RHCOS) manual installation process. The following tables describe the kernel arguments and command-line options you can use with the RHCOS live installer and the coreos-installer
command.
Routing and bonding options at RHCOS boot prompt
If you install RHCOS from an ISO image, you can add kernel arguments manually when you boot that image to configure the node’s networking. If no networking arguments are used, the installation defaults to using DHCP.
When adding networking arguments, you must also add the rd.neednet=1
kernel argument.
The following table describes how to use ip=
, nameserver=
, and bond=
kernel arguments for live ISO installs.
Ordering is important when adding kernel arguments: ip=
, nameserver=
, and then bond=
.
Routing and bonding options for ISO
The following table provides examples for configuring networking of your Red Hat Enterprise Linux CoreOS (RHCOS) nodes. These are networking options that are passed to the dracut
tool during system boot. For more information about the networking options supported by dracut
, see the dracut.cmdline
manual page.
Description | Examples |
---|---|
To configure an IP address, either use DHCP (
|
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none nameserver=4.4.4.41 |
Specify multiple network interfaces by specifying multiple |
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none |
Optional: You can configure routes to additional networks by setting an If the additional network gateway is different from the primary network gateway, the default gateway must be the primary network gateway. | To configure the default gateway: ip=::10.10.10.254:::: To configure the route for the additional network: rd.route=20.20.20.0/24:20.20.20.254:enp2s0 |
Disable DHCP on a single interface, such as when there are two or more network interfaces and only one interface is being used. |
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none ip=::::core0.example.com:enp2s0:none |
You can combine DHCP and static IP configurations on systems with multiple network interfaces. |
ip=enp1s0:dhcp ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none |
Optional: You can configure VLANs on individual interfaces by using the | To configure a VLAN on a network interface and use a static IP address: ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none vlan=enp2s0.100:enp2s0 To configure a VLAN on a network interface and to use DHCP: ip=enp2s0.100:dhcp vlan=enp2s0.100:enp2s0 |
You can provide multiple DNS servers by adding a |
nameserver=1.1.1.1 nameserver=8.8.8.8 |
Optional: Bonding multiple network interfaces to a single interface is supported using the
|
To configure the bonded interface to use DHCP, set the bond’s IP address to bond=bond0:em1,em2:mode=active-backup ip=bond0:dhcp To configure the bonded interface to use a static IP address, enter the specific IP address you want and related information. For example: bond=bond0:em1,em2:mode=active-backup ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none |
Optional: You can configure VLANs on bonded interfaces by using the | To configure the bonded interface with a VLAN and to use DHCP: ip=bond0.100:dhcp bond=bond0:em1,em2:mode=active-backup vlan=bond0.100:bond0 To configure the bonded interface with a VLAN and to use a static IP address: ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0.100:none bond=bond0:em1,em2:mode=active-backup vlan=bond0.100:bond0 |
Optional: Network teaming can be used as an alternative to bonding by using the
Note Teaming is planned to be deprecated when RHCOS switches to an upcoming version of RHEL. For more information, see this Red Hat Knowledgebase Article. | To configure a network team: team=team0:em1,em2 ip=team0:dhcp |
coreos.inst
boot options for ISO or PXE install
While you can pass most standard installation boot arguments to the live installer, there are several arguments that are specific to the RHCOS live installer.
- For ISO, these options can be added by interrupting the RHCOS installer.
-
For PXE or iPXE, these options must be added to the
APPEND
line before starting the PXE kernel. You cannot interrupt a live PXE install.
The following table shows the RHCOS live installer boot options for ISO and PXE installs.
Argument | Description |
---|---|
|
Required. The block device on the system to install to. It is recommended to use the full path, such as |
| Optional: The URL of the Ignition config to embed into the installed system. If no URL is specified, no Ignition config is embedded. |
| Optional: Comma-separated labels of partitions to preserve during the install. Glob-style wildcards are permitted. The specified partitions do not need to exist. |
|
Optional: Comma-separated indexes of partitions to preserve during the install. Ranges |
|
Optional: Permits the OS image that is specified by |
| Optional: Download and install the specified RHCOS image.
|
| Optional: The system will not reboot after installing. Once the install finishes, you will receive a prompt that allows you to inspect what is happening during installation. This argument should not be used in production environments and is intended for debugging purposes only. |
|
Optional: The Ignition platform ID of the platform the RHCOS image is being installed on. Default is |
|
Optional: The URL of the Ignition config for the live boot. For example, this can be used to customize how |
coreos-installer
options for ISO install
You can also install RHCOS by invoking the coreos-installer
command directly from the command line. The kernel arguments in the previous table provide a shortcut for automatically invoking coreos-installer
at boot time, but you can pass similar arguments directly to coreos-installer
when running it from a shell prompt.
The following table shows the options and subcommands you can pass to the coreos-installer
command from a shell prompt during a live install.
Command-line options | |
Option | Description |
| Specify the image URL manually. |
| Specify a local image file manually. |
| Embed an Ignition config from a file. |
| Embed an Ignition config from a URL. |
|
Digest |
| Override the Ignition platform ID. |
| Append the default kernel argument. |
| Delete the default kernel argument. |
| Copy the network configuration from the install environment. Important
The |
|
For use with |
| Save partitions with this label glob. |
| Save partitions with this number or range. |
| Force offline installation. |
| Skip signature verification. |
| Allow Ignition URL without HTTPS or hash. |
|
Target CPU architecture. Default is |
| Do not clear partition table on error. |
| Print help information. |
Command-line argument | |
Argument | Description |
| The destination device. |
coreos-installer embedded Ignition commands | |
Command | Description |
| Embed an Ignition config in an ISO image. |
| Show the embedded Ignition config from an ISO image. |
| Remove the embedded Ignition config from an ISO image. |
coreos-installer ISO Ignition options | |
Option | Description |
| Overwrite an existing Ignition config. |
|
The Ignition config to be used. Default is |
| Write the ISO to a new output file. |
| Print help information. |
coreos-installer PXE Ignition commands | |
Command | Description |
Note that not all of these options are accepted by all subcommands. | |
| Wrap an Ignition config in an image. |
| Show the wrapped Ignition config in an image. |
|
Show the wrapped Ignition config in an |
coreos-installer PXE Ignition options | |
Option | Description |
|
The Ignition config to be used. Default is |
| Write the ISO to a new output file. |
| Print help information. |
7.1.11.4. Updating the bootloader using bootupd
To update the bootloader by using bootupd
, you must either install bootupd
on RHCOS machines manually or provide a machine config with the enabled systemd
unit. Unlike grubby
or other bootloader tools, bootupd
does not manage kernel space configuration such as passing kernel arguments.
After you have installed bootupd
, you can manage it remotely from the OpenShift Container Platform cluster.
It is recommended that you use bootupd
only on bare metal or virtualized hypervisor installations, such as for protection against the BootHole vulnerability.
Manual install method
You can manually install bootupd
by using the bootctl
command-line tool.
Inspect the system status:
# bootupctl status
Example output
Component EFI Installed: grub2-efi-x64-1:2.04-31.fc33.x86_64,shim-x64-15-8.x86_64 Update: At latest version
RHCOS images created without
bootupd
installed on them require an explicit adoption phase.If the system status is
Adoptable
, perform the adoption:# bootupctl adopt-and-update
Example output
Updated: grub2-efi-x64-1:2.04-31.fc33.x86_64,shim-x64-15-8.x86_64
If an update is available, apply the update so that the changes take effect on the next reboot:
# bootupctl update
Example output
Updated: grub2-efi-x64-1:2.04-31.fc33.x86_64,shim-x64-15-8.x86_64
Machine config method
Another way to enable bootupd
is by providing a machine config.
Provide a machine config file with the enabled
systemd
unit, as shown in the following example:Example output
variant: rhcos version: 1.1.0 systemd: units: - name: custom-bootupd-auto.service enabled: true contents: | [Unit] Description=Bootupd automatic update [Service] ExecStart=/usr/bin/bootupctl update RemainAfterExit=yes [Install] WantedBy=multi-user.target
7.1.12. Creating the cluster
To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
Prerequisites
- Create the required infrastructure for the cluster.
- You obtained the installation program and generated the Ignition config files for your cluster.
- You used the Ignition config files to create RHCOS machines for your cluster.
- Your machines have direct Internet access or have an HTTP or HTTPS proxy available.
Procedure
Monitor the bootstrap process:
$ ./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ 1 --log-level=info 2
Example output
INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443... INFO API v1.20.0 up INFO Waiting up to 30m0s for bootstrapping to complete... INFO It is now safe to remove the bootstrap resources
The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
After bootstrap process is complete, remove the bootstrap machine from the load balancer.
ImportantYou must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
7.1.13. Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- You deployed an OpenShift Container Platform cluster.
-
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
7.1.14. Approving the certificate signing requests for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
Prerequisites
- You added machines to your cluster.
Procedure
Confirm that the cluster recognizes the machines:
$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.20.0 master-1 Ready master 63m v1.20.0 master-2 Ready master 64m v1.20.0
The output lists all of the machines that you created.
NoteThe preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
Review the pending CSRs and ensure that you see the client requests with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the
machine-approver
if the Kubelet requests a new certificate with identical parameters.NoteFor clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the
oc exec
,oc rsh
, andoc logs
commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by thenode-bootstrapper
service account in thesystem:node
orsystem:admin
groups, and confirm the identity of the node.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
NoteSome Operators might not become available until some CSRs are approved.
Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
If the remaining CSRs are not approved, and are in the
Pending
status, approve the CSRs for your cluster machines:To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
After all client and server CSRs have been approved, the machines have the
Ready
status. Verify this by running the following command:$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 73m v1.20.0 master-1 Ready master 73m v1.20.0 master-2 Ready master 74m v1.20.0 worker-0 Ready worker 11m v1.20.0 worker-1 Ready worker 11m v1.20.0
NoteIt can take a few minutes after approval of the server CSRs for the machines to transition to the
Ready
status.
Additional information
- For more information on CSRs, see Certificate Signing Requests.
7.1.15. Initial Operator configuration
After the control plane initializes, you must immediately configure some Operators so that they all become available.
Prerequisites
- Your control plane has initialized.
Procedure
Watch the cluster components come online:
$ watch -n5 oc get clusteroperators
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.7.0 True False False 3h56m baremetal 4.7.0 True False False 29h cloud-credential 4.7.0 True False False 29h cluster-autoscaler 4.7.0 True False False 29h config-operator 4.7.0 True False False 6h39m console 4.7.0 True False False 3h59m csi-snapshot-controller 4.7.0 True False False 4h12m dns 4.7.0 True False False 4h15m etcd 4.7.0 True False False 29h image-registry 4.7.0 True False False 3h59m ingress 4.7.0 True False False 4h30m insights 4.7.0 True False False 29h kube-apiserver 4.7.0 True False False 29h kube-controller-manager 4.7.0 True False False 29h kube-scheduler 4.7.0 True False False 29h kube-storage-version-migrator 4.7.0 True False False 4h2m machine-api 4.7.0 True False False 29h machine-approver 4.7.0 True False False 6h34m machine-config 4.7.0 True False False 3h56m marketplace 4.7.0 True False False 4h2m monitoring 4.7.0 True False False 6h31m network 4.7.0 True False False 29h node-tuning 4.7.0 True False False 4h30m openshift-apiserver 4.7.0 True False False 3h56m openshift-controller-manager 4.7.0 True False False 4h36m openshift-samples 4.7.0 True False False 4h30m operator-lifecycle-manager 4.7.0 True False False 29h operator-lifecycle-manager-catalog 4.7.0 True False False 29h operator-lifecycle-manager-packageserver 4.7.0 True False False 3h59m service-ca 4.7.0 True False False 29h storage 4.7.0 True False False 4h30m
- Configure the Operators that are not available.
7.1.15.1. Image registry removed during installation
On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed
. This allows openshift-installer
to complete installations on these platform types.
After installation, you must edit the Image Registry Operator configuration to switch the managementState
from Removed
to Managed
.
The Prometheus console provides an ImageRegistryRemoved
alert, for example:
"Image Registry has been removed. ImageStreamTags
, BuildConfigs
and DeploymentConfigs
which reference ImageStreamTags
may not work as expected. Please configure storage and update the config to Managed
state by editing configs.imageregistry.operator.openshift.io."
7.1.15.2. Image registry storage configuration
The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate
rollout strategy during upgrades.
7.1.15.2.1. Configuring registry storage for bare metal and other manual installations
As a cluster administrator, following installation you must configure your registry to use storage.
Prerequisites
- Cluster administrator permissions.
- A cluster that uses manually-provisioned Red Hat Enterprise Linux CoreOS (RHCOS) nodes, such as bare metal.
Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
ImportantOpenShift Container Platform supports
ReadWriteOnce
access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas,ReadWriteMany
access is required.- Must have 100Gi capacity.
Procedure
To configure your registry to use storage, change the
spec.storage.pvc
in theconfigs.imageregistry/cluster
resource.NoteWhen using shared storage, review your security settings to prevent outside access.
Verify that you do not have a registry pod:
$ oc get pod -n openshift-image-registry -l docker-registry=default
Example output
No resourses found in openshift-image-registry namespace
NoteIf you do have a registry pod in your output, you do not need to continue with this procedure.
Check the registry configuration:
$ oc edit configs.imageregistry.operator.openshift.io
Example output
storage: pvc: claim:
Leave the
claim
field blank to allow the automatic creation of animage-registry-storage
PVC.Check the
clusteroperator
status:$ oc get clusteroperator image-registry
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE image-registry 4.7 True False False 6h50m
Ensure that your registry is set to managed to enable building and pushing of images.
Run:
$ oc edit configs.imageregistry/cluster
Then, change the line
managementState: Removed
to
managementState: Managed
7.1.15.2.2. Configuring storage for the image registry in non-production clusters
You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
Procedure
To set the image registry storage to an empty directory:
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
WarningConfigure this option for only non-production clusters.
If you run this command before the Image Registry Operator initializes its components, the
oc patch
command fails with the following error:Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found
Wait a few minutes and run the command again.
7.1.15.2.3. Configuring block registry storage
To allow the image registry to use block storage types during upgrades as a cluster administrator, you can use the Recreate
rollout strategy.
Block storage volumes are supported but not recommended for use with the image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
Procedure
To set the image registry storage as a block storage type, patch the registry so that it uses the
Recreate
rollout strategy and runs with only one (1
) replica:$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
- Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
- Edit the registry configuration so that it references the correct PVC.
7.1.16. Completing installation on user-provisioned infrastructure
After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
Prerequisites
- Your control plane has initialized.
- You have completed the initial Operator configuration.
Procedure
Confirm that all the cluster components are online with the following command:
$ watch -n5 oc get clusteroperators
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.7.0 True False False 3h56m baremetal 4.7.0 True False False 29h cloud-credential 4.7.0 True False False 29h cluster-autoscaler 4.7.0 True False False 29h config-operator 4.7.0 True False False 6h39m console 4.7.0 True False False 3h59m csi-snapshot-controller 4.7.0 True False False 4h12m dns 4.7.0 True False False 4h15m etcd 4.7.0 True False False 29h image-registry 4.7.0 True False False 3h59m ingress 4.7.0 True False False 4h30m insights 4.7.0 True False False 29h kube-apiserver 4.7.0 True False False 29h kube-controller-manager 4.7.0 True False False 29h kube-scheduler 4.7.0 True False False 29h kube-storage-version-migrator 4.7.0 True False False 4h2m machine-api 4.7.0 True False False 29h machine-approver 4.7.0 True False False 6h34m machine-config 4.7.0 True False False 3h56m marketplace 4.7.0 True False False 4h2m monitoring 4.7.0 True False False 6h31m network 4.7.0 True False False 29h node-tuning 4.7.0 True False False 4h30m openshift-apiserver 4.7.0 True False False 3h56m openshift-controller-manager 4.7.0 True False False 4h36m openshift-samples 4.7.0 True False False 4h30m operator-lifecycle-manager 4.7.0 True False False 29h operator-lifecycle-manager-catalog 4.7.0 True False False 29h operator-lifecycle-manager-packageserver 4.7.0 True False False 3h59m service-ca 4.7.0 True False False 29h storage 4.7.0 True False False 4h30m
Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
$ ./openshift-install --dir <installation_directory> wait-for install-complete 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Example output
INFO Waiting up to 30m0s for the cluster to initialize...
The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
Important-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
Confirm that the Kubernetes API server is communicating with the pods.
To view a list of all pods, use the following command:
$ oc get pods --all-namespaces
Example output
NAMESPACE NAME READY STATUS RESTARTS AGE openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m openshift-apiserver apiserver-67b9g 1/1 Running 0 3m openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m openshift-apiserver apiserver-z25h4 1/1 Running 0 2m openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m ...
View the logs for a pod that is listed in the output of the previous command by using the following command:
$ oc logs <pod_name> -n <namespace> 1
- 1
- Specify the pod name and namespace, as shown in the output of the previous command.
If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
For an installation with Fibre Channel Protocol (FCP), additional steps are required to enable multipathing. Do not enable multipathing during installation.
See "Enabling multipathing with kernel arguments on RHCOS" in the Post-installation configuration documentation for more information.
7.1.17. Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.7, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
Additional resources
- See About remote health monitoring for more information about the Telemetry service
7.1.18. Next steps
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
- Set up your registry and configure registry storage.
7.2. Installing a cluster on bare metal with network customizations
In OpenShift Container Platform version 4.7, you can install a cluster on bare metal infrastructure that you provision with customized network configuration options. By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations.
You must set most of the network configuration parameters during installation, and you can modify only kubeProxy
configuration parameters in a running cluster.
7.2.1. Prerequisites
- Review details about the OpenShift Container Platform installation and update processes.
- If you use a firewall, you must configure it to access Red Hat Insights.
7.2.2. Internet access for OpenShift Container Platform
In OpenShift Container Platform 4.7, you require access to the Internet to install your cluster.
You must have Internet access to:
- Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
7.2.3. Machine requirements for a cluster with user-provisioned infrastructure
For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
7.2.3.1. Required machines
The smallest OpenShift Container Platform clusters require the following hosts:
- One temporary bootstrap machine
- Three control plane, or master, machines
- At least two compute machines, which are also known as worker machines. If you are running a three-node cluster, running zero compute machines is supported. Running one compute machine is not supported.
The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
7.2.3.2. Network connectivity requirements
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
7.2.3.3. Minimum resource requirements
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | CPU [1] | RAM | Storage | IOPS [2] |
---|---|---|---|---|---|
Bootstrap | RHCOS | 4 | 16 GB | 100 GB | 300 |
Control plane | RHCOS | 4 | 16 GB | 100 GB | 300 |
Compute | RHCOS or RHEL 7.9 | 2 | 8 GB | 100 GB | 300 |
- One CPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = CPUs.
- OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
7.2.3.4. Certificate signing requests management
Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager
only approves the kubelet client CSRs. The machine-approver
cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
7.2.4. Creating the user-provisioned infrastructure
Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
Prerequisites
- Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
Procedure
- Configure DHCP or set static IP addresses on each node.
- Provision the required load balancers.
- Configure the ports for your machines.
- Configure DNS.
- Ensure network connectivity.
7.2.4.1. Networking requirements for user-provisioned infrastructure
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config from the machine config server.
During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster to establish a network connection, which allows them to download their Ignition config files.
It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
Protocol | Port | Description |
---|---|---|
ICMP | N/A | Network reachability tests |
TCP |
| Metrics |
|
Host level services, including the node exporter on ports | |
| The default ports that Kubernetes reserves | |
| openshift-sdn | |
UDP |
| VXLAN and Geneve |
| VXLAN and Geneve | |
|
Host level services, including the node exporter on ports | |
TCP/UDP |
| Kubernetes node port |
Protocol | Port | Description |
---|---|---|
TCP |
| Kubernetes API |
Protocol | Port | Description |
---|---|---|
TCP |
| etcd server and peer ports |
Network topology requirements
The infrastructure that you provision for your cluster must meet the following network topology requirements.
OpenShift Container Platform requires all nodes to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
Load balancers
Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
- A stateless load balancing algorithm. The options vary based on the load balancer implementation.
ImportantDo not configure session persistence for an API load balancer.
Configure the following ports on both the front and back of the load balancers:
Table 7.17. API load balancer Port Back-end machines (pool members) Internal External Description 6443
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the
/readyz
endpoint for the API server health check probe.X
X
Kubernetes API server
22623
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
X
Machine config server
NoteThe load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the
/readyz
endpoint to the removal of the API server instance from the pool. Within the time frame after/readyz
returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
- A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
Configure the following ports on both the front and back of the load balancers:
Table 7.18. Application Ingress load balancer Port Back-end machines (pool members) Internal External Description 443
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTPS traffic
80
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTP traffic
If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
NTP configuration
OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
Additional resources
7.2.4.2. User-provisioned DNS requirements
DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name>
is the cluster name and <base_domain>
is the cluster base domain that you specify in the install-config.yaml
file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>.
.
Component | Record | Description |
---|---|---|
Kubernetes API |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster. Important The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods. | |
Routes |
| Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
Bootstrap |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster. |
Master hosts |
| DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster. |
Worker hosts |
| Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster. |
You can use the nslookup <hostname>
command to verify name resolution. You can use the dig -x <ip_address>
command to verify reverse name resolution for the PTR records.
The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
Example 7.3. Sample DNS zone database
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. IN MX 10 smtp.example.com. ; ; ns1 IN A 192.168.1.5 smtp IN A 192.168.1.5 ; helper IN A 192.168.1.5 helper.ocp4 IN A 192.168.1.5 ; ; The api identifies the IP of your load balancer. api.ocp4 IN A 192.168.1.5 api-int.ocp4 IN A 192.168.1.5 ; ; The wildcard also identifies the load balancer. *.apps.ocp4 IN A 192.168.1.5 ; ; Create an entry for the bootstrap host. bootstrap.ocp4 IN A 192.168.1.96 ; ; Create entries for the master hosts. master0.ocp4 IN A 192.168.1.97 master1.ocp4 IN A 192.168.1.98 master2.ocp4 IN A 192.168.1.99 ; ; Create entries for the worker hosts. worker0.ocp4 IN A 192.168.1.11 worker1.ocp4 IN A 192.168.1.7 ; ;EOF
The following example BIND zone file shows sample PTR records for reverse name resolution.
Example 7.4. Sample DNS zone database for reverse records
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. ; ; The syntax is "last octet" and the host must have an FQDN ; with a trailing dot. 97 IN PTR master0.ocp4.example.com. 98 IN PTR master1.ocp4.example.com. 99 IN PTR master2.ocp4.example.com. ; 96 IN PTR bootstrap.ocp4.example.com. ; 5 IN PTR api.ocp4.example.com. 5 IN PTR api-int.ocp4.example.com. ; 11 IN PTR worker0.ocp4.example.com. 7 IN PTR worker1.ocp4.example.com. ; ;EOF
For clusters using installer-provisioned infrastructure, only the DNS records must be added.
7.2.5. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program.
7.2.6. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on a local computer.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space
Procedure
- Access the Infrastructure Provider page on the OpenShift Cluster Manager site. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- Select your infrastructure provider.
Navigate to the page for your installation type, download the installation program for your operating system, and place the file in the directory where you will store the installation configuration files.
ImportantThe installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
ImportantDeleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar xvf openshift-install-linux.tar.gz
- Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
7.2.7. Installing the OpenShift CLI by downloading the binary
You can install the OpenShift CLI (oc
) to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.7. Download and install the new version of oc
.
7.2.7.1. Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.7 Linux Client entry and save the file.
Unpack the archive:
$ tar xvzf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
7.2.7.2. Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.7 Windows Client entry and save the file.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
7.2.7.3. Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version in the Version drop-down menu.
- Click Download Now next to the OpenShift v4.7 MacOSX Client entry and save the file.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
7.2.8. Manually creating the installation configuration file
For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the access token for your cluster.
Procedure
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
ImportantYou must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
Customize the following
install-config.yaml
file template and save it in the<installation_directory>
.NoteYou must name this configuration file
install-config.yaml
.Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the next step of the installation process. You must back it up now.
7.2.8.1. Installation configuration parameters
Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the install-config.yaml
file.
The openshift-install
command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
7.2.8.1.1. Required configuration parameters
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the | String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource | Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: | Object |
| Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io. |
{ "auths":{ "cloud.openshift.com":{ "auth":"b3Blb=", "email":"you@example.com" }, "quay.io":{ "auth":"b3Blb=", "email":"you@example.com" } } } |
7.2.8.1.2. Network configuration parameters
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values |
---|---|---|
| The configuration for the cluster network. | Object Note
You cannot modify parameters specified by the |
| The cluster network provider Container Network Interface (CNI) plug-in to install. |
Either |
| The IP address blocks for pods.
The default value is If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 |
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between |
|
The subnet prefix length to assign to each individual node. For example, if | A subnet prefix.
The default value is |
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. | An array with an IP address block in CIDR format. For example: networking: serviceNetwork: - 172.30.0.0/16 |
| The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: machineNetwork: - cidr: 10.0.0.0/16 |
|
Required if you use | An IP network block in CIDR notation.
For example, Note
Set the |
7.2.8.1.3. Optional configuration parameters
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. | String |
| The configuration for the machines that comprise the compute nodes. |
Array of |
|
Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
| The configuration for the machines that comprise the control plane. |
Array of |
|
Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of control plane machines to provision. |
The only supported value is |
| The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported. Note Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Cluster Operators reference content. |
|
|
Enable or disable FIPS mode. The default is Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the Note If you are using Azure File storage, you cannot enable FIPS mode. |
|
| Sources and repositories for the release-image content. |
Array of objects. Includes a |
|
Required if you use | String |
| Specify one or more repositories that may also contain the same images. | Array of strings |
| How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
Setting this field to Important
If the value of the field is set to |
| The SSH key or keys to authenticate access your cluster machines. Note
For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your | One or more keys. For example: sshKey: <key1> <key2> <key3> |
7.2.8.2. Sample install-config.yaml file for bare metal
You can customize the install-config.yaml
file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
apiVersion: v1 baseDomain: example.com 1 compute: 2 - hyperthreading: Enabled 3 name: worker replicas: 0 4 controlPlane: 5 hyperthreading: Enabled 6 name: master replicas: 3 7 metadata: name: test 8 networking: clusterNetwork: - cidr: 10.128.0.0/14 9 hostPrefix: 23 10 networkType: OpenShiftSDN serviceNetwork: 11 - 172.30.0.0/16 platform: none: {} 12 fips: false 13 pullSecret: '{"auths": ...}' 14 sshKey: 'ssh-ed25519 AAAA...' 15
- 1
- The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
- 2 5
- The
controlPlane
section is a single mapping, but thecompute
section is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecompute
section must begin with a hyphen,-
, and the first line of thecontrolPlane
section must not. Only one control plane pool is used. - 3 6
- Whether to enable or disable simultaneous multithreading (SMT), or
hyperthreading
. By default, SMT is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled
. If you disable SMT, you must disable it in all cluster machines; this includes both control plane and compute machines.NoteSimultaneous multithreading (SMT) is enabled by default. If SMT is not enabled in your BIOS settings, the
hyperthreading
parameter has no effect.ImportantIf you disable
hyperthreading
, whether in the BIOS or in theinstall-config.yaml
, ensure that your capacity planning accounts for the dramatically decreased machine performance. - 4
- You must set the value of the
replicas
parameter to0
. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform. - 7
- The number of control plane machines that you add to the cluster. Because the cluster uses these values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
- 8
- The cluster name that you specified in your DNS records.
- 9
- A block of IP addresses from which pod IP addresses are allocated. This block must not overlap with existing physical networks. These IP addresses are used for the pod network. If you need to access the pods from an external network, you must configure load balancers and routers to manage the traffic.Note
Class E CIDR range is reserved for a future use. To use the Class E CIDR range, you must ensure your networking environment accepts the IP addresses within the Class E CIDR range.
- 10
- The subnet prefix length to assign to each individual node. For example, if
hostPrefix
is set to23
, then each node is assigned a/23
subnet out of the givencidr
, which allows for 510 (2^(32 - 23) - 2) pod IPs addresses. If you are required to provide access to nodes from an external network, configure load balancers and routers to manage the traffic. - 11
- The IP address pool to use for service IP addresses. You can enter only one IP address pool. This block must not overlap with existing physical networks. If you need to access the services from an external network, configure load balancers and routers to manage the traffic.
- 12
- You must set the platform to
none
. You cannot provide additional platform configuration variables for your platform.WarningRed Hat Virtualization does not currently support installation with user-provisioned infrastructure on the oVirt platform. Therefore, you must set the platform to
none
, allowing OpenShift Container Platform to identify each node as a bare-metal node and the cluster as a bare-metal cluster. This is the same as installing a cluster on any platform, and has the following limitations:- There will be no cluster provider so you must manually add each machine and there will be no node scaling capabilities.
- The oVirt CSI driver will not be installed and there will be no CSI capabilities.
- 13
- Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the
x86_64
architecture. - 14
- The pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
- 15
- The public portion of the default SSH key for the
core
user in Red Hat Enterprise Linux CoreOS (RHCOS).NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.
7.2.9. Network configuration phases
When specifying a cluster configuration prior to installation, there are several phases in the installation procedures when you can modify the network configuration:
- Phase 1
After entering the
openshift-install create install-config
command. In theinstall-config.yaml
file, you can customize the following network-related fields:-
networking.networkType
-
networking.clusterNetwork
-
networking.serviceNetwork
networking.machineNetwork
For more information on these fields, refer to "Installation configuration parameters".
NoteSet the
networking.machineNetwork
to match the CIDR that the preferred NIC resides in.
-
- Phase 2
-
After entering the
openshift-install create manifests
command. If you must specify advanced network configuration, during this phase you can define a customized Cluster Network Operator manifest with only the fields you want to modify.
You cannot override the values specified in phase 1 in the install-config.yaml
file during phase 2. However, you can further customize the cluster network provider during phase 2.
7.2.10. Specifying advanced network configuration
You can use advanced configuration customization to integrate your cluster into your existing network environment by specifying additional configuration for your cluster network provider. You can specify advanced network configuration only before you install the cluster.
Modifying the OpenShift Container Platform manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported.
Prerequisites
-
Create the
install-config.yaml
file and complete any modifications to it. - Create the Ignition config files for your cluster.
Procedure
Change to the directory that contains the installation program and create the manifests:
$ ./openshift-install create manifests --dir <installation_directory>
where:
<installation_directory>
-
Specifies the name of the directory that contains the
install-config.yaml
file for your cluster.
Create a stub manifest file for the advanced network configuration that is named
cluster-network-03-config.yml
in the<installation_directory>/manifests/
directory:$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml apiVersion: operator.openshift.io/v1 kind: Network metadata: name: cluster spec: EOF
where:
<installation_directory>
-
Specifies the directory name that contains the
manifests/
directory for your cluster.
Open the
cluster-network-03-config.yml
file in an editor and specify the advanced network configuration for your cluster, such as in the following examples:Specify a different VXLAN port for the OpenShift SDN network provider
apiVersion: operator.openshift.io/v1 kind: Network metadata: name: cluster spec: defaultNetwork: openshiftSDNConfig: vxlanPort: 4800
Enable IPsec for the OVN-Kubernetes network provider
apiVersion: operator.openshift.io/v1 kind: Network metadata: name: cluster spec: defaultNetwork: ovnKubernetesConfig: ipsecConfig: {}
-
Save the
cluster-network-03-config.yml
file and quit the text editor. -
Optional: Back up the
manifests/cluster-network-03-config.yml
file. The installation program deletes themanifests/
directory when creating the cluster.
7.2.11. Cluster Network Operator configuration
The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster
. The CR specifies the fields for the Network
API in the operator.openshift.io
API group.
The CNO configuration inherits the following fields during cluster installation from the Network
API in the Network.config.openshift.io
API group and these fields cannot be changed:
clusterNetwork
- IP address pools from which pod IP addresses are allocated.
serviceNetwork
- IP address pool for services.
defaultNetwork.type
- Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.
You can specify the cluster network provider configuration for your cluster by setting the fields for the defaultNetwork
object in the CNO object named cluster
.
7.2.11.1. Cluster Network Operator configuration object
The fields for the Cluster Network Operator (CNO) are described in the following table:
Field | Type | Description |
---|---|---|
|
|
The name of the CNO object. This name is always |
|
| A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example: spec: clusterNetwork: - cidr: 10.128.0.0/19 hostPrefix: 23 - cidr: 10.128.32.0/19 hostPrefix: 23
This value is ready-only and specified in the |
|
| A block of IP addresses for services. The OpenShift SDN and OVN-Kubernetes Container Network Interface (CNI) network providers support only a single IP address block for the service network. For example: spec: serviceNetwork: - 172.30.0.0/14
This value is ready-only and specified in the |
|
| Configures the Container Network Interface (CNI) cluster network provider for the cluster network. |
|
| The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network provider, the kube-proxy configuration has no effect. |
defaultNetwork object configuration
The values for the defaultNetwork
object are defined in the following table:
Field | Type | Description |
---|---|---|
|
|
Either Note OpenShift Container Platform uses the OpenShift SDN Container Network Interface (CNI) cluster network provider by default. |
|
| This object is only valid for the OpenShift SDN cluster network provider. |
|
| This object is only valid for the OVN-Kubernetes cluster network provider. |
Configuration for the OpenShift SDN CNI cluster network provider
The following table describes the configuration fields for the OpenShift SDN Container Network Interface (CNI) cluster network provider.
Field | Type | Description |
---|---|---|
|
|
Configures the network isolation mode for OpenShift SDN. The default value is
The values |
|
| The maximum transmission unit (MTU) for the VXLAN overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU. If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
If your cluster requires different MTU values for different nodes, you must set this value to This value cannot be changed after cluster installation. |
|
|
The port to use for all VXLAN packets. The default value is If you are running in a virtualized environment with existing nodes that are part of another VXLAN network, then you might be required to change this. For example, when running an OpenShift SDN overlay on top of VMware NSX-T, you must select an alternate port for the VXLAN, because both SDNs use the same default VXLAN port number.
On Amazon Web Services (AWS), you can select an alternate port for the VXLAN between port |
Example OpenShift SDN configuration
defaultNetwork: type: OpenShiftSDN openshiftSDNConfig: mode: NetworkPolicy mtu: 1450 vxlanPort: 4789
Configuration for the OVN-Kubernetes CNI cluster network provider
The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network provider.
Field | Type | Description |
---|---|---|
|
| The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU. If the auto-detected value is not what you expected it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes.
If your cluster requires different MTU values for different nodes, you must set this value to This value cannot be changed after cluster installation. |
|
|
The port to use for all Geneve packets. The default value is |
|
| Specify an empty object to enable IPsec encryption. This value cannot be changed after cluster installation. |
Example OVN-Kubernetes configuration
defaultNetwork: type: OVNKubernetes ovnKubernetesConfig: mtu: 1400 genevePort: 6081 ipsecConfig: {}
kubeProxyConfig object configuration
The values for the kubeProxyConfig
object are defined in the following table:
Field | Type | Description |
---|---|---|
|
|
The refresh period for Note
Because of performance improvements introduced in OpenShift Container Platform 4.3 and greater, adjusting the |
|
|
The minimum duration before refreshing kubeProxyConfig: proxyArguments: iptables-min-sync-period: - 0s |
7.2.12. Creating the Ignition config files
Because you must manually start the cluster machines, you must generate the Ignition config files that the cluster needs to make its machines.
-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Obtain the Ignition config files:
$ ./openshift-install create ignition-configs --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the directory name to store the files that the installation program creates.
ImportantIf you created an
install-config.yaml
file, specify the directory that contains it. Otherwise, specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.The following files are generated in the directory:
. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
7.2.13. Installing RHCOS and starting the OpenShift Container Platform bootstrap process
To install OpenShift Container Platform on bare metal infrastructure that you provision, you must install Red Hat Enterprise Linux CoreOS (RHCOS) on the machines. When you install RHCOS, you must provide the Ignition config file that was generated by the OpenShift Container Platform installation program for the type of machine you are installing. If you have configured suitable networking, DNS, and load balancing infrastructure, the OpenShift Container Platform bootstrap process begins automatically after the RHCOS machines have rebooted.
To install RHCOS on the machines, follow either the steps to use an ISO image or network PXE booting.
The compute node deployment steps included in this installation document are RHCOS-specific. If you choose instead to deploy RHEL-based compute nodes, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and planned for removal in a future release of OpenShift Container Platform 4.
You can configure RHCOS during ISO and PXE installations by using the following methods:
-
Kernel arguments: You can use kernel arguments to provide installation-specific information. For example, you can specify the locations of the RHCOS installation files that you uploaded to your HTTP server and the location of the Ignition config file for the type of node you are installing. For a PXE installation, you can use the
APPEND
parameter to pass the arguments to the kernel of the live installer. For an ISO installation, you can interrupt the live installation boot process to add the kernel arguments. In both installation cases, you can use specialcoreos.inst.*
arguments to direct the live installer, as well as standard installation boot arguments for turning standard kernel services on or off. -
Ignition configs: OpenShift Container Platform Ignition config files (
*.ign
) are specific to the type of node you are installing. You pass the location of a bootstrap, control plane, or compute node Ignition config file during the RHCOS installation so that it takes effect on first boot. In special cases, you can create a separate, limited Ignition config to pass to the live system. That Ignition config could do a certain set of tasks, such as reporting success to a provisioning system after completing installation. This special Ignition config is consumed by thecoreos-installer
to be applied on first boot of the installed system. Do not provide the standard control plane and compute node Ignition configs to the live ISO directly. -
coreos-installer
: You can boot the live ISO installer to a shell prompt, which allows you to prepare the permanent system in a variety of ways before first boot. In particular, you can run thecoreos-installer
command to identify various artifacts to include, work with disk partitions, and set up networking. In some cases, you can configure features on the live system and copy them to the installed system.
Whether to use an ISO or PXE install depends on your situation. A PXE install requires an available DHCP service and more preparation, but can make the installation process more automated. An ISO install is a more manual process and can be inconvenient if you are setting up more than a few machines.
As of OpenShift Container Platform 4.6, the RHCOS ISO and other installation artifacts provide support for installation on disks with 4K sectors.
7.2.13.1. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines using an ISO image
Before you install a cluster on infrastructure that you provision, you must create RHCOS machines for it to use. You can use an ISO image to create the machines.
Prerequisites
- Obtain the Ignition config files for your cluster.
- Have access to an HTTP server that can be accessed from your computer, and from the machines that you create.
Procedure
Upload the control plane, compute, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
ImportantIf you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
Obtain the RHCOS images that are required for your preferred method of installing operating system instances from the RHCOS image mirror page.
ImportantThe RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available. Use only ISO images for this procedure. RHCOS qcow2 images are not supported for this installation type.
ISO file names resemble the following example:
rhcos-<version>-live.<architecture>.iso
Use the ISO to start the RHCOS installation. Use one of the following installation options:
- Burn the ISO image to a disk and boot it directly.
- Use ISO redirection via a LOM interface.
-
Boot the ISO image. You can interrupt the installation boot process to add kernel arguments. However, for this ISO procedure you should use the
coreos-installer
command instead of adding kernel arguments. If you run the live installer without options or interruption, the installer boots up to a shell prompt on the live system, ready for you to install RHCOS to disk. -
Review the Advanced RHCOS installation reference section for different ways of configuring features, such as networking and disk partitions, before running the
coreos-installer
. Run the
coreos-installer
command. At a minimum, you must identify the Ignition config file location for your node type, and the location of the disk you are installing to. Here is an example:$ sudo coreos-installer install \ --ignition-url=https://host/worker.ign /dev/sda
- After RHCOS installs, the system reboots. During the system reboot, it applies the Ignition config file that you specified.
Continue to create the other machines for your cluster.
ImportantYou must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
7.2.13.2. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines by PXE or iPXE booting
Before you install a cluster that uses manually-provisioned RHCOS nodes, such as bare metal, you must create RHCOS machines for it to use. You can use PXE or iPXE booting to create the machines.
Prerequisites
- Obtain the Ignition config files for your cluster.
- Configure suitable PXE or iPXE infrastructure.
- Have access to an HTTP server that you can access from your computer.
Procedure
Upload the master, worker, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
ImportantYou can add or change configuration settings in your Ignition configs before saving them to your HTTP server. If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
Obtain the RHCOS
kernel
,initramfs
androotfs
files from the RHCOS image mirror page.ImportantThe RHCOS artifacts might not change with every release of OpenShift Container Platform. You must download artifacts with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate
kernel
,initramfs
, androotfs
artifacts described below for this procedure. RHCOS qcow2 images are not supported for this installation type.The file names contain the OpenShift Container Platform version number. They resemble the following examples:
-
kernel
:rhcos-<version>-live-kernel-<architecture>
-
initramfs
:rhcos-<version>-live-initramfs.<architecture>.img
-
rootfs
:rhcos-<version>-live-rootfs.<architecture>.img
-
Upload the additional files that are required for your booting method:
-
For traditional PXE, upload the
kernel
andinitramfs
files to your TFTP server and therootfs
file to your HTTP server. For iPXE, upload the
kernel
,initramfs
, androotfs
files to your HTTP server.ImportantIf you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
-
For traditional PXE, upload the
- Configure the network boot infrastructure so that the machines boot from their local disks after RHCOS is installed on them.
Configure PXE or iPXE installation for the RHCOS images.
Modify one of the following example menu entries for your environment and verify that the image and Ignition files are properly accessible:
For PXE:
DEFAULT pxeboot TIMEOUT 20 PROMPT 0 LABEL pxeboot KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 1 APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 2 3
- 1
- Specify the location of the live
kernel
file that you uploaded to your HTTP server. The URL must be HTTP, TFTP, or FTP; HTTPS and NFS are not supported. - 2
- If you use multiple NICs, specify a single interface in the
ip
option. For example, to use DHCP on a NIC that is namedeno1
, setip=eno1:dhcp
. - 3
- Specify locations of the RHCOS files that you uploaded to your HTTP server. The
initrd
parameter value is the location of theinitramfs
file, thecoreos.live.rootfs_url
parameter value is the location of therootfs
file, and thecoreos.inst.ignition_url
parameter value is the location of the bootstrap Ignition config file. You can also add more kernel arguments to theAPPEND
line to configure networking or other boot options.
NoteThis configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more
console=
arguments to theAPPEND
line. For example, addconsole=tty0 console=ttyS0
to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.For iPXE:
kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 1 2 initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img 3 boot
- 1
- Specify locations of the RHCOS files that you uploaded to your HTTP server. The
kernel
parameter value is the location of thekernel
file, theinitrd=main
argument is needed for booting on UEFI systems, thecoreos.live.rootfs_url
parameter value is the location of therootfs
file, and thecoreos.inst.ignition_url
parameter value is the location of the bootstrap Ignition config file. - 2
- If you use multiple NICs, specify a single interface in the
ip
option. For example, to use DHCP on a NIC that is namedeno1
, setip=eno1:dhcp
. - 3
- Specify the location of the
initramfs
file that you uploaded to your HTTP server.
NoteThis configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more
console=
arguments to thekernel
line. For example, addconsole=tty0 console=ttyS0
to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
If you use PXE UEFI, perform the following actions:
Provide the
shimx64.efi
andgrubx64.efi
EFI binaries and thegrub.cfg
file that are required for booting the system.Extract the necessary EFI binaries by mounting the RHCOS ISO to your host and then mounting the
images/efiboot.img
file to your host:$ mkdir -p /mnt/iso
$ mkdir -p /mnt/efiboot
$ mount -o loop rhcos-installer.x86_64.iso /mnt/iso
$ mount -o loop,ro /mnt/iso/images/efiboot.img /mnt/efiboot
From the
efiboot.img
mount point, copy theEFI/redhat/shimx64.efi
andEFI/redhat/grubx64.efi
files to your TFTP server:$ cp /mnt/efiboot/EFI/redhat/shimx64.efi .
$ cp /mnt/efiboot/EFI/redhat/grubx64.efi .
$ umount /mnt/efiboot
$ umount /mnt/iso
-
Copy the
EFI/redhat/grub.cfg
file that is included in the RHCOS ISO to your TFTP server.
Edit the
grub.cfg
file to include arguments similar to the following:menuentry 'Install Red Hat Enterprise Linux CoreOS' --class fedora --class gnu-linux --class gnu --class os { linuxefi rhcos-<version>-live-kernel-<architecture> coreos.inst.install_dev=/dev/sda coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign initrdefi rhcos-<version>-live-initramfs.<architecture>.img }
where:
rhcos-<version>-live-kernel-<architecture>
-
Specifies the
kernel
file that you uploaded to your TFTP server. http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img
- Specifies the location of the live rootfs image that you uploaded to your HTTP server.
http://<HTTP_server>/bootstrap.ign
- Specifies the location of the bootstrap Ignition config file that you uploaded to your HTTP server.
rhcos-<version>-live-initramfs.<architecture>.img
-
Specifies the location of the
initramfs
file that you uploaded to your TFTP server.
NoteFor more information on how to configure a PXE server for UEFI boot, see the Red Hat Knowledgebase article: How to configure/setup a PXE server for UEFI boot for Red Hat Enterprise Linux?.
Continue to create the machines for your cluster.
ImportantYou must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
7.2.13.3. Advanced Red Hat Enterprise Linux CoreOS (RHCOS) installation configuration
A key benefit for manually provisioning the Red Hat Enterprise Linux CoreOS (RHCOS) nodes for OpenShift Container Platform is to be able to do configuration that is not available through default OpenShift Container Platform installation methods. This section describes some of the configurations that you can do using techniques that include:
- Passing kernel arguments to the live installer
-
Running
coreos-installer
manually from the live system - Embedding Ignition configs in an ISO
The advanced configuration topics for manual Red Hat Enterprise Linux CoreOS (RHCOS) installations detailed in this section relate to disk partitioning, networking, and using Ignition configs in different ways.
7.2.13.3.1. Using advanced networking options for PXE and ISO installations
Networking for OpenShift Container Platform nodes uses DHCP by default to gather all necessary configuration settings. To set up static IP addresses or configure special settings, such as bonding, you can do one of the following:
- Pass special kernel parameters when you boot the live installer.
- Use a machine config to copy networking files to the installed system.
- Configure networking from a live installer shell prompt, then copy those settings to the installed system so that they take effect when the installed system first boots.
To configure a PXE or iPXE installation, use one of the following options:
- See the "Advanced RHCOS installation reference" tables.
- Use a machine config to copy networking files to the installed system.
To configure an ISO installation, use the following procedure.
Procedure
- Boot the ISO installer.
-
From the live system shell prompt, configure networking for the live system using available RHEL tools, such as
nmcli
ornmtui
. Run the
coreos-installer
command to install the system, adding the--copy-network
option to copy networking configuration. For example:$ coreos-installer install --copy-network \ --ignition-url=http://host/worker.ign /dev/sda
ImportantThe
--copy-network
option only copies networking configuration found under/etc/NetworkManager/system-connections
. In particular, it does not copy the system hostname.- Reboot into the installed system.
7.2.13.3.2. Disk partitioning
The disk partitions are created on OpenShift Container Platform cluster nodes during the Red Hat Enterprise Linux CoreOS (RHCOS) installation. Each RHCOS node of a particular architecture uses the same partition layout, unless the default partitioning configuration is overridden. During the RHCOS installation, the size of the root file system is increased to use the remaining available space on the target device.
However, there are two cases where you might want to intervene to override the default partitioning when installing an OpenShift Container Platform node:
Create separate partitions: For greenfield installations on an empty disk, you might want to add separate storage to a partition. This is officially supported for making
/var
or a subdirectory of/var
, such as/var/lib/etcd
, a separate partition, but not both.ImportantKubernetes supports only two filesystem partitions. If you add more than one partition to the original configuration, Kubernetes cannot monitor all of them.
-
Retain existing partitions: For a brownfield installation where you are reinstalling OpenShift Container Platform on an existing node and want to retain data partitions installed from your previous operating system, there are both boot arguments and options to
coreos-installer
that allow you to retain existing data partitions.
7.2.13.3.2.1. Creating a separate /var
partition
In general, disk partitioning for OpenShift Container Platform should be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var
partition or a subdirectory of /var
. For example:
-
/var/lib/containers
: Holds container-related content that can grow as more images and containers are added to a system. -
/var/lib/etcd
: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage. -
/var
: Holds data that you might want to keep separate for purposes such as auditing.
Storing the contents of a /var
directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
Because /var
must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var
partition by creating a machine config that is inserted during the openshift-install
preparation phases of an OpenShift Container Platform installation.
Procedure
Create a directory to hold the OpenShift Container Platform installation files:
$ mkdir $HOME/clusterconfig
Run
openshift-install
to create a set of files in themanifest
andopenshift
subdirectories. Answer the system questions as you are prompted:$ openshift-install create manifests --dir $HOME/clusterconfig ? SSH Public Key ... $ ls $HOME/clusterconfig/openshift/ 99_kubeadmin-password-secret.yaml 99_openshift-cluster-api_master-machines-0.yaml 99_openshift-cluster-api_master-machines-1.yaml 99_openshift-cluster-api_master-machines-2.yaml ...
Create a
MachineConfig
object and add it to a file in theopenshift
directory. For example, name the file98-var-partition.yaml
, change the disk device name to the name of the storage device on theworker
systems, and set the storage size as appropriate. This example places the/var
directory on a separate partition:apiVersion: machineconfiguration.openshift.io/v1 kind: MachineConfig metadata: labels: machineconfiguration.openshift.io/role: worker name: 98-var-partition spec: config: ignition: version: 3.2.0 storage: disks: - device: /dev/<device_name> 1 partitions: - label: var startMiB: <partition_start_offset> 2 sizeMiB: <partition_size> 3 filesystems: - device: /dev/disk/by-partlabel/var path: /var format: xfs systemd: units: - name: var.mount 4 enabled: true contents: | [Unit] Before=local-fs.target [Mount] What=/dev/disk/by-partlabel/var Where=/var Options=defaults,prjquota 5 [Install] WantedBy=local-fs.target
- 1
- The storage device name of the disk that you want to partition.
- 2
- When adding a data partition to the boot disk, a minimum value of 25000 mebibytes is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
- 3
- The size of the data partition in mebibytes.
- 4
- The name of the mount unit must match the directory specified in the
Where=
directive. For example, for a filesystem mounted on/var/lib/containers
, the unit must be namedvar-lib-containers.mount
. - 5
- The
prjquota
mount option must be enabled for filesystems used for container storage.
NoteWhen creating a separate
/var
partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.Run
openshift-install
again to create Ignition configs from a set of files in themanifest
andopenshift
subdirectories:$ openshift-install create ignition-configs --dir $HOME/clusterconfig $ ls $HOME/clusterconfig/ auth bootstrap.ign master.ign metadata.json worker.ign
Now you can use the Ignition config files as input to the ISO or PXE manual installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
7.2.13.3.2.2. Retaining existing partitions
For an ISO installation, you can add options to the coreos-installer
command line that causes the installer to maintain one or more existing partitions. For a PXE installation, you can APPEND
coreos.inst.*
options to preserve partitions.
Saved partitions might be partitions from an existing OpenShift Container Platform system that has data partitions that you want to keep. Here are a few tips:
- If you save existing partitions, and those partitions do not leave enough space for RHCOS, installation will fail without damaging the saved partitions.
- Identify the disk partitions you want to keep either by partition label or by number.
For an ISO installation
This example preserves any partition in which the partition label begins with data
(data*
):
# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \ --save-partlabel 'data*' /dev/sda
The following example illustrates running the coreos-installer
in a way that preserves the sixth (6) partition on the disk:
# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \ --save-partindex 6 /dev/sda
This example preserves partitions 5 and higher:
# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign --save-partindex 5- /dev/sda
In the previous examples where partition saving is used, coreos-installer
recreates the partition immediately.
For a PXE installation
This APPEND
option preserves any partition in which the partition label begins with 'data' ('data*'):
coreos.inst.save_partlabel=data*
This APPEND
option preserves partitions 5 and higher:
coreos.inst.save_partindex=5-
This APPEND
option preserves partition 6:
coreos.inst.save_partindex=6
7.2.13.3.3. Identifying Ignition configs
When doing an RHCOS manual installation, there are two types of Ignition configs that you can provide, with different reasons for providing each one:
Permanent install Ignition config: Every manual RHCOS installation needs to pass one of the Ignition config files generated by
openshift-installer
, such asbootstrap.ign
,master.ign
andworker.ign
, to carry out the installation.ImportantIt is not recommended to modify these files.
For PXE installations, you pass the Ignition configs on the
APPEND
line using thecoreos.inst.ignition_url=
option. For ISO installations, after the ISO boots to the shell prompt, you identify the Ignition config on thecoreos-installer
command line with the--ignition-url=
option. In both cases, only HTTP and HTTPS protocols are supported.Live install Ignition config: This type must be created manually and should be avoided if possible, as it is not supported by Red Hat. With this method, the Ignition config passes to the live install medium, runs immediately upon booting, and performs setup tasks before and/or after the RHCOS system installs to disk. This method should only be used for performing tasks that must be performed once and not applied again later, such as with advanced partitioning that cannot be done using a machine config.
For PXE or ISO boots, you can create the Ignition config and
APPEND
theignition.config.url=
option to identify the location of the Ignition config. You also need to appendignition.firstboot ignition.platform.id=metal
or theignition.config.url
option will be ignored.
7.2.13.3.3.1. Embedding an Ignition config in the RHCOS ISO
You can embed a live install Ignition config directly in an RHCOS ISO image. When the ISO image is booted, the embedded config will be applied automatically.
Procedure
-
Download the
coreos-installer
binary from the following image mirror page: https://mirror.openshift.com/pub/openshift-v4/clients/coreos-installer/latest/. Retrieve the RHCOS ISO image and the Ignition config file, and copy them into an accessible directory, such as
/mnt
:# cp rhcos-<version>-live.x86_64.iso bootstrap.ign /mnt/ # chmod 644 /mnt/rhcos-<version>-live.x86_64.iso
Run the following command to embed the Ignition config into the ISO:
# ./coreos-installer iso ignition embed -i /mnt/bootstrap.ign \ /mnt/rhcos-<version>-live.x86_64.iso
You can now use that ISO to install RHCOS using the specified live install Ignition config.
ImportantUsing
coreos-installer iso ignition embed
to embed a file generated byopenshift-installer
, such asbootstrap.ign
,master.ign
andworker.ign
, is unsupported and not recommended.To show the contents of the embedded Ignition config and direct it into a file, run:
# ./coreos-installer iso ignition show /mnt/rhcos-<version>-live.x86_64.iso > mybootstrap.ign
# diff -s bootstrap.ign mybootstrap.ign
Example output
Files bootstrap.ign and mybootstrap.ign are identical
To remove the Ignition config and return the ISO to its pristine state so you can reuse it, run:
# ./coreos-installer iso ignition remove /mnt/rhcos-<version>-live.x86_64.iso
You can now embed another Ignition config into the ISO or use the ISO in its pristine state.
7.2.13.3.4. Advanced RHCOS installation reference
This section illustrates the networking configuration and other advanced options that allow you to modify the Red Hat Enterprise Linux CoreOS (RHCOS) manual installation process. The following tables describe the kernel arguments and command-line options you can use with the RHCOS live installer and the coreos-installer
command.
Routing and bonding options at RHCOS boot prompt
If you install RHCOS from an ISO image, you can add kernel arguments manually when you boot that image to configure the node’s networking. If no networking arguments are used, the installation defaults to using DHCP.
When adding networking arguments, you must also add the rd.neednet=1
kernel argument.
The following table describes how to use ip=
, nameserver=
, and bond=
kernel arguments for live ISO installs.
Ordering is important when adding kernel arguments: ip=
, nameserver=
, and then bond=
.
Routing and bonding options for ISO
The following table provides examples for configuring networking of your Red Hat Enterprise Linux CoreOS (RHCOS) nodes. These are networking options that are passed to the dracut
tool during system boot. For more information about the networking options supported by dracut
, see the dracut.cmdline
manual page.
Description | Examples |
---|---|
To configure an IP address, either use DHCP (
|
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none nameserver=4.4.4.41 |
Specify multiple network interfaces by specifying multiple |
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none |
Optional: You can configure routes to additional networks by setting an If the additional network gateway is different from the primary network gateway, the default gateway must be the primary network gateway. | To configure the default gateway: ip=::10.10.10.254:::: To configure the route for the additional network: rd.route=20.20.20.0/24:20.20.20.254:enp2s0 |
Disable DHCP on a single interface, such as when there are two or more network interfaces and only one interface is being used. |
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none ip=::::core0.example.com:enp2s0:none |
You can combine DHCP and static IP configurations on systems with multiple network interfaces. |
ip=enp1s0:dhcp ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none |
Optional: You can configure VLANs on individual interfaces by using the | To configure a VLAN on a network interface and use a static IP address: ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none vlan=enp2s0.100:enp2s0 To configure a VLAN on a network interface and to use DHCP: ip=enp2s0.100:dhcp vlan=enp2s0.100:enp2s0 |
You can provide multiple DNS servers by adding a |
nameserver=1.1.1.1 nameserver=8.8.8.8 |
Optional: Bonding multiple network interfaces to a single interface is supported using the
|
To configure the bonded interface to use DHCP, set the bond’s IP address to bond=bond0:em1,em2:mode=active-backup ip=bond0:dhcp To configure the bonded interface to use a static IP address, enter the specific IP address you want and related information. For example: bond=bond0:em1,em2:mode=active-backup ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none |
Optional: You can configure VLANs on bonded interfaces by using the | To configure the bonded interface with a VLAN and to use DHCP: ip=bond0.100:dhcp bond=bond0:em1,em2:mode=active-backup vlan=bond0.100:bond0 To configure the bonded interface with a VLAN and to use a static IP address: ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0.100:none bond=bond0:em1,em2:mode=active-backup vlan=bond0.100:bond0 |
Optional: Network teaming can be used as an alternative to bonding by using the
Note Teaming is planned to be deprecated when RHCOS switches to an upcoming version of RHEL. For more information, see this Red Hat Knowledgebase Article. | To configure a network team: team=team0:em1,em2 ip=team0:dhcp |
coreos.inst
boot options for ISO or PXE install
While you can pass most standard installation boot arguments to the live installer, there are several arguments that are specific to the RHCOS live installer.
- For ISO, these options can be added by interrupting the RHCOS installer.
-
For PXE or iPXE, these options must be added to the
APPEND
line before starting the PXE kernel. You cannot interrupt a live PXE install.
The following table shows the RHCOS live installer boot options for ISO and PXE installs.
Argument | Description |
---|---|
|
Required. The block device on the system to install to. It is recommended to use the full path, such as |
| Optional: The URL of the Ignition config to embed into the installed system. If no URL is specified, no Ignition config is embedded. |
| Optional: Comma-separated labels of partitions to preserve during the install. Glob-style wildcards are permitted. The specified partitions do not need to exist. |
|
Optional: Comma-separated indexes of partitions to preserve during the install. Ranges |
|
Optional: Permits the OS image that is specified by |
| Optional: Download and install the specified RHCOS image.
|
| Optional: The system will not reboot after installing. Once the install finishes, you will receive a prompt that allows you to inspect what is happening during installation. This argument should not be used in production environments and is intended for debugging purposes only. |
|
Optional: The Ignition platform ID of the platform the RHCOS image is being installed on. Default is |
|
Optional: The URL of the Ignition config for the live boot. For example, this can be used to customize how |
coreos-installer
options for ISO install
You can also install RHCOS by invoking the coreos-installer
command directly from the command line. The kernel arguments in the previous table provide a shortcut for automatically invoking coreos-installer
at boot time, but you can pass similar arguments directly to coreos-installer
when running it from a shell prompt.
The following table shows the options and subcommands you can pass to the coreos-installer
command from a shell prompt during a live install.
Command-line options | |
Option | Description |
| Specify the image URL manually. |
| Specify a local image file manually. |
| Embed an Ignition config from a file. |
| Embed an Ignition config from a URL. |
|
Digest |
| Override the Ignition platform ID. |
| Append the default kernel argument. |
| Delete the default kernel argument. |
| Copy the network configuration from the install environment. Important
The |
|
For use with |
| Save partitions with this label glob. |
| Save partitions with this number or range. |
| Force offline installation. |
| Skip signature verification. |
| Allow Ignition URL without HTTPS or hash. |
|
Target CPU architecture. Default is |
| Do not clear partition table on error. |
| Print help information. |
Command-line argument | |
Argument | Description |
| The destination device. |
coreos-installer embedded Ignition commands | |
Command | Description |
| Embed an Ignition config in an ISO image. |
| Show the embedded Ignition config from an ISO image. |
| Remove the embedded Ignition config from an ISO image. |
coreos-installer ISO Ignition options | |
Option | Description |
| Overwrite an existing Ignition config. |
|
The Ignition config to be used. Default is |
| Write the ISO to a new output file. |
| Print help information. |
coreos-installer PXE Ignition commands | |
Command | Description |
Note that not all of these options are accepted by all subcommands. | |
| Wrap an Ignition config in an image. |
| Show the wrapped Ignition config in an image. |
|
Show the wrapped Ignition config in an |
coreos-installer PXE Ignition options | |
Option | Description |
|
The Ignition config to be used. Default is |
| Write the ISO to a new output file. |
| Print help information. |
7.2.13.4. Updating the bootloader using bootupd
To update the bootloader by using bootupd
, you must either install bootupd
on RHCOS machines manually or provide a machine config with the enabled systemd
unit. Unlike grubby
or other bootloader tools, bootupd
does not manage kernel space configuration such as passing kernel arguments.
After you have installed bootupd
, you can manage it remotely from the OpenShift Container Platform cluster.
It is recommended that you use bootupd
only on bare metal or virtualized hypervisor installations, such as for protection against the BootHole vulnerability.
Manual install method
You can manually install bootupd
by using the bootctl
command-line tool.
Inspect the system status:
# bootupctl status
Example output
Component EFI Installed: grub2-efi-x64-1:2.04-31.fc33.x86_64,shim-x64-15-8.x86_64 Update: At latest version
RHCOS images created without
bootupd
installed on them require an explicit adoption phase.If the system status is
Adoptable
, perform the adoption:# bootupctl adopt-and-update
Example output
Updated: grub2-efi-x64-1:2.04-31.fc33.x86_64,shim-x64-15-8.x86_64
If an update is available, apply the update so that the changes take effect on the next reboot:
# bootupctl update
Example output
Updated: grub2-efi-x64-1:2.04-31.fc33.x86_64,shim-x64-15-8.x86_64
Machine config method
Another way to enable bootupd
is by providing a machine config.
Provide a machine config file with the enabled
systemd
unit, as shown in the following example:Example output
variant: rhcos version: 1.1.0 systemd: units: - name: custom-bootupd-auto.service enabled: true contents: | [Unit] Description=Bootupd automatic update [Service] ExecStart=/usr/bin/bootupctl update RemainAfterExit=yes [Install] WantedBy=multi-user.target
7.2.14. Creating the cluster
To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
Prerequisites
- Create the required infrastructure for the cluster.
- You obtained the installation program and generated the Ignition config files for your cluster.
- You used the Ignition config files to create RHCOS machines for your cluster.
- Your machines have direct Internet access or have an HTTP or HTTPS proxy available.
Procedure
Monitor the bootstrap process:
$ ./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ 1 --log-level=info 2
Example output
INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443... INFO API v1.20.0 up INFO Waiting up to 30m0s for bootstrapping to complete... INFO It is now safe to remove the bootstrap resources
The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
After bootstrap process is complete, remove the bootstrap machine from the load balancer.
ImportantYou must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
7.2.15. Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- You deployed an OpenShift Container Platform cluster.
-
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
7.2.16. Approving the certificate signing requests for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
Prerequisites
- You added machines to your cluster.
Procedure
Confirm that the cluster recognizes the machines:
$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.20.0 master-1 Ready master 63m v1.20.0 master-2 Ready master 64m v1.20.0
The output lists all of the machines that you created.
NoteThe preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
Review the pending CSRs and ensure that you see the client requests with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the
machine-approver
if the Kubelet requests a new certificate with identical parameters.NoteFor clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the
oc exec
,oc rsh
, andoc logs
commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by thenode-bootstrapper
service account in thesystem:node
orsystem:admin
groups, and confirm the identity of the node.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
NoteSome Operators might not become available until some CSRs are approved.
Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
If the remaining CSRs are not approved, and are in the
Pending
status, approve the CSRs for your cluster machines:To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
After all client and server CSRs have been approved, the machines have the
Ready
status. Verify this by running the following command:$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 73m v1.20.0 master-1 Ready master 73m v1.20.0 master-2 Ready master 74m v1.20.0 worker-0 Ready worker 11m v1.20.0 worker-1 Ready worker 11m v1.20.0
NoteIt can take a few minutes after approval of the server CSRs for the machines to transition to the
Ready
status.
Additional information
- For more information on CSRs, see Certificate Signing Requests.
7.2.17. Initial Operator configuration
After the control plane initializes, you must immediately configure some Operators so that they all become available.
Prerequisites
- Your control plane has initialized.
Procedure
Watch the cluster components come online:
$ watch -n5 oc get clusteroperators
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.7.0 True False False 3h56m baremetal 4.7.0 True False False 29h cloud-credential 4.7.0 True False False 29h cluster-autoscaler 4.7.0 True False False 29h config-operator 4.7.0 True False False 6h39m console 4.7.0 True False False 3h59m csi-snapshot-controller 4.7.0 True False False 4h12m dns 4.7.0 True False False 4h15m etcd 4.7.0 True False False 29h image-registry 4.7.0 True False False 3h59m ingress 4.7.0 True False False 4h30m insights 4.7.0 True False False 29h kube-apiserver 4.7.0 True False False 29h kube-controller-manager 4.7.0 True False False 29h kube-scheduler 4.7.0 True False False 29h kube-storage-version-migrator 4.7.0 True False False 4h2m machine-api 4.7.0 True False False 29h machine-approver 4.7.0 True False False 6h34m machine-config 4.7.0 True False False 3h56m marketplace 4.7.0 True False False 4h2m monitoring 4.7.0 True False False 6h31m network 4.7.0 True False False 29h node-tuning 4.7.0 True False False 4h30m openshift-apiserver 4.7.0 True False False 3h56m openshift-controller-manager 4.7.0 True False False 4h36m openshift-samples 4.7.0 True False False 4h30m operator-lifecycle-manager 4.7.0 True False False 29h operator-lifecycle-manager-catalog 4.7.0 True False False 29h operator-lifecycle-manager-packageserver 4.7.0 True False False 3h59m service-ca 4.7.0 True False False 29h storage 4.7.0 True False False 4h30m
- Configure the Operators that are not available.
7.2.17.1. Image registry removed during installation
On platforms that do not provide shareable object storage, the OpenShift Image Registry Operator bootstraps itself as Removed
. This allows openshift-installer
to complete installations on these platform types.
After installation, you must edit the Image Registry Operator configuration to switch the managementState
from Removed
to Managed
.
The Prometheus console provides an ImageRegistryRemoved
alert, for example:
"Image Registry has been removed. ImageStreamTags
, BuildConfigs
and DeploymentConfigs
which reference ImageStreamTags
may not work as expected. Please configure storage and update the config to Managed
state by editing configs.imageregistry.operator.openshift.io."
7.2.17.2. Image registry storage configuration
The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate
rollout strategy during upgrades.
7.2.17.3. Configuring block registry storage
To allow the image registry to use block storage types during upgrades as a cluster administrator, you can use the Recreate
rollout strategy.
Block storage volumes are supported but not recommended for use with the image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
Procedure
To set the image registry storage as a block storage type, patch the registry so that it uses the
Recreate
rollout strategy and runs with only one (1
) replica:$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
- Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
- Edit the registry configuration so that it references the correct PVC.
7.2.18. Completing installation on user-provisioned infrastructure
After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
Prerequisites
- Your control plane has initialized.
- You have completed the initial Operator configuration.
Procedure
Confirm that all the cluster components are online with the following command:
$ watch -n5 oc get clusteroperators
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.7.0 True False False 3h56m baremetal 4.7.0 True False False 29h cloud-credential 4.7.0 True False False 29h cluster-autoscaler 4.7.0 True False False 29h config-operator 4.7.0 True False False 6h39m console 4.7.0 True False False 3h59m csi-snapshot-controller 4.7.0 True False False 4h12m dns 4.7.0 True False False 4h15m etcd 4.7.0 True False False 29h image-registry 4.7.0 True False False 3h59m ingress 4.7.0 True False False 4h30m insights 4.7.0 True False False 29h kube-apiserver 4.7.0 True False False 29h kube-controller-manager 4.7.0 True False False 29h kube-scheduler 4.7.0 True False False 29h kube-storage-version-migrator 4.7.0 True False False 4h2m machine-api 4.7.0 True False False 29h machine-approver 4.7.0 True False False 6h34m machine-config 4.7.0 True False False 3h56m marketplace 4.7.0 True False False 4h2m monitoring 4.7.0 True False False 6h31m network 4.7.0 True False False 29h node-tuning 4.7.0 True False False 4h30m openshift-apiserver 4.7.0 True False False 3h56m openshift-controller-manager 4.7.0 True False False 4h36m openshift-samples 4.7.0 True False False 4h30m operator-lifecycle-manager 4.7.0 True False False 29h operator-lifecycle-manager-catalog 4.7.0 True False False 29h operator-lifecycle-manager-packageserver 4.7.0 True False False 3h59m service-ca 4.7.0 True False False 29h storage 4.7.0 True False False 4h30m
Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
$ ./openshift-install --dir <installation_directory> wait-for install-complete 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Example output
INFO Waiting up to 30m0s for the cluster to initialize...
The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
Important-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
Confirm that the Kubernetes API server is communicating with the pods.
To view a list of all pods, use the following command:
$ oc get pods --all-namespaces
Example output
NAMESPACE NAME READY STATUS RESTARTS AGE openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m openshift-apiserver apiserver-67b9g 1/1 Running 0 3m openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m openshift-apiserver apiserver-z25h4 1/1 Running 0 2m openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m ...
View the logs for a pod that is listed in the output of the previous command by using the following command:
$ oc logs <pod_name> -n <namespace> 1
- 1
- Specify the pod name and namespace, as shown in the output of the previous command.
If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
For an installation with Fibre Channel Protocol (FCP), additional steps are required to enable multipathing. Do not enable multipathing during installation.
See "Enabling multipathing with kernel arguments on RHCOS" in the Post-installation configuration documentation for more information.
7.2.19. Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.7, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
Additional resources
- See About remote health monitoring for more information about the Telemetry service
7.2.20. Next steps
- Customize your cluster.
- If necessary, you can opt out of remote health reporting.
- Set up your registry and configure registry storage.
7.3. Installing a cluster on bare metal in a restricted network
In OpenShift Container Platform version 4.7, you can install a cluster on bare metal infrastructure that you provision in a restricted network.
While you might be able to follow this procedure to deploy a cluster on virtualized or cloud environments, you must be aware of additional considerations for non-bare metal platforms. Review the information in the guidelines for deploying OpenShift Container Platform on non-tested platforms before you attempt to install an OpenShift Container Platform cluster in such an environment.
7.3.1. Prerequisites
Create a registry on your mirror host and obtain the
imageContentSources
data for your version of OpenShift Container Platform.ImportantBecause the installation media is on the mirror host, you can use that computer to complete all installation steps.
- Provision persistent storage for your cluster. To deploy a private image registry, your storage must provide ReadWriteMany access modes.
- Review details about the OpenShift Container Platform installation and update processes.
If you use a firewall and plan to use telemetry, you must configure the firewall to allow the sites that your cluster requires access to.
NoteBe sure to also review this site list if you are configuring a proxy.
7.3.2. About installations in restricted networks
In OpenShift Container Platform 4.7, you can perform an installation that does not require an active connection to the Internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.
If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less Internet access for an installation on bare metal hardware or on VMware vSphere.
To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift Container Platform registry and contains the installation media. You can create this registry on a mirror host, which can access both the Internet and your closed network, or by using other methods that meet your restrictions.
Because of the complexity of the configuration for user-provisioned installations, consider completing a standard user-provisioned infrastructure installation before you attempt a restricted network installation using user-provisioned infrastructure. Completing this test installation might make it easier to isolate and troubleshoot any issues that might arise during your installation in a restricted network.
7.3.2.1. Additional limits
Clusters in restricted networks have the following additional limitations and restrictions:
-
The
ClusterVersion
status includes anUnable to retrieve available updates
error. - By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.
7.3.3. Internet access for OpenShift Container Platform
In OpenShift Container Platform 4.7, you require access to the Internet to obtain the images that are necessary to install your cluster.
You must have Internet access to:
- Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct Internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the content that is required and use it to populate a mirror registry with the packages that you need to install a cluster and generate the installation program. With some installation types, the environment that you install your cluster in will not require Internet access. Before you update the cluster, you update the content of the mirror registry.
7.3.4. Machine requirements for a cluster with user-provisioned infrastructure
For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
7.3.4.1. Required machines
The smallest OpenShift Container Platform clusters require the following hosts:
- One temporary bootstrap machine
- Three control plane, or master, machines
- At least two compute machines, which are also known as worker machines. If you are running a three-node cluster, running zero compute machines is supported. Running one compute machine is not supported.
The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.
To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS) or Red Hat Enterprise Linux (RHEL) 7.9.
Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 8 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
7.3.4.2. Network connectivity requirements
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config files from the Machine Config Server. During the initial boot, the machines require either a DHCP server or that static IP addresses be set in order to establish a network connection to download their Ignition config files. Additionally, each OpenShift Container Platform node in the cluster must have access to a Network Time Protocol (NTP) server. If a DHCP server provides NTP servers information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
7.3.4.3. Minimum resource requirements
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | CPU [1] | RAM | Storage | IOPS [2] |
---|---|---|---|---|---|
Bootstrap | RHCOS | 4 | 16 GB | 100 GB | 300 |
Control plane | RHCOS | 4 | 16 GB | 100 GB | 300 |
Compute | RHCOS or RHEL 7.9 | 2 | 8 GB | 100 GB | 300 |
- One CPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = CPUs.
- OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
7.3.4.4. Certificate signing requests management
Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager
only approves the kubelet client CSRs. The machine-approver
cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
7.3.5. Creating the user-provisioned infrastructure
Before you deploy an OpenShift Container Platform cluster that uses user-provisioned infrastructure, you must create the underlying infrastructure.
Prerequisites
- Review the OpenShift Container Platform 4.x Tested Integrations page before you create the supporting infrastructure for your cluster.
Procedure
- Configure DHCP or set static IP addresses on each node.
- Provision the required load balancers.
- Configure the ports for your machines.
- Configure DNS.
- Ensure network connectivity.
7.3.5.1. Networking requirements for user-provisioned infrastructure
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require network in initramfs
during boot to fetch Ignition config from the machine config server.
During the initial boot, the machines require either a DHCP server or that static IP addresses be set on each host in the cluster to establish a network connection, which allows them to download their Ignition config files.
It is recommended to use the DHCP server to manage the machines for the cluster long-term. Ensure that the DHCP server is configured to provide persistent IP addresses and host names to the cluster machines.
The Kubernetes API server must be able to resolve the node names of the cluster machines. If the API servers and worker nodes are in different zones, you can configure a default DNS search zone to allow the API server to resolve the node names. Another supported approach is to always refer to hosts by their fully-qualified domain names in both the node objects and all DNS requests.
You must configure the network connectivity between machines to allow cluster components to communicate. Each machine must be able to resolve the host names of all other machines in the cluster.
Protocol | Port | Description |
---|---|---|
ICMP | N/A | Network reachability tests |
TCP |
| Metrics |
|
Host level services, including the node exporter on ports | |
| The default ports that Kubernetes reserves | |
| openshift-sdn | |
UDP |
| VXLAN and Geneve |
| VXLAN and Geneve | |
|
Host level services, including the node exporter on ports | |
TCP/UDP |
| Kubernetes node port |
Protocol | Port | Description |
---|---|---|
TCP |
| Kubernetes API |
Protocol | Port | Description |
---|---|---|
TCP |
| etcd server and peer ports |
Network topology requirements
The infrastructure that you provision for your cluster must meet the following network topology requirements.
Load balancers
Before you install OpenShift Container Platform, you must provision two load balancers that meet the following requirements:
API load balancer: Provides a common endpoint for users, both human and machine, to interact with and configure the platform. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the API routes.
- A stateless load balancing algorithm. The options vary based on the load balancer implementation.
ImportantDo not configure session persistence for an API load balancer.
Configure the following ports on both the front and back of the load balancers:
Table 7.34. API load balancer Port Back-end machines (pool members) Internal External Description 6443
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane. You must configure the
/readyz
endpoint for the API server health check probe.X
X
Kubernetes API server
22623
Bootstrap and control plane. You remove the bootstrap machine from the load balancer after the bootstrap machine initializes the cluster control plane.
X
Machine config server
NoteThe load balancer must be configured to take a maximum of 30 seconds from the time the API server turns off the
/readyz
endpoint to the removal of the API server instance from the pool. Within the time frame after/readyz
returns an error or becomes healthy, the endpoint must have been removed or added. Probing every 5 or 10 seconds, with two successful requests to become healthy and three to become unhealthy, are well-tested values.Application Ingress load balancer: Provides an Ingress point for application traffic flowing in from outside the cluster. Configure the following conditions:
- Layer 4 load balancing only. This can be referred to as Raw TCP, SSL Passthrough, or SSL Bridge mode. If you use SSL Bridge mode, you must enable Server Name Indication (SNI) for the Ingress routes.
- A connection-based or session-based persistence is recommended, based on the options available and types of applications that will be hosted on the platform.
Configure the following ports on both the front and back of the load balancers:
Table 7.35. Application Ingress load balancer Port Back-end machines (pool members) Internal External Description 443
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTPS traffic
80
The machines that run the Ingress router pods, compute, or worker, by default.
X
X
HTTP traffic
If the true IP address of the client can be seen by the load balancer, enabling source IP-based session persistence can improve performance for applications that use end-to-end TLS encryption.
A working configuration for the Ingress router is required for an OpenShift Container Platform cluster. You must configure the Ingress router after the control plane initializes.
NTP configuration
OpenShift Container Platform clusters are configured to use a public Network Time Protocol (NTP) server by default. If you want to use a local enterprise NTP server, or if your cluster is being deployed in a disconnected network, you can configure the cluster to use a specific time server. For more information, see the documentation for Configuring chrony time service.
If a DHCP server provides NTP server information, the chrony time service on the Red Hat Enterprise Linux CoreOS (RHCOS) machines read the information and can sync the clock with the NTP servers.
Additional resources
7.3.5.2. User-provisioned DNS requirements
DNS is used for name resolution and reverse name resolution. DNS A/AAAA or CNAME records are used for name resolution and PTR records are used for reverse name resolution. The reverse records are important because Red Hat Enterprise Linux CoreOS (RHCOS) uses the reverse records to set the host name for all the nodes. Additionally, the reverse records are used to generate the certificate signing requests (CSR) that OpenShift Container Platform needs to operate.
The following DNS records are required for an OpenShift Container Platform cluster that uses user-provisioned infrastructure. In each record, <cluster_name>
is the cluster name and <base_domain>
is the cluster base domain that you specify in the install-config.yaml
file. A complete DNS record takes the form: <component>.<cluster_name>.<base_domain>.
.
Component | Record | Description |
---|---|---|
Kubernetes API |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the load balancer for the control plane machines. These records must be resolvable from all the nodes within the cluster. Important The API server must be able to resolve the worker nodes by the host names that are recorded in Kubernetes. If the API server cannot resolve the node names, then proxied API calls can fail, and you cannot retrieve logs from pods. | |
Routes |
| Add a wildcard DNS A/AAAA or CNAME record that refers to the load balancer that targets the machines that run the Ingress router pods, which are the worker nodes by default. These records must be resolvable by both clients external to the cluster and from all the nodes within the cluster. |
Bootstrap |
| Add a DNS A/AAAA or CNAME record, and a DNS PTR record, to identify the bootstrap machine. These records must be resolvable by the nodes within the cluster. |
Master hosts |
| DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the control plane nodes (also known as the master nodes). These records must be resolvable by the nodes within the cluster. |
Worker hosts |
| Add DNS A/AAAA or CNAME records and DNS PTR records to identify each machine for the worker nodes. These records must be resolvable by the nodes within the cluster. |
You can use the nslookup <hostname>
command to verify name resolution. You can use the dig -x <ip_address>
command to verify reverse name resolution for the PTR records.
The following example of a BIND zone file shows sample A records for name resolution. The purpose of the example is to show the records that are needed. The example is not meant to provide advice for choosing one name resolution service over another.
Example 7.5. Sample DNS zone database
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. IN MX 10 smtp.example.com. ; ; ns1 IN A 192.168.1.5 smtp IN A 192.168.1.5 ; helper IN A 192.168.1.5 helper.ocp4 IN A 192.168.1.5 ; ; The api identifies the IP of your load balancer. api.ocp4 IN A 192.168.1.5 api-int.ocp4 IN A 192.168.1.5 ; ; The wildcard also identifies the load balancer. *.apps.ocp4 IN A 192.168.1.5 ; ; Create an entry for the bootstrap host. bootstrap.ocp4 IN A 192.168.1.96 ; ; Create entries for the master hosts. master0.ocp4 IN A 192.168.1.97 master1.ocp4 IN A 192.168.1.98 master2.ocp4 IN A 192.168.1.99 ; ; Create entries for the worker hosts. worker0.ocp4 IN A 192.168.1.11 worker1.ocp4 IN A 192.168.1.7 ; ;EOF
The following example BIND zone file shows sample PTR records for reverse name resolution.
Example 7.6. Sample DNS zone database for reverse records
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. ; ; The syntax is "last octet" and the host must have an FQDN ; with a trailing dot. 97 IN PTR master0.ocp4.example.com. 98 IN PTR master1.ocp4.example.com. 99 IN PTR master2.ocp4.example.com. ; 96 IN PTR bootstrap.ocp4.example.com. ; 5 IN PTR api.ocp4.example.com. 5 IN PTR api-int.ocp4.example.com. ; 11 IN PTR worker0.ocp4.example.com. 7 IN PTR worker1.ocp4.example.com. ; ;EOF
For clusters using installer-provisioned infrastructure, only the DNS records must be added.
7.3.6. Generating an SSH private key and adding it to the agent
If you want to perform installation debugging or disaster recovery on your cluster, you must provide an SSH key to both your ssh-agent
and the installation program. You can use this key to access the bootstrap machine in a public cluster to troubleshoot installation issues.
In a production environment, you require disaster recovery and debugging.
You can use this key to SSH into the master nodes as the user core
. When you deploy the cluster, the key is added to the core
user’s ~/.ssh/authorized_keys
list.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an SSH key that is configured for password-less authentication on your computer, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' \ -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
Running this command generates an SSH key that does not require a password in the location that you specified.
NoteIf you plan to install an OpenShift Container Platform cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.Start the
ssh-agent
process as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_rsa
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide this key to your cluster’s machines.
7.3.7. Manually creating the installation configuration file
For installations of OpenShift Container Platform that use user-provisioned infrastructure, you manually generate your installation configuration file.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the access token for your cluster.
-
Obtain the
imageContentSources
section from the output of the command to mirror the repository. - Obtain the contents of the certificate for your mirror registry.
Procedure
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
ImportantYou must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
Customize the following
install-config.yaml
file template and save it in the<installation_directory>
.NoteYou must name this configuration file
install-config.yaml
.-
Unless you use a registry that RHCOS trusts by default, such as
docker.io
, you must provide the contents of the certificate for your mirror repository in theadditionalTrustBundle
section. In most cases, you must provide the certificate for your mirror. -
You must include the
imageContentSources
section from the output of the command to mirror the repository.
-
Unless you use a registry that RHCOS trusts by default, such as
Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the next step of the installation process. You must back it up now.
7.3.7.1. Installation configuration parameters
Before you deploy an OpenShift Container Platform cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the install-config.yaml
file.
The openshift-install
command does not validate field names for parameters. If an incorrect name is specified, the related file or object is not created, and no error is reported. Ensure that the field names for any parameters that are specified are correct.
7.3.7.1.1. Required configuration parameters
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
|
The API version for the | String |
|
The base domain of your cloud provider. The base domain is used to create routes to your OpenShift Container Platform cluster components. The full DNS name for your cluster is a combination of the |
A fully-qualified domain or subdomain name, such as |
|
Kubernetes resource | Object |
|
The name of the cluster. DNS records for the cluster are all subdomains of |
String of lowercase letters, hyphens ( |
|
The configuration for the specific platform upon which to perform the installation: | Object |
| Get a pull secret from the Red Hat OpenShift Cluster Manager to authenticate downloading container images for OpenShift Container Platform components from services such as Quay.io. |
{ "auths":{ "cloud.openshift.com":{ "auth":"b3Blb=", "email":"you@example.com" }, "quay.io":{ "auth":"b3Blb=", "email":"you@example.com" } } } |
7.3.7.1.2. Network configuration parameters
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values |
---|---|---|
| The configuration for the cluster network. | Object Note
You cannot modify parameters specified by the |
| The cluster network provider Container Network Interface (CNI) plug-in to install. |
Either |
| The IP address blocks for pods.
The default value is If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 |
|
Required if you use An IPv4 network. |
An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between |
|
The subnet prefix length to assign to each individual node. For example, if | A subnet prefix.
The default value is |
|
The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. | An array with an IP address block in CIDR format. For example: networking: serviceNetwork: - 172.30.0.0/16 |
| The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example: networking: machineNetwork: - cidr: 10.0.0.0/16 |
|
Required if you use | An IP network block in CIDR notation.
For example, Note
Set the |
7.3.7.1.3. Optional configuration parameters
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| A PEM-encoded X.509 certificate bundle that is added to the nodes' trusted certificate store. This trust bundle may also be used when a proxy has been configured. | String |
| The configuration for the machines that comprise the compute nodes. |
Array of |
|
Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of compute machines, which are also known as worker machines, to provision. |
A positive integer greater than or equal to |
| The configuration for the machines that comprise the control plane. |
Array of |
|
Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String |
|
Whether to enable or disable simultaneous multithreading, or Important If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. |
|
|
Required if you use |
|
|
Required if you use |
|
| The number of control plane machines to provision. |
The only supported value is |
| The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported. Note Not all CCO modes are supported for all cloud providers. For more information on CCO modes, see the Cloud Credential Operator entry in the Cluster Operators reference content. |
|
|
Enable or disable FIPS mode. The default is Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the Note If you are using Azure File storage, you cannot enable FIPS mode. |
|
| Sources and repositories for the release-image content. |
Array of objects. Includes a |
|
Required if you use | String |
| Specify one or more repositories that may also contain the same images. | Array of strings |
| How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
Setting this field to Important
If the value of the field is set to |
| The SSH key or keys to authenticate access your cluster machines. Note
For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your | One or more keys. For example: sshKey: <key1> <key2> <key3> |
7.3.7.2. Sample install-config.yaml file for bare metal
You can customize the install-config.yaml
file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
apiVersion: v1 baseDomain: example.com 1 compute: 2 - hyperthreading: Enabled 3 name: worker replicas: 0 4 controlPlane: 5 hyperthreading: Enabled 6 name: master replicas: 3 7 metadata: name: test 8 networking: clusterNetwork: - cidr: 10.128.0.0/14 9 hostPrefix: 23 10 networkType: OpenShiftSDN serviceNetwork: 11 - 172.30.0.0/16 platform: none: {} 12 fips: false 13 pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}' 14 sshKey: 'ssh-ed25519 AAAA...' 15 additionalTrustBundle: | 16 -----BEGIN CERTIFICATE----- ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ -----END CERTIFICATE----- imageContentSources: 17 - mirrors: - <local_registry>/<local_repository_name>/release source: quay.io/openshift-release-dev/ocp-release - mirrors: - <local_registry>/<local_repository_name>/release source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
- 1
- The base domain of the cluster. All DNS records must be sub-domains of this base and include the cluster name.
- 2 5
- The
controlPlane
section is a single mapping, but thecompute
section is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecompute
section must begin with a hyphen,-
, and the first line of thecontrolPlane
section must not. Only one control plane pool is used. - 3 6
- Whether to enable or disable simultaneous multithreading (SMT), or
hyperthreading
. By default, SMT is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled
. If you disable SMT, you must disable it in all cluster machines; this includes both control plane and compute machines.NoteSimultaneous multithreading (SMT) is enabled by default. If SMT is not enabled in your BIOS settings, the
hyperthreading
parameter has no effect.ImportantIf you disable
hyperthreading
, whether in the BIOS or in theinstall-config.yaml
, ensure that your capacity planning accounts for the dramatically decreased machine performance. - 4
- You must set the value of the
replicas
parameter to0
. This parameter controls the number of workers that the cluster creates and manages for you, which are functions that the cluster does not perform when you use user-provisioned infrastructure. You must manually deploy worker machines for the cluster to use before you finish installing OpenShift Container Platform. - 7
- The number of control plane machines that you add to the cluster. Because the cluster uses these values as the number of etcd endpoints in the cluster, the value must match the number of control plane machines that you deploy.
- 8
- The cluster name that you specified in your DNS records.
- 9
- A block of IP addresses from which pod IP addresses are allocated. This block must not overlap with existing physical networks. These IP addresses are used for the pod network. If you need to access the pods from an external network, you must configure load balancers and routers to manage the traffic.Note
Class E CIDR range is reserved for a future use. To use the Class E CIDR range, you must ensure your networking environment accepts the IP addresses within the Class E CIDR range.
- 10
- The subnet prefix length to assign to each individual node. For example, if
hostPrefix
is set to23
, then each node is assigned a/23
subnet out of the givencidr
, which allows for 510 (2^(32 - 23) - 2) pod IPs addresses. If you are required to provide access to nodes from an external network, configure load balancers and routers to manage the traffic. - 11
- The IP address pool to use for service IP addresses. You can enter only one IP address pool. This block must not overlap with existing physical networks. If you need to access the services from an external network, configure load balancers and routers to manage the traffic.
- 12
- You must set the platform to
none
. You cannot provide additional platform configuration variables for your platform.WarningRed Hat Virtualization does not currently support installation with user-provisioned infrastructure on the oVirt platform. Therefore, you must set the platform to
none
, allowing OpenShift Container Platform to identify each node as a bare-metal node and the cluster as a bare-metal cluster. This is the same as installing a cluster on any platform, and has the following limitations:- There will be no cluster provider so you must manually add each machine and there will be no node scaling capabilities.
- The oVirt CSI driver will not be installed and there will be no CSI capabilities.
- 13
- Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.Important
The use of FIPS Validated / Modules in Process cryptographic libraries is only supported on OpenShift Container Platform deployments on the
x86_64
architecture. - 14
- For
<local_registry>
, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example,registry.example.com
orregistry.example.com:5000
. For<credentials>
, specify the base64-encoded user name and password for your mirror registry. - 15
- The public portion of the default SSH key for the
core
user in Red Hat Enterprise Linux CoreOS (RHCOS).NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses. - 16
- Provide the contents of the certificate file that you used for your mirror registry.
- 17
- Provide the
imageContentSources
section from the output of the command to mirror the repository.
7.3.7.3. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
For bare metal installations, if you do not assign node IP addresses from the range that is specified in the networking.machineNetwork[].cidr
field in the install-config.yaml
file, you must include them in the proxy.noProxy
field.
Prerequisites
-
You have an existing
install-config.yaml
file. You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- ...
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster.
- 3
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace to hold the additional CA certificates. If you provideadditionalTrustBundle
and at least one proxy setting, theProxy
object is configured to reference theuser-ca-bundle
config map in thetrustedCA
field. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges the contents specified for thetrustedCA
parameter with the RHCOS trust bundle. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
NoteThe installation program does not support the proxy
readinessEndpoints
field.- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
7.3.8. Configuring a three-node cluster
You can optionally install and run three-node clusters in OpenShift Container Platform with no workers. This provides smaller, more resource efficient clusters for cluster administrators and developers to use for development, production, and testing.
Procedure
Edit the
install-config.yaml
file to set the number of compute replicas, which are also known as worker replicas, to0
, as shown in the followingcompute
stanza:compute: - name: worker platform: {} replicas: 0
7.3.9. Creating the Kubernetes manifest and Ignition config files
Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to make its machines.
The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to create the cluster.
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
Prerequisites
- You obtained the OpenShift Container Platform installation program. For a restricted network installation, these files are on your mirror host.
-
You created the
install-config.yaml
installation configuration file.
Procedure
Change to the directory that contains the installation program and generate the Kubernetes manifests for the cluster:
$ ./openshift-install create manifests --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the installation directory that contains theinstall-config.yaml
file you created.
WarningIf you are installing a three-node cluster, skip the following step to allow the control plane nodes to be schedulable.
ImportantWhen you configure control plane nodes from the default unschedulable to schedulable, additional subscriptions are required. This is because control plane nodes then become worker nodes.
Check that the
mastersSchedulable
parameter in the<installation_directory>/manifests/cluster-scheduler-02-config.yml
Kubernetes manifest file is set tofalse
. This setting prevents pods from being scheduled on the control plane machines:-
Open the
<installation_directory>/manifests/cluster-scheduler-02-config.yml
file. -
Locate the
mastersSchedulable
parameter and ensure that it is set tofalse
. - Save and exit the file.
-
Open the
To create the Ignition configuration files, run the following command from the directory that contains the installation program:
$ ./openshift-install create ignition-configs --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the same installation directory.
The following files are generated in the directory:
. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
7.3.10. Configuring chrony time service
You must set the time server and related settings used by the chrony time service (chronyd
) by modifying the contents of the chrony.conf
file and passing those contents to your nodes as a machine config.
Procedure
Create the contents of the
chrony.conf
file and encode it as base64. For example:$ cat << EOF | base64 pool 0.rhel.pool.ntp.org iburst 1 driftfile /var/lib/chrony/drift makestep 1.0 3 rtcsync logdir /var/log/chrony EOF
- 1
- Specify any valid, reachable time source, such as the one provided by your DHCP server.
Example output
ICAgIHNlcnZlciBjbG9jay5yZWRoYXQuY29tIGlidXJzdAogICAgZHJpZnRmaWxlIC92YXIvbGli L2Nocm9ueS9kcmlmdAogICAgbWFrZXN0ZXAgMS4wIDMKICAgIHJ0Y3N5bmMKICAgIGxvZ2RpciAv dmFyL2xvZy9jaHJvbnkK
Create the
MachineConfig
object file, replacing the base64 string with the one you just created. This example adds the file tomaster
nodes. You can change it toworker
or make an additional MachineConfig for theworker
role. Create MachineConfig files for each type of machine that your cluster uses:$ cat << EOF > ./99-masters-chrony-configuration.yaml apiVersion: machineconfiguration.openshift.io/v1 kind: MachineConfig metadata: labels: machineconfiguration.openshift.io/role: master name: 99-masters-chrony-configuration spec: config: ignition: config: {} security: tls: {} timeouts: {} version: 3.2.0 networkd: {} passwd: {} storage: files: - contents: source: data:text/plain;charset=utf-8;base64,ICAgIHNlcnZlciBjbG9jay5yZWRoYXQuY29tIGlidXJzdAogICAgZHJpZnRmaWxlIC92YXIvbGliL2Nocm9ueS9kcmlmdAogICAgbWFrZXN0ZXAgMS4wIDMKICAgIHJ0Y3N5bmMKICAgIGxvZ2RpciAvdmFyL2xvZy9jaHJvbnkK mode: 420 1 overwrite: true path: /etc/chrony.conf osImageURL: "" EOF
- 1
- Specify an octal value mode for the
mode
field in the machine config file. After creating the file and applying the changes, themode
is converted to a decimal value. You can check the YAML file with the commandoc get mc <mc-name> -o yaml
.
- Make a backup copy of the configuration files.
Apply the configurations in one of two ways:
-
If the cluster is not up yet, after you generate manifest files, add this file to the
<installation_directory>/openshift
directory, and then continue to create the cluster. If the cluster is already running, apply the file:
$ oc apply -f ./99-masters-chrony-configuration.yaml
-
If the cluster is not up yet, after you generate manifest files, add this file to the
7.3.11. Installing RHCOS and starting the OpenShift Container Platform bootstrap process
To install OpenShift Container Platform on bare metal infrastructure that you provision, you must install Red Hat Enterprise Linux CoreOS (RHCOS) on the machines. When you install RHCOS, you must provide the Ignition config file that was generated by the OpenShift Container Platform installation program for the type of machine you are installing. If you have configured suitable networking, DNS, and load balancing infrastructure, the OpenShift Container Platform bootstrap process begins automatically after the RHCOS machines have rebooted.
To install RHCOS on the machines, follow either the steps to use an ISO image or network PXE booting.
The compute node deployment steps included in this installation document are RHCOS-specific. If you choose instead to deploy RHEL-based compute nodes, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and planned for removal in a future release of OpenShift Container Platform 4.
You can configure RHCOS during ISO and PXE installations by using the following methods:
-
Kernel arguments: You can use kernel arguments to provide installation-specific information. For example, you can specify the locations of the RHCOS installation files that you uploaded to your HTTP server and the location of the Ignition config file for the type of node you are installing. For a PXE installation, you can use the
APPEND
parameter to pass the arguments to the kernel of the live installer. For an ISO installation, you can interrupt the live installation boot process to add the kernel arguments. In both installation cases, you can use specialcoreos.inst.*
arguments to direct the live installer, as well as standard installation boot arguments for turning standard kernel services on or off. -
Ignition configs: OpenShift Container Platform Ignition config files (
*.ign
) are specific to the type of node you are installing. You pass the location of a bootstrap, control plane, or compute node Ignition config file during the RHCOS installation so that it takes effect on first boot. In special cases, you can create a separate, limited Ignition config to pass to the live system. That Ignition config could do a certain set of tasks, such as reporting success to a provisioning system after completing installation. This special Ignition config is consumed by thecoreos-installer
to be applied on first boot of the installed system. Do not provide the standard control plane and compute node Ignition configs to the live ISO directly. -
coreos-installer
: You can boot the live ISO installer to a shell prompt, which allows you to prepare the permanent system in a variety of ways before first boot. In particular, you can run thecoreos-installer
command to identify various artifacts to include, work with disk partitions, and set up networking. In some cases, you can configure features on the live system and copy them to the installed system.
Whether to use an ISO or PXE install depends on your situation. A PXE install requires an available DHCP service and more preparation, but can make the installation process more automated. An ISO install is a more manual process and can be inconvenient if you are setting up more than a few machines.
As of OpenShift Container Platform 4.6, the RHCOS ISO and other installation artifacts provide support for installation on disks with 4K sectors.
7.3.11.1. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines using an ISO image
Before you install a cluster on infrastructure that you provision, you must create RHCOS machines for it to use. You can use an ISO image to create the machines.
Prerequisites
- Obtain the Ignition config files for your cluster.
- Have access to an HTTP server that can be accessed from your computer, and from the machines that you create.
Procedure
Upload the control plane, compute, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
ImportantIf you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
Obtain the RHCOS images that are required for your preferred method of installing operating system instances from the RHCOS image mirror page.
ImportantThe RHCOS images might not change with every release of OpenShift Container Platform. You must download images with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image versions that match your OpenShift Container Platform version if they are available. Use only ISO images for this procedure. RHCOS qcow2 images are not supported for this installation type.
ISO file names resemble the following example:
rhcos-<version>-live.<architecture>.iso
Use the ISO to start the RHCOS installation. Use one of the following installation options:
- Burn the ISO image to a disk and boot it directly.
- Use ISO redirection via a LOM interface.
-
Boot the ISO image. You can interrupt the installation boot process to add kernel arguments. However, for this ISO procedure you should use the
coreos-installer
command instead of adding kernel arguments. If you run the live installer without options or interruption, the installer boots up to a shell prompt on the live system, ready for you to install RHCOS to disk. -
Review the Advanced RHCOS installation reference section for different ways of configuring features, such as networking and disk partitions, before running the
coreos-installer
. Run the
coreos-installer
command. At a minimum, you must identify the Ignition config file location for your node type, and the location of the disk you are installing to. Here is an example:$ sudo coreos-installer install \ --ignition-url=https://host/worker.ign /dev/sda
- After RHCOS installs, the system reboots. During the system reboot, it applies the Ignition config file that you specified.
Continue to create the other machines for your cluster.
ImportantYou must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
7.3.11.2. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines by PXE or iPXE booting
Before you install a cluster that uses manually-provisioned RHCOS nodes, such as bare metal, you must create RHCOS machines for it to use. You can use PXE or iPXE booting to create the machines.
Prerequisites
- Obtain the Ignition config files for your cluster.
- Configure suitable PXE or iPXE infrastructure.
- Have access to an HTTP server that you can access from your computer.
Procedure
Upload the master, worker, and bootstrap Ignition config files that the installation program created to your HTTP server. Note the URLs of these files.
ImportantYou can add or change configuration settings in your Ignition configs before saving them to your HTTP server. If you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
Obtain the RHCOS
kernel
,initramfs
androotfs
files from the RHCOS image mirror page.ImportantThe RHCOS artifacts might not change with every release of OpenShift Container Platform. You must download artifacts with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Only use the appropriate
kernel
,initramfs
, androotfs
artifacts described below for this procedure. RHCOS qcow2 images are not supported for this installation type.The file names contain the OpenShift Container Platform version number. They resemble the following examples:
-
kernel
:rhcos-<version>-live-kernel-<architecture>
-
initramfs
:rhcos-<version>-live-initramfs.<architecture>.img
-
rootfs
:rhcos-<version>-live-rootfs.<architecture>.img
-
Upload the additional files that are required for your booting method:
-
For traditional PXE, upload the
kernel
andinitramfs
files to your TFTP server and therootfs
file to your HTTP server. For iPXE, upload the
kernel
,initramfs
, androotfs
files to your HTTP server.ImportantIf you plan to add more compute machines to your cluster after you finish installation, do not delete these files.
-
For traditional PXE, upload the
- Configure the network boot infrastructure so that the machines boot from their local disks after RHCOS is installed on them.
Configure PXE or iPXE installation for the RHCOS images.
Modify one of the following example menu entries for your environment and verify that the image and Ignition files are properly accessible:
For PXE:
DEFAULT pxeboot TIMEOUT 20 PROMPT 0 LABEL pxeboot KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 1 APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 2 3
- 1
- Specify the location of the live
kernel
file that you uploaded to your HTTP server. The URL must be HTTP, TFTP, or FTP; HTTPS and NFS are not supported. - 2
- If you use multiple NICs, specify a single interface in the
ip
option. For example, to use DHCP on a NIC that is namedeno1
, setip=eno1:dhcp
. - 3
- Specify locations of the RHCOS files that you uploaded to your HTTP server. The
initrd
parameter value is the location of theinitramfs
file, thecoreos.live.rootfs_url
parameter value is the location of therootfs
file, and thecoreos.inst.ignition_url
parameter value is the location of the bootstrap Ignition config file. You can also add more kernel arguments to theAPPEND
line to configure networking or other boot options.
NoteThis configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more
console=
arguments to theAPPEND
line. For example, addconsole=tty0 console=ttyS0
to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.For iPXE:
kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 1 2 initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img 3 boot
- 1
- Specify locations of the RHCOS files that you uploaded to your HTTP server. The
kernel
parameter value is the location of thekernel
file, theinitrd=main
argument is needed for booting on UEFI systems, thecoreos.live.rootfs_url
parameter value is the location of therootfs
file, and thecoreos.inst.ignition_url
parameter value is the location of the bootstrap Ignition config file. - 2
- If you use multiple NICs, specify a single interface in the
ip
option. For example, to use DHCP on a NIC that is namedeno1
, setip=eno1:dhcp
. - 3
- Specify the location of the
initramfs
file that you uploaded to your HTTP server.
NoteThis configuration does not enable serial console access on machines with a graphical console. To configure a different console, add one or more
console=
arguments to thekernel
line. For example, addconsole=tty0 console=ttyS0
to set the first PC serial port as the primary console and the graphical console as a secondary console. For more information, see How does one set up a serial terminal and/or console in Red Hat Enterprise Linux?.
If you use PXE UEFI, perform the following actions:
Provide the
shimx64.efi
andgrubx64.efi
EFI binaries and thegrub.cfg
file that are required for booting the system.Extract the necessary EFI binaries by mounting the RHCOS ISO to your host and then mounting the
images/efiboot.img
file to your host:$ mkdir -p /mnt/iso
$ mkdir -p /mnt/efiboot
$ mount -o loop rhcos-installer.x86_64.iso /mnt/iso
$ mount -o loop,ro /mnt/iso/images/efiboot.img /mnt/efiboot
From the
efiboot.img
mount point, copy theEFI/redhat/shimx64.efi
andEFI/redhat/grubx64.efi
files to your TFTP server:$ cp /mnt/efiboot/EFI/redhat/shimx64.efi .
$ cp /mnt/efiboot/EFI/redhat/grubx64.efi .
$ umount /mnt/efiboot
$ umount /mnt/iso
-
Copy the
EFI/redhat/grub.cfg
file that is included in the RHCOS ISO to your TFTP server.
Edit the
grub.cfg
file to include arguments similar to the following:menuentry 'Install Red Hat Enterprise Linux CoreOS' --class fedora --class gnu-linux --class gnu --class os { linuxefi rhcos-<version>-live-kernel-<architecture> coreos.inst.install_dev=/dev/sda coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign initrdefi rhcos-<version>-live-initramfs.<architecture>.img }
where:
rhcos-<version>-live-kernel-<architecture>
-
Specifies the
kernel
file that you uploaded to your TFTP server. http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img
- Specifies the location of the live rootfs image that you uploaded to your HTTP server.
http://<HTTP_server>/bootstrap.ign
- Specifies the location of the bootstrap Ignition config file that you uploaded to your HTTP server.
rhcos-<version>-live-initramfs.<architecture>.img
-
Specifies the location of the
initramfs
file that you uploaded to your TFTP server.
NoteFor more information on how to configure a PXE server for UEFI boot, see the Red Hat Knowledgebase article: How to configure/setup a PXE server for UEFI boot for Red Hat Enterprise Linux?.
Continue to create the machines for your cluster.
ImportantYou must create the bootstrap and control plane machines at this time. If the control plane machines are not made schedulable, which is the default, also create at least two compute machines before you install the cluster.
7.3.11.3. Advanced Red Hat Enterprise Linux CoreOS (RHCOS) installation configuration
A key benefit for manually provisioning the Red Hat Enterprise Linux CoreOS (RHCOS) nodes for OpenShift Container Platform is to be able to do configuration that is not available through default OpenShift Container Platform installation methods. This section describes some of the configurations that you can do using techniques that include:
- Passing kernel arguments to the live installer
-
Running
coreos-installer
manually from the live system - Embedding Ignition configs in an ISO
The advanced configuration topics for manual Red Hat Enterprise Linux CoreOS (RHCOS) installations detailed in this section relate to disk partitioning, networking, and using Ignition configs in different ways.
7.3.11.3.1. Using advanced networking options for PXE and ISO installations
Networking for OpenShift Container Platform nodes uses DHCP by default to gather all necessary configuration settings. To set up static IP addresses or configure special settings, such as bonding, you can do one of the following:
- Pass special kernel parameters when you boot the live installer.
- Use a machine config to copy networking files to the installed system.
- Configure networking from a live installer shell prompt, then copy those settings to the installed system so that they take effect when the installed system first boots.
To configure a PXE or iPXE installation, use one of the following options:
- See the "Advanced RHCOS installation reference" tables.
- Use a machine config to copy networking files to the installed system.
To configure an ISO installation, use the following procedure.
Procedure
- Boot the ISO installer.
-
From the live system shell prompt, configure networking for the live system using available RHEL tools, such as
nmcli
ornmtui
. Run the
coreos-installer
command to install the system, adding the--copy-network
option to copy networking configuration. For example:$ coreos-installer install --copy-network \ --ignition-url=http://host/worker.ign /dev/sda
ImportantThe
--copy-network
option only copies networking configuration found under/etc/NetworkManager/system-connections
. In particular, it does not copy the system hostname.- Reboot into the installed system.
7.3.11.3.2. Disk partitioning
The disk partitions are created on OpenShift Container Platform cluster nodes during the Red Hat Enterprise Linux CoreOS (RHCOS) installation. Each RHCOS node of a particular architecture uses the same partition layout, unless the default partitioning configuration is overridden. During the RHCOS installation, the size of the root file system is increased to use the remaining available space on the target device.
However, there are two cases where you might want to intervene to override the default partitioning when installing an OpenShift Container Platform node:
Create separate partitions: For greenfield installations on an empty disk, you might want to add separate storage to a partition. This is officially supported for making
/var
or a subdirectory of/var
, such as/var/lib/etcd
, a separate partition, but not both.ImportantKubernetes supports only two filesystem partitions. If you add more than one partition to the original configuration, Kubernetes cannot monitor all of them.
-
Retain existing partitions: For a brownfield installation where you are reinstalling OpenShift Container Platform on an existing node and want to retain data partitions installed from your previous operating system, there are both boot arguments and options to
coreos-installer
that allow you to retain existing data partitions.
7.3.11.3.2.1. Creating a separate /var
partition
In general, disk partitioning for OpenShift Container Platform should be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var
partition or a subdirectory of /var
. For example:
-
/var/lib/containers
: Holds container-related content that can grow as more images and containers are added to a system. -
/var/lib/etcd
: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage. -
/var
: Holds data that you might want to keep separate for purposes such as auditing.
Storing the contents of a /var
directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
Because /var
must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var
partition by creating a machine config that is inserted during the openshift-install
preparation phases of an OpenShift Container Platform installation.
Procedure
Create a directory to hold the OpenShift Container Platform installation files:
$ mkdir $HOME/clusterconfig
Run
openshift-install
to create a set of files in themanifest
andopenshift
subdirectories. Answer the system questions as you are prompted:$ openshift-install create manifests --dir $HOME/clusterconfig ? SSH Public Key ... $ ls $HOME/clusterconfig/openshift/ 99_kubeadmin-password-secret.yaml 99_openshift-cluster-api_master-machines-0.yaml 99_openshift-cluster-api_master-machines-1.yaml 99_openshift-cluster-api_master-machines-2.yaml ...
Create a
MachineConfig
object and add it to a file in theopenshift
directory. For example, name the file98-var-partition.yaml
, change the disk device name to the name of the storage device on theworker
systems, and set the storage size as appropriate. This example places the/var
directory on a separate partition:apiVersion: machineconfiguration.openshift.io/v1 kind: MachineConfig metadata: labels: machineconfiguration.openshift.io/role: worker name: 98-var-partition spec: config: ignition: version: 3.2.0 storage: disks: - device: /dev/<device_name> 1 partitions: - label: var startMiB: <partition_start_offset> 2 sizeMiB: <partition_size> 3 filesystems: - device: /dev/disk/by-partlabel/var path: /var format: xfs systemd: units: - name: var.mount 4 enabled: true contents: | [Unit] Before=local-fs.target [Mount] What=/dev/disk/by-partlabel/var Where=/var Options=defaults,prjquota 5 [Install] WantedBy=local-fs.target
- 1
- The storage device name of the disk that you want to partition.
- 2
- When adding a data partition to the boot disk, a minimum value of 25000 mebibytes is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
- 3
- The size of the data partition in mebibytes.
- 4
- The name of the mount unit must match the directory specified in the
Where=
directive. For example, for a filesystem mounted on/var/lib/containers
, the unit must be namedvar-lib-containers.mount
. - 5
- The
prjquota
mount option must be enabled for filesystems used for container storage.
NoteWhen creating a separate
/var
partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.Run
openshift-install
again to create Ignition configs from a set of files in themanifest
andopenshift
subdirectories:$ openshift-install create ignition-configs --dir $HOME/clusterconfig $ ls $HOME/clusterconfig/ auth bootstrap.ign master.ign metadata.json worker.ign
Now you can use the Ignition config files as input to the ISO or PXE manual installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
7.3.11.3.2.2. Retaining existing partitions
For an ISO installation, you can add options to the coreos-installer
command line that causes the installer to maintain one or more existing partitions. For a PXE installation, you can APPEND
coreos.inst.*
options to preserve partitions.
Saved partitions might be partitions from an existing OpenShift Container Platform system that has data partitions that you want to keep. Here are a few tips:
- If you save existing partitions, and those partitions do not leave enough space for RHCOS, installation will fail without damaging the saved partitions.
- Identify the disk partitions you want to keep either by partition label or by number.
For an ISO installation
This example preserves any partition in which the partition label begins with data
(data*
):
# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \ --save-partlabel 'data*' /dev/sda
The following example illustrates running the coreos-installer
in a way that preserves the sixth (6) partition on the disk:
# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \ --save-partindex 6 /dev/sda
This example preserves partitions 5 and higher:
# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign --save-partindex 5- /dev/sda
In the previous examples where partition saving is used, coreos-installer
recreates the partition immediately.
For a PXE installation
This APPEND
option preserves any partition in which the partition label begins with 'data' ('data*'):
coreos.inst.save_partlabel=data*
This APPEND
option preserves partitions 5 and higher:
coreos.inst.save_partindex=5-
This APPEND
option preserves partition 6:
coreos.inst.save_partindex=6
7.3.11.3.3. Identifying Ignition configs
When doing an RHCOS manual installation, there are two types of Ignition configs that you can provide, with different reasons for providing each one:
Permanent install Ignition config: Every manual RHCOS installation needs to pass one of the Ignition config files generated by
openshift-installer
, such asbootstrap.ign
,master.ign
andworker.ign
, to carry out the installation.ImportantIt is not recommended to modify these files.
For PXE installations, you pass the Ignition configs on the
APPEND
line using thecoreos.inst.ignition_url=
option. For ISO installations, after the ISO boots to the shell prompt, you identify the Ignition config on thecoreos-installer
command line with the--ignition-url=
option. In both cases, only HTTP and HTTPS protocols are supported.Live install Ignition config: This type must be created manually and should be avoided if possible, as it is not supported by Red Hat. With this method, the Ignition config passes to the live install medium, runs immediately upon booting, and performs setup tasks before and/or after the RHCOS system installs to disk. This method should only be used for performing tasks that must be performed once and not applied again later, such as with advanced partitioning that cannot be done using a machine config.
For PXE or ISO boots, you can create the Ignition config and
APPEND
theignition.config.url=
option to identify the location of the Ignition config. You also need to appendignition.firstboot ignition.platform.id=metal
or theignition.config.url
option will be ignored.
7.3.11.3.3.1. Embedding an Ignition config in the RHCOS ISO
You can embed a live install Ignition config directly in an RHCOS ISO image. When the ISO image is booted, the embedded config will be applied automatically.
Procedure
-
Download the
coreos-installer
binary from the following image mirror page: https://mirror.openshift.com/pub/openshift-v4/clients/coreos-installer/latest/. Retrieve the RHCOS ISO image and the Ignition config file, and copy them into an accessible directory, such as
/mnt
:# cp rhcos-<version>-live.x86_64.iso bootstrap.ign /mnt/ # chmod 644 /mnt/rhcos-<version>-live.x86_64.iso
Run the following command to embed the Ignition config into the ISO:
# ./coreos-installer iso ignition embed -i /mnt/bootstrap.ign \ /mnt/rhcos-<version>-live.x86_64.iso
You can now use that ISO to install RHCOS using the specified live install Ignition config.
ImportantUsing
coreos-installer iso ignition embed
to embed a file generated byopenshift-installer
, such asbootstrap.ign
,master.ign
andworker.ign
, is unsupported and not recommended.To show the contents of the embedded Ignition config and direct it into a file, run:
# ./coreos-installer iso ignition show /mnt/rhcos-<version>-live.x86_64.iso > mybootstrap.ign
# diff -s bootstrap.ign mybootstrap.ign
Example output
Files bootstrap.ign and mybootstrap.ign are identical
To remove the Ignition config and return the ISO to its pristine state so you can reuse it, run:
# ./coreos-installer iso ignition remove /mnt/rhcos-<version>-live.x86_64.iso
You can now embed another Ignition config into the ISO or use the ISO in its pristine state.
7.3.11.3.4. Advanced RHCOS installation reference
This section illustrates the networking configuration and other advanced options that allow you to modify the Red Hat Enterprise Linux CoreOS (RHCOS) manual installation process. The following tables describe the kernel arguments and command-line options you can use with the RHCOS live installer and the coreos-installer
command.
Routing and bonding options at RHCOS boot prompt
If you install RHCOS from an ISO image, you can add kernel arguments manually when you boot that image to configure the node’s networking. If no networking arguments are used, the installation defaults to using DHCP.
When adding networking arguments, you must also add the rd.neednet=1
kernel argument.
The following table describes how to use ip=
, nameserver=
, and bond=
kernel arguments for live ISO installs.
Ordering is important when adding kernel arguments: ip=
, nameserver=
, and then bond=
.
Routing and bonding options for ISO
The following table provides examples for configuring networking of your Red Hat Enterprise Linux CoreOS (RHCOS) nodes. These are networking options that are passed to the dracut
tool during system boot. For more information about the networking options supported by dracut
, see the dracut.cmdline
manual page.
Description | Examples |
---|---|
To configure an IP address, either use DHCP (
|
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none nameserver=4.4.4.41 |
Specify multiple network interfaces by specifying multiple |
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none |
Optional: You can configure routes to additional networks by setting an If the additional network gateway is different from the primary network gateway, the default gateway must be the primary network gateway. | To configure the default gateway: ip=::10.10.10.254:::: To configure the route for the additional network: rd.route=20.20.20.0/24:20.20.20.254:enp2s0 |
Disable DHCP on a single interface, such as when there are two or more network interfaces and only one interface is being used. |
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none ip=::::core0.example.com:enp2s0:none |
You can combine DHCP and static IP configurations on systems with multiple network interfaces. |
ip=enp1s0:dhcp ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none |
Optional: You can configure VLANs on individual interfaces by using the | To configure a VLAN on a network interface and use a static IP address: ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none vlan=enp2s0.100:enp2s0 To configure a VLAN on a network interface and to use DHCP: ip=enp2s0.100:dhcp vlan=enp2s0.100:enp2s0 |
You can provide multiple DNS servers by adding a |
nameserver=1.1.1.1 nameserver=8.8.8.8 |
Optional: Bonding multiple network interfaces to a single interface is supported using the
|
To configure the bonded interface to use DHCP, set the bond’s IP address to bond=bond0:em1,em2:mode=active-backup ip=bond0:dhcp To configure the bonded interface to use a static IP address, enter the specific IP address you want and related information. For example: bond=bond0:em1,em2:mode=active-backup ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none |
Optional: You can configure VLANs on bonded interfaces by using the | To configure the bonded interface with a VLAN and to use DHCP: ip=bond0.100:dhcp bond=bond0:em1,em2:mode=active-backup vlan=bond0.100:bond0 To configure the bonded interface with a VLAN and to use a static IP address: ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0.100:none bond=bond0:em1,em2:mode=active-backup vlan=bond0.100:bond0 |
Optional: Network teaming can be used as an alternative to bonding by using the
Note Teaming is planned to be deprecated when RHCOS switches to an upcoming version of RHEL. For more information, see this Red Hat Knowledgebase Article. | To configure a network team: team=team0:em1,em2 ip=team0:dhcp |
coreos.inst
boot options for ISO or PXE install
While you can pass most standard installation boot arguments to the live installer, there are several arguments that are specific to the RHCOS live installer.
- For ISO, these options can be added by interrupting the RHCOS installer.
-
For PXE or iPXE, these options must be added to the
APPEND
line before starting the PXE kernel. You cannot interrupt a live PXE install.
The following table shows the RHCOS live installer boot options for ISO and PXE installs.
Argument | Description |
---|---|
|
Required. The block device on the system to install to. It is recommended to use the full path, such as |
| Optional: The URL of the Ignition config to embed into the installed system. If no URL is specified, no Ignition config is embedded. |
| Optional: Comma-separated labels of partitions to preserve during the install. Glob-style wildcards are permitted. The specified partitions do not need to exist. |
|
Optional: Comma-separated indexes of partitions to preserve during the install. Ranges |
|
Optional: Permits the OS image that is specified by |
| Optional: Download and install the specified RHCOS image.
|
| Optional: The system will not reboot after installing. Once the install finishes, you will receive a prompt that allows you to inspect what is happening during installation. This argument should not be used in production environments and is intended for debugging purposes only. |
|
Optional: The Ignition platform ID of the platform the RHCOS image is being installed on. Default is |
|
Optional: The URL of the Ignition config for the live boot. For example, this can be used to customize how |
coreos-installer
options for ISO install
You can also install RHCOS by invoking the coreos-installer
command directly from the command line. The kernel arguments in the previous table provide a shortcut for automatically invoking coreos-installer
at boot time, but you can pass similar arguments directly to coreos-installer
when running it from a shell prompt.
The following table shows the options and subcommands you can pass to the coreos-installer
command from a shell prompt during a live install.
Command-line options | |
Option | Description |
| Specify the image URL manually. |
| Specify a local image file manually. |
| Embed an Ignition config from a file. |
| Embed an Ignition config from a URL. |
|
Digest |
| Override the Ignition platform ID. |
| Append the default kernel argument. |
| Delete the default kernel argument. |
| Copy the network configuration from the install environment. Important
The |
|
For use with |
| Save partitions with this label glob. |
| Save partitions with this number or range. |
| Force offline installation. |
| Skip signature verification. |
| Allow Ignition URL without HTTPS or hash. |
|
Target CPU architecture. Default is |
| Do not clear partition table on error. |
| Print help information. |
Command-line argument | |
Argument | Description |
| The destination device. |
coreos-installer embedded Ignition commands | |
Command | Description |
| Embed an Ignition config in an ISO image. |
| Show the embedded Ignition config from an ISO image. |
| Remove the embedded Ignition config from an ISO image. |
coreos-installer ISO Ignition options | |
Option | Description |
| Overwrite an existing Ignition config. |
|
The Ignition config to be used. Default is |
| Write the ISO to a new output file. |
| Print help information. |
coreos-installer PXE Ignition commands | |
Command | Description |
Note that not all of these options are accepted by all subcommands. | |
| Wrap an Ignition config in an image. |
| Show the wrapped Ignition config in an image. |
|
Show the wrapped Ignition config in an |
coreos-installer PXE Ignition options | |
Option | Description |
|
The Ignition config to be used. Default is |
| Write the ISO to a new output file. |
| Print help information. |
7.3.11.4. Updating the bootloader using bootupd
To update the bootloader by using bootupd
, you must either install bootupd
on RHCOS machines manually or provide a machine config with the enabled systemd
unit. Unlike grubby
or other bootloader tools, bootupd
does not manage kernel space configuration such as passing kernel arguments.
After you have installed bootupd
, you can manage it remotely from the OpenShift Container Platform cluster.
It is recommended that you use bootupd
only on bare metal or virtualized hypervisor installations, such as for protection against the BootHole vulnerability.
Manual install method
You can manually install bootupd
by using the bootctl
command-line tool.
Inspect the system status:
# bootupctl status
Example output
Component EFI Installed: grub2-efi-x64-1:2.04-31.fc33.x86_64,shim-x64-15-8.x86_64 Update: At latest version
RHCOS images created without
bootupd
installed on them require an explicit adoption phase.If the system status is
Adoptable
, perform the adoption:# bootupctl adopt-and-update
Example output
Updated: grub2-efi-x64-1:2.04-31.fc33.x86_64,shim-x64-15-8.x86_64
If an update is available, apply the update so that the changes take effect on the next reboot:
# bootupctl update
Example output
Updated: grub2-efi-x64-1:2.04-31.fc33.x86_64,shim-x64-15-8.x86_64
Machine config method
Another way to enable bootupd
is by providing a machine config.
Provide a machine config file with the enabled
systemd
unit, as shown in the following example:Example output
variant: rhcos version: 1.1.0 systemd: units: - name: custom-bootupd-auto.service enabled: true contents: | [Unit] Description=Bootupd automatic update [Service] ExecStart=/usr/bin/bootupctl update RemainAfterExit=yes [Install] WantedBy=multi-user.target
7.3.12. Creating the cluster
To create the OpenShift Container Platform cluster, you wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
Prerequisites
- Create the required infrastructure for the cluster.
- You obtained the installation program and generated the Ignition config files for your cluster.
- You used the Ignition config files to create RHCOS machines for your cluster.
Procedure
Monitor the bootstrap process:
$ ./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ 1 --log-level=info 2
Example output
INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443... INFO API v1.20.0 up INFO Waiting up to 30m0s for bootstrapping to complete... INFO It is now safe to remove the bootstrap resources
The command succeeds when the Kubernetes API server signals that it has been bootstrapped on the control plane machines.
After bootstrap process is complete, remove the bootstrap machine from the load balancer.
ImportantYou must remove the bootstrap machine from the load balancer at this point. You can also remove or reformat the machine itself.
7.3.13. Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- You deployed an OpenShift Container Platform cluster.
-
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
7.3.14. Approving the certificate signing requests for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
Prerequisites
- You added machines to your cluster.
Procedure
Confirm that the cluster recognizes the machines:
$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.20.0 master-1 Ready master 63m v1.20.0 master-2 Ready master 64m v1.20.0
The output lists all of the machines that you created.
NoteThe preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
Review the pending CSRs and ensure that you see the client requests with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. Once the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the
machine-approver
if the Kubelet requests a new certificate with identical parameters.NoteFor clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the
oc exec
,oc rsh
, andoc logs
commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by thenode-bootstrapper
service account in thesystem:node
orsystem:admin
groups, and confirm the identity of the node.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
NoteSome Operators might not become available until some CSRs are approved.
Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
If the remaining CSRs are not approved, and are in the
Pending
status, approve the CSRs for your cluster machines:To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
After all client and server CSRs have been approved, the machines have the
Ready
status. Verify this by running the following command:$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 73m v1.20.0 master-1 Ready master 73m v1.20.0 master-2 Ready master 74m v1.20.0 worker-0 Ready worker 11m v1.20.0 worker-1 Ready worker 11m v1.20.0
NoteIt can take a few minutes after approval of the server CSRs for the machines to transition to the
Ready
status.
Additional information
- For more information on CSRs, see Certificate Signing Requests.
7.3.15. Initial Operator configuration
After the control plane initializes, you must immediately configure some Operators so that they all become available.
Prerequisites
- Your control plane has initialized.
Procedure
Watch the cluster components come online:
$ watch -n5 oc get clusteroperators
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.7.0 True False False 3h56m baremetal 4.7.0 True False False 29h cloud-credential 4.7.0 True False False 29h cluster-autoscaler 4.7.0 True False False 29h config-operator 4.7.0 True False False 6h39m console 4.7.0 True False False 3h59m csi-snapshot-controller 4.7.0 True False False 4h12m dns 4.7.0 True False False 4h15m etcd 4.7.0 True False False 29h image-registry 4.7.0 True False False 3h59m ingress 4.7.0 True False False 4h30m insights 4.7.0 True False False 29h kube-apiserver 4.7.0 True False False 29h kube-controller-manager 4.7.0 True False False 29h kube-scheduler 4.7.0 True False False 29h kube-storage-version-migrator 4.7.0 True False False 4h2m machine-api 4.7.0 True False False 29h machine-approver 4.7.0 True False False 6h34m machine-config 4.7.0 True False False 3h56m marketplace 4.7.0 True False False 4h2m monitoring 4.7.0 True False False 6h31m network 4.7.0 True False False 29h node-tuning 4.7.0 True False False 4h30m openshift-apiserver 4.7.0 True False False 3h56m openshift-controller-manager 4.7.0 True False False 4h36m openshift-samples 4.7.0 True False False 4h30m operator-lifecycle-manager 4.7.0 True False False 29h operator-lifecycle-manager-catalog 4.7.0 True False False 29h operator-lifecycle-manager-packageserver 4.7.0 True False False 3h59m service-ca 4.7.0 True False False 29h storage 4.7.0 True False False 4h30m
- Configure the Operators that are not available.
7.3.15.1. Disabling the default OperatorHub sources
Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OpenShift Container Platform installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.
Procedure
Disable the sources for the default catalogs by adding
disableAllDefaultSources: true
to theOperatorHub
object:$ oc patch OperatorHub cluster --type json \ -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'
Alternatively, you can use the web console to manage catalog sources. From the Administration
7.3.15.2. Image registry storage configuration
The Image Registry Operator is not initially available for platforms that do not provide default storage. After installation, you must configure your registry to use storage so that the Registry Operator is made available.
Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.
Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate
rollout strategy during upgrades.
7.3.15.2.1. Changing the image registry’s management state
To start the image registry, you must change the Image Registry Operator configuration’s managementState
from Removed
to Managed
.
Procedure
Change
managementState
Image Registry Operator configuration fromRemoved
toManaged
. For example:$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"managementState":"Managed"}}'
7.3.15.2.2. Configuring registry storage for bare metal and other manual installations
As a cluster administrator, following installation you must configure your registry to use storage.
Prerequisites
- Cluster administrator permissions.
- A cluster that uses manually-provisioned Red Hat Enterprise Linux CoreOS (RHCOS) nodes, such as bare metal.
Persistent storage provisioned for your cluster, such as Red Hat OpenShift Container Storage.
ImportantOpenShift Container Platform supports
ReadWriteOnce
access for image registry storage when you have only one replica. To deploy an image registry that supports high availability with two or more replicas,ReadWriteMany
access is required.- Must have 100Gi capacity.
Procedure
To configure your registry to use storage, change the
spec.storage.pvc
in theconfigs.imageregistry/cluster
resource.NoteWhen using shared storage, review your security settings to prevent outside access.
Verify that you do not have a registry pod:
$ oc get pod -n openshift-image-registry -l docker-registry=default
Example output
No resourses found in openshift-image-registry namespace
NoteIf you do have a registry pod in your output, you do not need to continue with this procedure.
Check the registry configuration:
$ oc edit configs.imageregistry.operator.openshift.io
Example output
storage: pvc: claim:
Leave the
claim
field blank to allow the automatic creation of animage-registry-storage
PVC.Check the
clusteroperator
status:$ oc get clusteroperator image-registry
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE image-registry 4.7 True False False 6h50m
Ensure that your registry is set to managed to enable building and pushing of images.
Run:
$ oc edit configs.imageregistry/cluster
Then, change the line
managementState: Removed
to
managementState: Managed
7.3.15.2.3. Configuring storage for the image registry in non-production clusters
You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.
Procedure
To set the image registry storage to an empty directory:
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
WarningConfigure this option for only non-production clusters.
If you run this command before the Image Registry Operator initializes its components, the
oc patch
command fails with the following error:Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found
Wait a few minutes and run the command again.
7.3.15.2.4. Configuring block registry storage
To allow the image registry to use block storage types during upgrades as a cluster administrator, you can use the Recreate
rollout strategy.
Block storage volumes are supported but not recommended for use with the image registry on production clusters. An installation where the registry is configured on block storage is not highly available because the registry cannot have more than one replica.
Procedure
To set the image registry storage as a block storage type, patch the registry so that it uses the
Recreate
rollout strategy and runs with only one (1
) replica:$ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
- Provision the PV for the block storage device, and create a PVC for that volume. The requested block volume uses the ReadWriteOnce (RWO) access mode.
- Edit the registry configuration so that it references the correct PVC.
7.3.16. Completing installation on user-provisioned infrastructure
After you complete the Operator configuration, you can finish installing the cluster on infrastructure that you provide.
Prerequisites
- Your control plane has initialized.
- You have completed the initial Operator configuration.
Procedure
Confirm that all the cluster components are online with the following command:
$ watch -n5 oc get clusteroperators
Example output
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.7.0 True False False 3h56m baremetal 4.7.0 True False False 29h cloud-credential 4.7.0 True False False 29h cluster-autoscaler 4.7.0 True False False 29h config-operator 4.7.0 True False False 6h39m console 4.7.0 True False False 3h59m csi-snapshot-controller 4.7.0 True False False 4h12m dns 4.7.0 True False False 4h15m etcd 4.7.0 True False False 29h image-registry 4.7.0 True False False 3h59m ingress 4.7.0 True False False 4h30m insights 4.7.0 True False False 29h kube-apiserver 4.7.0 True False False 29h kube-controller-manager 4.7.0 True False False 29h kube-scheduler 4.7.0 True False False 29h kube-storage-version-migrator 4.7.0 True False False 4h2m machine-api 4.7.0 True False False 29h machine-approver 4.7.0 True False False 6h34m machine-config 4.7.0 True False False 3h56m marketplace 4.7.0 True False False 4h2m monitoring 4.7.0 True False False 6h31m network 4.7.0 True False False 29h node-tuning 4.7.0 True False False 4h30m openshift-apiserver 4.7.0 True False False 3h56m openshift-controller-manager 4.7.0 True False False 4h36m openshift-samples 4.7.0 True False False 4h30m operator-lifecycle-manager 4.7.0 True False False 29h operator-lifecycle-manager-catalog 4.7.0 True False False 29h operator-lifecycle-manager-packageserver 4.7.0 True False False 3h59m service-ca 4.7.0 True False False 29h storage 4.7.0 True False False 4h30m
Alternatively, the following command notifies you when all of the clusters are available. It also retrieves and displays credentials:
$ ./openshift-install --dir <installation_directory> wait-for install-complete 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Example output
INFO Waiting up to 30m0s for the cluster to initialize...
The command succeeds when the Cluster Version Operator finishes deploying the OpenShift Container Platform cluster from Kubernetes API server.
Important-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
Confirm that the Kubernetes API server is communicating with the pods.
To view a list of all pods, use the following command:
$ oc get pods --all-namespaces
Example output
NAMESPACE NAME READY STATUS RESTARTS AGE openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m openshift-apiserver apiserver-67b9g 1/1 Running 0 3m openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m openshift-apiserver apiserver-z25h4 1/1 Running 0 2m openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m ...
View the logs for a pod that is listed in the output of the previous command by using the following command:
$ oc logs <pod_name> -n <namespace> 1
- 1
- Specify the pod name and namespace, as shown in the output of the previous command.
If the pod logs display, the Kubernetes API server can communicate with the cluster machines.
For an installation with Fibre Channel Protocol (FCP), additional steps are required to enable multipathing. Do not enable multipathing during installation.
See "Enabling multipathing with kernel arguments on RHCOS" in the Post-installation configuration documentation for more information.
- Register your cluster on the Cluster registration page.
7.3.17. Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.7, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
Additional resources
- See About remote health monitoring for more information about the Telemetry service
7.3.18. Next steps
- Customize your cluster.
-
Configure image streams for the Cluster Samples Operator and the
must-gather
tool. - Learn how to use Operator Lifecycle Manager (OLM) on restricted networks.
- If the mirror registry that you used to install your cluster has a trusted CA, add it to the cluster by configuring additional trust stores.
- If necessary, you can opt out of remote health reporting.