Chapter 41. Installing and configuring kdump


41.1. Installing kdump

The kdump service is installed and activated by default on the new versions of Red Hat Enterprise Linux 8 installations.

41.1.1. What is kdump

kdump is a service that provides a crash dumping mechanism and generates a crash dump or a vmcore dump file. vmcore includes the contents of the system memory for analysis and troubleshooting. kdump uses the kexec system call to boot into the second kernel, capture kernel, without a reboot. This kernel captures the contents of the crashed kernel’s memory and saves it into a file. The second kernel is available in a reserved part of the system memory.

Important

A kernel crash dump can be the only information available if a system failure occur. Therefore, operational kdump is important in mission-critical environments. Red Hat advises to regularly update and test kexec-tools in your normal kernel update cycle. This is important when you install new kernel features.

If you have multiple kernels on a machine, you can enable kdump for all installed kernels or for specified kernels only. When you install kdump, the system creates a default /etc/kdump.conf file. /etc/kdump.conf includes the default minimum kdump configuration, which you can edit to customize the kdump configuration.

41.1.2. Installing kdump using Anaconda

The Anaconda installer provides a graphical interface screen for kdump configuration during an interactive installation. You can enable kdump and reserve the required amount of memory.

Procedure

  1. On the Anaconda installer, click KDUMP and enable kdump:

    Enable kdump during RHEL installation
  2. In Kdump Memory Reservation, select Manual` if you must customize the memory reserve.
  3. In KDUMP > Memory To Be Reserved (MB), set the required memory reserve for kdump.

    Kdump Memory Reservation

41.1.3. Installing kdump on the command line

Installation options such as custom Kickstart installations, in some cases does not install or enable kdump by default. The following procedure helps you enable kdump in this case.

Prerequisites

  • An active RHEL subscription.
  • A repository containing the kexec-tools package for your system CPU architecture.
  • Fulfilled requirements for kdump configurations and targets. For details, see Supported kdump configurations and targets.

Procedure

  1. Check if kdump is installed on your system:

    # rpm -q kexec-tools

    Output if the package is installed:

    kexec-tools-2.0.17-11.el8.x86_64

    Output if the package is not installed:

    package kexec-tools is not installed
  2. Install kdump and other necessary packages:

    # dnf install kexec-tools
Important

From kernel-3.10.0-693.el7 onwards, the Intel IOMMU driver is supported for kdump. For kernel-3.10.0-514[.XYZ].el7 and early versions, you must ensure that Intel IOMMU is disabled to prevent an unresponsive capture kernel.

41.2. Configuring kdump on the command line

The memory for kdump is reserved during the system boot. You can configure the memory size in the system’s Grand Unified Bootloader (GRUB) configuration file. The memory size depends on the crashkernel= value specified in the configuration file and the size of the physical memory of system.

41.2.1. Estimating the kdump size

When planning and building your kdump environment, it is important to know the space required by the crash dump file.

The makedumpfile --mem-usage command estimates the space required by the crash dump file. It generates a memory usage report. The report helps you decide the dump level and the pages that are safe to exclude.

Procedure

  • Enter the following command to generate a memory usage report:

    # makedumpfile --mem-usage /proc/kcore
    
    
    TYPE        PAGES    EXCLUDABLE    DESCRIPTION
    -------------------------------------------------------------
    ZERO          501635      yes        Pages filled with zero
    CACHE         51657       yes        Cache pages
    CACHE_PRIVATE 5442        yes        Cache pages + private
    USER          16301       yes        User process pages
    FREE          77738211    yes        Free pages
    KERN_DATA     1333192     no         Dumpable kernel data
Important

The makedumpfile --mem-usage command reports required memory in pages. This means that you must calculate the size of memory in use against the kernel page size.

41.2.2. Configuring kdump memory usage

The memory reservation for kdump occurs during the system boot. The memory size is set in the system’s Grand Unified Bootloader (GRUB) configuration. The memory size depends on the value of the crashkernel= option specified in the configuration file and the size of the system physical memory.

You can define the crashkernel= option in many ways. You can specify the crashkernel= value or configure the auto option. The crashkernel=auto parameter reserves memory automatically, based on the total amount of physical memory in the system. When configured, the kernel automatically reserves an appropriate amount of required memory for the capture kernel. This helps to prevent Out-of-Memory (OOM) errors.

Note

The automatic memory allocation for kdump varies based on system hardware architecture and available memory size.

If the system has less than the minimum memory threshold for automatic allocation, you can configure the amount of reserved memory manually.

Prerequisites

Procedure

  1. Prepare the crashkernel= option.

    • For example, to reserve 128 MB of memory, use the following:

      crashkernel=128M
    • Alternatively, you can set the amount of reserved memory to a variable depending on the total amount of installed memory. The syntax for memory reservation into a variable is crashkernel=<range1>:<size1>,<range2>:<size2>. For example:

      crashkernel=512M-2G:64M,2G-:128M

      The command reserves 64 MB of memory if the total amount of system memory is in the range of 512 MB and 2 GB. If the total amount of memory is more than 2 GB, the memory reserve is 128 MB.

    • Offset the reserved memory.

      Some systems require to reserve memory with a certain fixed offset because the crashkernel reservation happens early, and you may need to reserve more memory for special usage. When you define an offset, the reserved memory begins there. To offset the reserved memory, use the following syntax:

      crashkernel=128M@16M

      In this example, kdump reserves 128 MB of memory starting at 16 MB (physical address 0x01000000). If you set the offset parameter to 0 or omit entirely, kdump offsets the reserved memory automatically. You can also use this syntax when setting a variable memory reservation. In that case, the offset is always specified last. For example:

      crashkernel=512M-2G:64M,2G-:128M@16M
  2. Apply the crashkernel= option to your boot loader configuration:

    # grubby --update-kernel=ALL --args="crashkernel=<value>"

    Replace <value> with the value of the crashkernel= option that you prepared in the previous step.

41.2.3. Configuring the kdump target

The crash dump is usually stored as a file in a local file system, written directly to a device. Optionally, you can send crash dump over a network by using the NFS or SSH protocols. Only one of these options to preserve a crash dump file can be set at a time. The default behavior is to store it in the /var/crash/ directory of the local file system.

Prerequisites

Procedure

  • To store the crash dump file in /var/crash/ directory of the local file system, edit the /etc/kdump.conf file and specify the path:

    path /var/crash

    The option path /var/crash represents the path to the file system in which kdump saves the crash dump file.

    Note
    • When you specify a dump target in the /etc/kdump.conf file, then the path is relative to the specified dump target.
    • When you do not specify a dump target in the /etc/kdump.conf file, then the path represents the absolute path from the root directory.

    Depending on the file system mounted in the current system, the dump target and the adjusted dump path are configured automatically.

  • To secure the crash dump file and the accompanying files produced by kdump, you should set up proper attributes for the target destination directory, such as user permissions and SELinux contexts. Additionally, you can define a script, for example kdump_post.sh in the kdump.conf file as follows:

    kdump_post <path_to_kdump_post.sh>

    The kdump_post directive specifies a shell script or a command that executes after kdump has completed capturing and saving a crash dump to the specified destination. You can use this mechanism to extend the functionality of kdump to perform actions including the adjustments in file permissions.

  • The kdump target configuration
# *grep -v ^# /etc/kdump.conf | grep -v ^$*
ext4 /dev/mapper/vg00-varcrashvol
path /var/crash
core_collector makedumpfile -c --message-level 1 -d 31

The dump target is specified (ext4 /dev/mapper/vg00-varcrashvol), and, therefore, it is mounted at /var/crash. The path option is also set to /var/crash. Therefore, the kdump saves the vmcore file in the /var/crash/var/crash directory.

  • To change the local directory for saving the crash dump, edit the /etc/kdump.conf configuration file as a root user:

    1. Remove the hash sign (#) from the beginning of the #path /var/crash line.
    2. Replace the value with the intended directory path. For example:

      path /usr/local/cores
      Important

      In Red Hat Enterprise Linux 8, the directory defined as the kdump target using the path directive must exist when the kdump systemd service starts to avoid failures. Unlike in earlier versions of RHEL, the directory is no longer created automatically if it does not exist when the service starts.

  • To write the file to a different partition, edit the /etc/kdump.conf configuration file:

    1. Remove the hash sign (#) from the beginning of the #ext4 line, depending on your choice.

      • device name (the #ext4 /dev/vg/lv_kdump line)
      • file system label (the #ext4 LABEL=/boot line)
      • UUID (the #ext4 UUID=03138356-5e61-4ab3-b58e-27507ac41937 line)
    2. Change the file system type and the device name, label or UUID, to the required values. The correct syntax for specifying UUID values is both UUID="correct-uuid" and UUID=correct-uuid. For example:

      ext4 UUID=03138356-5e61-4ab3-b58e-27507ac41937
      Important

      It is recommended to specify storage devices by using a LABEL= or UUID=. Disk device names such as /dev/sda3 are not guaranteed to be consistent across reboot.

      When you use Direct Access Storage Device (DASD) on IBM Z hardware, ensure the dump devices are correctly specified in /etc/dasd.conf before proceeding with kdump.

  • To write the crash dump directly to a device, edit the /etc/kdump.conf configuration file:

    1. Remove the hash sign (#) from the beginning of the #raw /dev/vg/lv_kdump line.
    2. Replace the value with the intended device name. For example:

      raw /dev/sdb1
  • To store the crash dump to a remote machine by using the NFS protocol:

    1. Remove the hash sign (#) from the beginning of the #nfs my.server.com:/export/tmp line.
    2. Replace the value with a valid hostname and directory path. For example:

      nfs penguin.example.com:/export/cores
    3. Restart the kdump service for the changes to take effect:

      sudo systemctl restart kdump.service
      Note

      While using the NFS directive to specify the NFS target, kdump.service automatically attempts to mount the NFS target to check the disk space. There is no need to mount the NFS target in advance. To prevent kdump.service from mounting the target, use the dracut_args --mount directive in kdump.conf. This will enable kdump.service to call the dracut utility with the --mount argument to specify the NFS target.

  • To store the crash dump to a remote machine by using the SSH protocol:

    1. Remove the hash sign (#) from the beginning of the #ssh user@my.server.com line.
    2. Replace the value with a valid username and hostname.
    3. Include your SSH key in the configuration.

      1. Remove the hash sign from the beginning of the #sshkey /root/.ssh/kdump_id_rsa line.
      2. Change the value to the location of a key valid on the server you are trying to dump to. For example:

        ssh john@penguin.example.com
        sshkey /root/.ssh/mykey

41.2.4. Configuring the kdump core collector

The kdump service uses a core_collector program to capture the crash dump image. In RHEL, the makedumpfile utility is the default core collector. It helps shrink the dump file by:

  • Compressing the size of a crash dump file and copying only necessary pages by using various dump levels.
  • Excluding unnecessary crash dump pages.
  • Filtering the page types to be included in the crash dump.
Note

Crash dump file compression is enabled by default in the RHEL 7 and above.

If you need to customize the crash dump file compression, follow this procedure.

Syntax

core_collector makedumpfile -l --message-level 1 -d 31

Options

  • -c, -l or -p: specify compress dump file format by each page using either, zlib for -c option, lzo for -l option or snappy for -p option.
  • -d (dump_level): excludes pages so that they are not copied to the dump file.
  • --message-level : specify the message types. You can restrict outputs printed by specifying message_level with this option. For example, specifying 7 as message_level prints common messages and error messages. The maximum value of message_level is 31.

Prerequisites

Procedure

  1. As a root, edit the /etc/kdump.conf configuration file and remove the hash sign ("#") from the beginning of the #core_collector makedumpfile -l --message-level 1 -d 31.
  2. Enter the following command to enable crash dump file compression:
core_collector makedumpfile -l --message-level 1 -d 31

The -l option specifies the dump compressed file format. The -d option specifies dump level as 31. The --message-level option specifies message level as 1.

Also, consider following examples with the -c and -p options:

  • To compress a crash dump file by using -c:

    core_collector makedumpfile -c -d 31 --message-level 1
  • To compress a crash dump file by using -p:

    core_collector makedumpfile -p -d 31 --message-level 1

Additional resources

41.2.5. Configuring the kdump default failure responses

By default, when kdump fails to create a crash dump file at the configured target location, the system reboots and the dump is lost in the process. You can change the default failure response and configure kdump to perform a different operation when it fails to save the core dump to the primary target. The additional actions are:

dump_to_rootfs
Saves the core dump to the root file system.
reboot
Reboots the system, losing the core dump in the process.
halt
Stops the system, losing the core dump in the process.
poweroff
Power the system off, losing the core dump in the process.
shell
Runs a shell session from within the initramfs, you can record the core dump manually.
final_action
Enables additional operations such as reboot, halt, and poweroff after a successful kdump or when shell or dump_to_rootfs failure action completes. The default is reboot.
failure_action
Specifies the action to perform when a dump might fail in a kernel crash. The default is reboot.

Prerequisites

Procedure

  1. As a root user, remove the hash sign (#) from the beginning of the #failure_action line in the /etc/kdump.conf configuration file.
  2. Replace the value with a required action.

    failure_action poweroff

Additional resources

41.2.6. Configuration file for kdump

The configuration file for kdump kernel is /etc/sysconfig/kdump. This file controls the kdump kernel command line parameters. For most configurations, use the default options. However, in some scenarios you might need to modify certain parameters to control the kdump kernel behavior. For example, modifying the KDUMP_COMMANDLINE_APPEND option to append the kdump kernel command-line to obtain a detailed debugging output or the KDUMP_COMMANDLINE_REMOVE option to remove arguments from the kdump command line.

KDUMP_COMMANDLINE_REMOVE

This option removes arguments from the current kdump command line. It removes parameters that can cause kdump errors or kdump kernel boot failures. These parameters might have been parsed from the previous KDUMP_COMMANDLINE process or inherited from the /proc/cmdline file.

When this variable is not configured, it inherits all values from the /proc/cmdline file. Configuring this option also provides information that is helpful in debugging an issue.

To remove certain arguments, add them to KDUMP_COMMANDLINE_REMOVE as follows:

# KDUMP_COMMANDLINE_REMOVE="hugepages hugepagesz slub_debug quiet log_buf_len swiotlb"
KDUMP_COMMANDLINE_APPEND

This option appends arguments to the current command line. These arguments might have been parsed by the previous KDUMP_COMMANDLINE_REMOVE variable.

For the kdump kernel, disabling certain modules such as mce, cgroup, numa, hest_disable can help prevent kernel errors. These modules can consume a significant part of the kernel memory reserved for kdump or cause kdump kernel boot failures.

To disable memory cgroups on the kdump kernel command line, run the command as follows:

KDUMP_COMMANDLINE_APPEND="cgroup_disable=memory"

Additional resources

  • The Documentation/admin-guide/kernel-parameters.txt file
  • The /etc/sysconfig/kdump file

41.2.7. Testing the kdump configuration

After configuring kdump, you must manually test a system crash and ensure that the vmcore file is generated in the defined kdump target. The vmcore file is captured from the context of the freshly booted kernel. Therefore, vmcore has critical information for debugging a kernel crash.

Warning

Do not test kdump on active production systems. The commands to test kdump will cause the kernel to crash with loss of data. Depending on your system architecture, ensure that you schedule significant maintenance time because kdump testing might require several reboots with a long boot time.

If the vmcore file is not generated during the kdump test, identify and fix issues before you run the test again for a successful kdump testing.

If you make any manual system modifications, you must test the kdump configuration at the end of any system modification. For example, if you make any of the following changes, ensure that you test the kdump configuration for an optimal kdump performances for:

  • Package upgrades.
  • Hardware level changes, for example, storage or networking changes.
  • Firmware upgrades.
  • New installation and application upgrades that include third party modules.
  • If you use the hot-plugging mechanism to add more memory on hardware that support this mechanism.
  • After you make changes in the /etc/kdump.conf or /etc/sysconfig/kdump file.

Prerequisites

  • You have root permissions on the system.
  • You have saved all important data. The commands to test kdump cause the kernel to crash with loss of data.
  • You have scheduled significant machine maintenance time depending on the system architecture.

Procedure

  1. Enable the kdump service:

    # kdumpctl restart
  2. Check the status of the kdump service with the kdumpctl:

    # kdumpctl status
      kdump:Kdump is operational

    Optionally, if you use the systemctl command, the output prints in the systemd journal.

  3. Start a kernel crash to test the kdump configuration. The sysrq-trigger key combination causes the kernel to crash and might reboot the system if required.

    # echo c > /proc/sysrq-trigger

    On a kernel reboot, the address-YYYY-MM-DD-HH:MM:SS/vmcore file is created at the location you have specified in the /etc/kdump.conf file. The default is /var/crash/.

Additional resources

41.2.8. Files produced by kdump after system crash

After your system crashes, the kdump service captures the kernel memory in a dump file (vmcore) and it also generates additional diagnostic files to aid in troubleshooting and postmortem analysis.

Files produced by kdump:

  • vmcore - main kernel memory dump file containing system memory at the time of the crash. It includes data as per the configuration of the core_collector program specified in kdump configuration. By default the kernel data structures, process information, stack traces, and other diagnostic information.
  • vmcore-dmesg.txt - contents of the kernel ring buffer log (dmesg) from the primary kernel that panicked.
  • kexec-dmesg.log - has kernel and system log messages from the execution of the secondary kexec kernel that collects the vmcore data.

Additional resources

41.2.9. Enabling and disabling the kdump service

You can configure to enable or disable the kdump functionality on a specific kernel or on all installed kernels. You must routinely test the kdump functionality and validate its operates correctly.

Prerequisites

  • You have root permissions on the system.
  • You have completed kdump requirements for configurations and targets. See Supported kdump configurations and targets.
  • All configurations for installing kdump are set up as required.

Procedure

  1. Enable the kdump service for multi-user.target:

    # systemctl enable kdump.service
  2. Start the service in the current session:

    # systemctl start kdump.service
  3. Stop the kdump service:

    # systemctl stop kdump.service
  4. Disable the kdump service:

    # systemctl disable kdump.service
Warning

It is recommended to set kptr_restrict=1 as default. When kptr_restrict is set to (1) as default, the kdumpctl service loads the crash kernel regardless of whether the Kernel Address Space Layout (KASLR) is enabled.

If kptr_restrict is not set to 1 and KASLR is enabled, the contents of /proc/kore file are generated as all zeros. The kdumpctl service fails to access the /proc/kcore file and load the crash kernel. The kexec-kdump-howto.txt file displays a warning message, which recommends you to set kptr_restrict=1. Verify for the following in the sysctl.conf file to ensure that kdumpctl service loads the crash kernel:

  • Kernel kptr_restrict=1 in the sysctl.conf file.

41.2.10. Preventing kernel drivers from loading for kdump

You can control the capture kernel from loading certain kernel drivers by adding the KDUMP_COMMANDLINE_APPEND= variable in the /etc/sysconfig/kdump configuration file. By using this method, you can prevent the kdump initial RAM disk image initramfs from loading the specified kernel module. This helps to prevent the out-of-memory (OOM) killer errors or other crash kernel failures.

You can append the KDUMP_COMMANDLINE_APPEND= variable by using one of the following configuration options:

  • rd.driver.blacklist=<modules>
  • modprobe.blacklist=<modules>

Prerequisites

  • You have root permissions on the system.

Procedure

  1. Display the list of modules that are loaded to the currently running kernel. Select the kernel module that you intend to block from loading:

    $ lsmod
    
    Module                  Size  Used by
    fuse                  126976  3
    xt_CHECKSUM            16384  1
    ipt_MASQUERADE         16384  1
    uinput                 20480  1
    xt_conntrack           16384  1
  2. Update the KDUMP_COMMANDLINE_APPEND= variable in the /etc/sysconfig/kdump file. For example:

    KDUMP_COMMANDLINE_APPEND="rd.driver.blacklist=hv_vmbus,hv_storvsc,hv_utils,hv_netvsc,hid-hyperv"

    Also, consider the following example by using the modprobe.blacklist=<modules> configuration option:

    KDUMP_COMMANDLINE_APPEND="modprobe.blacklist=emcp modprobe.blacklist=bnx2fc modprobe.blacklist=libfcoe modprobe.blacklist=fcoe"
  3. Restart the kdump service:

    # systemctl restart kdump

Additional resources

  • dracut.cmdline man page on your system.

41.2.11. Running kdump on systems with encrypted disk

When you run a LUKS encrypted partition, systems require certain amount of available memory. If the system has less than the required amount of available memory, the cryptsetup utility fails to mount the partition. As a result, capturing the vmcore file to an encrypted target location fails in the second kernel (capture kernel).

The kdumpctl estimate command helps you estimate the amount of memory you need for kdump. kdumpctl estimate prints the recommended crashkernel value, which is the most suitable memory size required for kdump.

The recommended crashkernel value is calculated based on the current kernel size, kernel module, initramfs, and the LUKS encrypted target memory requirement.

If you are using the custom crashkernel= option, kdumpctl estimate prints the LUKS required size value. The value is the memory size required for LUKS encrypted target.

Procedure

  1. Print the estimate crashkernel= value:

    # *kdumpctl estimate*
    
    Encrypted kdump target requires extra memory, assuming using the keyslot with minimum memory requirement
       Reserved crashkernel:    256M
       Recommended crashkernel: 652M
    
       Kernel image size:   47M
       Kernel modules size: 8M
       Initramfs size:      20M
       Runtime reservation: 64M
       LUKS required size:  512M
       Large modules: <none>
       WARNING: Current crashkernel size is lower than recommended size 652M.
  2. Configure the amount of required memory by increasing the crashkernel= value.
  3. Reboot the system.
Note

If the kdump service still fails to save the dump file to the encrypted target, increase the crashkernel= value as required.

41.3. Enabling kdump

For your Red Hat Enterprise Linux 8 systems, you can configure enabling or disabling the kdump functionality on a specific kernel or on all installed kernels. However, you must routinely test the kdump functionality and validate its working status.

41.3.1. Enabling kdump for all installed kernels

The kdump service starts by enabling kdump.service after the kexec tool is installed. You can enable and start the kdump service for all kernels installed on the machine.

Prerequisites

  • You have administrator privileges.

Procedure

  1. Add the crashkernel= command-line parameter to all installed kernels:

    # grubby --update-kernel=ALL --args="crashkernel=xxM"

    xxM is the required memory in megabytes.

  2. Enable the kdump service:

    # systemctl enable --now kdump.service

Verification

  • Check that the kdump service is running:

    # systemctl status kdump.service
    
    ○ kdump.service - Crash recovery kernel arming
         Loaded: loaded (/usr/lib/systemd/system/kdump.service; enabled; vendor preset: disabled)
         Active: active (live)

41.3.2. Enabling kdump for a specific installed kernel

You can enable the kdump service for a specific kernel on the machine.

Prerequisites

  • You have administrator privileges.

Procedure

  1. List the kernels installed on the machine.

    # ls -a /boot/vmlinuz-*
    /boot/vmlinuz-0-rescue-2930657cd0dc43c2b75db480e5e5b4a9
    /boot/vmlinuz-4.18.0-330.el8.x86_64
    /boot/vmlinuz-4.18.0-330.rt7.111.el8.x86_64
  2. Add a specific kdump kernel to the system’s Grand Unified Bootloader (GRUB) configuration.

    For example:

    # grubby --update-kernel=vmlinuz-4.18.0-330.el8.x86_64 --args="crashkernel=xxM"

    xxM is the required memory reserve in megabytes.

  3. Enable the kdump service.

    # systemctl enable --now kdump.service

Verification

  • Check that the kdump service is running.

    # systemctl status kdump.service
    
    ○ kdump.service - Crash recovery kernel arming
         Loaded: loaded (/usr/lib/systemd/system/kdump.service; enabled; vendor preset: disabled)
         Active: active (live)

41.3.3. Disabling the kdump service

You can stop the kdump.service and disable the service from starting on your Red Hat Enterprise Linux 8 systems.

Prerequisites

Procedure

  1. To stop the kdump service in the current session:

    # systemctl stop kdump.service
  2. To disable the kdump service:

    # systemctl disable kdump.service
Warning

It is recommended to set kptr_restrict=1 as default. When kptr_restrict is set to (1) as default, the kdumpctl service loads the crash kernel regardless of whether the Kernel Address Space Layout (KASLR) is enabled.

If kptr_restrict is not set to 1 and KASLR is enabled, the contents of /proc/kore file are generated as all zeros. The kdumpctl service fails to access the /proc/kcore file and load the crash kernel. The kexec-kdump-howto.txt file displays a warning message, which recommends you to set kptr_restrict=1. Verify for the following in the sysctl.conf file to ensure that kdumpctl service loads the crash kernel:

  • Kernel kptr_restrict=1 in the sysctl.conf file.

Additional resources

41.4. Configuring kdump in the web console

You can set up and test the kdump configuration by using the RHEL 8 web console. The web console can enable the kdump service at boot time. With the web console, you can configure the reserved memory for kdump and to select the vmcore saving location in an uncompressed or compressed format.

41.4.1. Configuring kdump memory usage and target location in web console

You can configure the memory reserve for the kdump kernel and also specify the target location to capture the vmcore dump file with the RHEL web console interface.

Prerequisites

Procedure

  1. In the web console, open the Kernel dump tab and start the kdump service by setting the Kernel crash dump switch to on.
  2. Configure the kdump memory usage in the terminal, for example:

    $ sudo grubby --update-kernel ALL --args crashkernel=512M

    Restart the system to apply the changes.

  3. In the Kernel dump tab, click Edit at the end of the Crash dump location field.
  4. Specify the target directory for saving the vmcore dump file:

    • For a local filesystem, select Local Filesystem from the drop-down menu.
    • For a remote system by using the SSH protocol, select Remote over SSH from the drop-down menu and specify the following fields:

      • In the Server field, enter the remote server address.
      • In the SSH key field, enter the SSH key location.
      • In the Directory field, enter the target directory.
    • For a remote system by using the NFS protocol, select Remote over NFS from the drop-down menu and specify the following fields:

      • In the Server field, enter the remote server address.
      • In the Export field, enter the location of the shared folder of an NFS server.
      • In the Directory field, enter the target directory.

        Note

        You can reduce the size of the vmcore file by selecting the Compression checkbox.

  5. Optional: Display the automation script by clicking View automation script.

    A window with the generated script opens. You can browse a shell script and an Ansible playbook generation options tab.

  6. Optional: Copy the script by clicking Copy to clipboard.

    You can use this script to apply the same configuration on multiple machines.

Verification

  1. Click Test configuration.
  2. Click Crash system under Test kdump settings.

    Warning

    When you start the system crash, the kernel operation stops and results in a system crash with data loss.

Additional resources

41.5. Supported kdump configurations and targets

The kdump mechanism is a feature of the Linux kernel that generates a crash dump file when a kernel crash occurs. The kernel dump file has critical information that helps to analyze and determine the root cause of a kernel crash. The crash can be because of various factors, hardware issues or third-party kernel modules problems, to name a few.

By using the provided information and procedures, you can perform the following actions:

  • Identify the supported configurations and targets for your Red Hat Enterprise Linux 8 systems.
  • Configure kdump.
  • Verify kdump operation.

41.5.1. Memory requirements for kdump

For kdump to capture a kernel crash dump and save it for further analysis, a part of the system memory should be permanently reserved for the capture kernel. When reserved, this part of the system memory is not available to the main kernel.

The memory requirements vary based on certain system parameters. One of the major factors is the system’s hardware architecture. To identify the exact machine architecture, such as Intel 64 and AMD64, also known as x86_64, and print it to standard output, use the following command:

$ uname -m

With the stated list of minimum memory requirements, you can set the appropriate memory size to automatically reserve a memory for kdump on the latest available versions. The memory size depends on the system’s architecture and total available physical memory.

Table 41.1. Minimum amount of reserved memory required for kdump
ArchitectureAvailable MemoryMinimum Reserved Memory

AMD64 and Intel 64 (x86_64)

1 GB to 4 GB

192 MB of RAM

4 GB to 64 GB

256 MB of RAM

64 GB and more

512 MB of RAM

64-bit ARM architecture (arm64)

2 GB and more

480 MB of RAM

IBM Power Systems (ppc64le)

2 GB to 4 GB

384 MB of RAM

4 GB to 16 GB

512 MB of RAM

16 GB to 64 GB

1 GB of RAM

64 GB to 128 GB

2 GB of RAM

128 GB and more

4 GB of RAM

IBM Z (s390x)

1 GB to 4 GB

192 MB of RAM

4 GB to 64 GB

256 MB of RAM

64 GB and more

512 MB of RAM

On many systems, kdump is able to estimate the amount of required memory and reserve it automatically. This behavior is enabled by default, but only works on systems that have more than a certain amount of total available memory, which varies based on the system architecture.

Important

The automatic configuration of reserved memory based on the total amount of memory in the system is a best effort estimation. The actual required memory might vary due to other factors such as I/O devices. Using not enough of memory might cause debug kernel unable to boot as a capture kernel in the case of kernel panic. To avoid this problem, increase the crash kernel memory sufficiently.

41.5.2. Minimum threshold for automatic memory reservation

By default, the kexec-tools utility configures the crashkernel command line parameter and reserves a certain amount of memory for kdump. On some systems however, it is still possible to assign memory for kdump either by using the crashkernel=auto parameter in the boot loader configuration file, or by enabling this option in the graphical configuration utility. For this automatic reservation to work, a certain amount of total memory needs to be available in the system. The memory requirement varies based on the system’s architecture. If the system memory is less than the specified threshold value, you must configure the memory manually.

Table 41.2. Minimum amount of memory required for automatic memory reservation
ArchitectureRequired Memory

AMD64 and Intel 64 (x86_64)

2 GB

IBM Power Systems (ppc64le)

2 GB

IBM  Z (s390x)

4 GB

Note

The crashkernel=auto option in the boot command line is no longer supported on RHEL 9 and later releases.

41.5.3. Supported kdump targets

When a kernel crash occurs, the operating system saves the dump file on the configured or default target location. You can save the dump file either directly to a device, store as a file on a local file system, or send the dump file over a network. With the following list of dump targets, you can know the targets that are currently supported or not supported by kdump.

Table 41.3. kdump targets on RHEL 8
Target typeSupported TargetsUnsupported Targets

Physical storage

  • Logical Volume Manager (LVM).
  • Thin provisioning volume.
  • Fibre Channel (FC) disks such as qla2xxx, lpfc, bnx2fc, and bfa.
  • An iSCSI software-configured logical device on a networked storage server.
  • The mdraid subsystem as a software RAID solution.
  • Hardware RAID such as cciss, hpsa, megaraid_sas, mpt2sas, and aacraid.
  • SCSI and SATA disks.
  • iSCSI and HBA offloads.
  • Hardware FCoE such as qla2xxx and lpfc.
  • BIOS RAID.
  • Software iSCSI with iBFT. Currently supported transports are bnx2i, cxgb3i, and cxgb4i.
  • Software iSCSI with a hybrid device driver such as be2iscsi.
  • Fibre Channel over Ethernet (FCoE).
  • Legacy IDE.
  • GlusterFS servers.
  • GFS2 file system.
  • Clustered Logical Volume Manager (CLVM).
  • High availability LVM volumes (HA-LVM).

Network

  • Hardware using kernel modules: tg3, igb, ixgbe, sfc, e1000e, bna, cnic, netxen_nic, qlge, bnx2x, bnx, qlcnic, be2net, enic, virtio-net, ixgbevf, igbvf.
  • IPv4 protocol.
  • Network bonding on different devices, such as Ethernet devices or VLAN.
  • VLAN network.
  • Network Bridge.
  • Network Teaming.
  • Tagged VLAN and VLAN over a bond.
  • Bridge network over bond, team, and VLAN.
  • IPv6 protocol.
  • Wireless connections.
  • InfiniBand networks.
  • VLAN network over bridge and team.

Hypervisor

  • Kernel-based virtual machines (KVM).
  • Xen hypervisor in certain configurations only.
  • VMware ESXi 4.1 and 5.1.
  • Hyper-V 2012 R2 on RHEL Gen1 UP Guest only.
 

File systems

The ext[234], XFS, and NFS file systems.

The Btrfs file system.

Firmware

  • BIOS-based systems.
  • UEFI Secure Boot.
 

Additional resources

41.5.4. Supported kdump filtering levels

To reduce the size of the dump file, kdump uses the makedumpfile core collector to compress the data and also exclude unwanted information, for example, you can remove hugepages and hugetlbfs pages by using the -8 level. The levels that makedumpfile currently supports can be seen in the table for Filtering levels for `kdump` .

Table 41.4. Filtering levels for kdump
OptionDescription

1

Zero pages

2

Cache pages

4

Cache private

8

User pages

16

Free pages

41.5.5. Supported default failure responses

By default, when kdump fails to create a core dump, the operating system reboots. However, you can configure kdump to perform a different operation in case it fails to save the core dump to the primary target.

Table 41.5. Failure responses for kdump
OptionDescription

dump_to_rootfs

Attempt to save the core dump to the root file system. This option is especially useful in combination with a network target: if the network target is unreachable, this option configures kdump to save the core dump locally. The system is rebooted afterwards.

reboot

Reboot the system, losing the core dump in the process.

halt

Halt the system, losing the core dump in the process.

poweroff

Power off the system, losing the core dump in the process.

shell

Run a shell session from within the initramfs, allowing the user to record the core dump manually.

final_action

Enable additional operations such as reboot, halt, and poweroff actions after a successful kdump or when shell or dump_to_rootfs failure action completes. The default final_action option is reboot.

41.5.6. Using final_action parameter

When kdump succeeds or if kdump fails to save the vmcore file at the configured target, you can perform additional operations like reboot, halt, and poweroff by using the final_action parameter. If the final_action parameter is not specified, reboot is the default response.

Procedure

  1. To configure final_action, edit the /etc/kdump.conf file and add one of the following options:

    • final_action reboot
    • final_action halt
    • final_action poweroff
  2. Restart the kdump service for the changes to take effect.

    # kdumpctl restart

41.5.7. Using failure_action parameter

The failure_action parameter specifies the action to perform when a dump fails in the event of a kernel crash. The default action for failure_action is reboot that reboots the system.

The parameter recognizes the following actions to take:

reboot
Reboots the system after a dump failure.
dump_to_rootfs
Saves the dump file on a root file system when a non-root dump target is configured.
halt
Halts the system.
poweroff
Stops the running operations on the system.
shell
Starts a shell session inside initramfs, from which you can manually perform additional recovery actions.

Procedure:

  1. To configure an action to take if the dump fails, edit the /etc/kdump.conf file and specify one of the failure_action options:

    • failure_action reboot
    • failure_action halt
    • failure_action poweroff
    • failure_action shell
    • failure_action dump_to_rootfs
  2. Restart the kdump service for the changes to take effect.

    # kdumpctl restart

41.6. Testing the kdump configuration

After configuring kdump, you must manually test a system crash and ensure that the vmcore file is generated in the defined kdump target. The vmcore file is captured from the context of the freshly booted kernel. Therefore, vmcore has critical information for debugging a kernel crash.

Warning

Do not test kdump on active production systems. The commands to test kdump will cause the kernel to crash with loss of data. Depending on your system architecture, ensure that you schedule significant maintenance time because kdump testing might require several reboots with a long boot time.

If the vmcore file is not generated during the kdump test, identify and fix issues before you run the test again for a successful kdump testing.

If you make any manual system modifications, you must test the kdump configuration at the end of any system modification. For example, if you make any of the following changes, ensure that you test the kdump configuration for an optimal kdump performances for:

  • Package upgrades.
  • Hardware level changes, for example, storage or networking changes.
  • Firmware upgrades.
  • New installation and application upgrades that include third party modules.
  • If you use the hot-plugging mechanism to add more memory on hardware that support this mechanism.
  • After you make changes in the /etc/kdump.conf or /etc/sysconfig/kdump file.

Prerequisites

  • You have root permissions on the system.
  • You have saved all important data. The commands to test kdump cause the kernel to crash with loss of data.
  • You have scheduled significant machine maintenance time depending on the system architecture.

Procedure

  1. Enable the kdump service:

    # kdumpctl restart
  2. Check the status of the kdump service with the kdumpctl:

    # kdumpctl status
      kdump:Kdump is operational

    Optionally, if you use the systemctl command, the output prints in the systemd journal.

  3. Start a kernel crash to test the kdump configuration. The sysrq-trigger key combination causes the kernel to crash and might reboot the system if required.

    # echo c > /proc/sysrq-trigger

    On a kernel reboot, the address-YYYY-MM-DD-HH:MM:SS/vmcore file is created at the location you have specified in the /etc/kdump.conf file. The default is /var/crash/.

Additional resources

41.7. Using kexec to boot into a different kernel

You can use the kexec system call to enable loading and booting into another kernel from the currently running kernel. kexec performs a function of a boot loader from within the kernel.

The kexec utility loads the kernel and the initramfs image for the kexec system call to boot into another kernel.

The following procedure describes how to manually invoke the kexec system call when using the kexec utility to reboot into another kernel.

Procedure

  1. Run the kexec utility:

    # kexec -l /boot/vmlinuz-3.10.0-1040.el7.x86_64 --initrd=/boot/initramfs-3.10.0-1040.el7.x86_64.img --reuse-cmdline

    The command manually loads the kernel and the initramfs image for the kexec system call.

  2. Reboot the system:

    # reboot

    The command detects the kernel, shuts down all services and then calls the kexec system call to reboot into the kernel you provided in the previous step.

Warning

When you use the kexec -e command to reboot your machine into a different kernel, the system does not go through the standard shutdown sequence before starting the next kernel. This can cause data loss or an unresponsive system.

41.8. Preventing kernel drivers from loading for kdump

You can control the capture kernel from loading certain kernel drivers by adding the KDUMP_COMMANDLINE_APPEND= variable in the /etc/sysconfig/kdump configuration file. By using this method, you can prevent the kdump initial RAM disk image initramfs from loading the specified kernel module. This helps to prevent the out-of-memory (OOM) killer errors or other crash kernel failures.

You can append the KDUMP_COMMANDLINE_APPEND= variable by using one of the following configuration options:

  • rd.driver.blacklist=<modules>
  • modprobe.blacklist=<modules>

Prerequisites

  • You have root permissions on the system.

Procedure

  1. Display the list of modules that are loaded to the currently running kernel. Select the kernel module that you intend to block from loading:

    $ lsmod
    
    Module                  Size  Used by
    fuse                  126976  3
    xt_CHECKSUM            16384  1
    ipt_MASQUERADE         16384  1
    uinput                 20480  1
    xt_conntrack           16384  1
  2. Update the KDUMP_COMMANDLINE_APPEND= variable in the /etc/sysconfig/kdump file. For example:

    KDUMP_COMMANDLINE_APPEND="rd.driver.blacklist=hv_vmbus,hv_storvsc,hv_utils,hv_netvsc,hid-hyperv"

    Also, consider the following example by using the modprobe.blacklist=<modules> configuration option:

    KDUMP_COMMANDLINE_APPEND="modprobe.blacklist=emcp modprobe.blacklist=bnx2fc modprobe.blacklist=libfcoe modprobe.blacklist=fcoe"
  3. Restart the kdump service:

    # systemctl restart kdump

Additional resources

  • dracut.cmdline man page on your system.

41.9. Running kdump on systems with encrypted disk

When you run a LUKS encrypted partition, systems require certain amount of available memory. If the system has less than the required amount of available memory, the cryptsetup utility fails to mount the partition. As a result, capturing the vmcore file to an encrypted target location fails in the second kernel (capture kernel).

The kdumpctl estimate command helps you estimate the amount of memory you need for kdump. kdumpctl estimate prints the recommended crashkernel value, which is the most suitable memory size required for kdump.

The recommended crashkernel value is calculated based on the current kernel size, kernel module, initramfs, and the LUKS encrypted target memory requirement.

If you are using the custom crashkernel= option, kdumpctl estimate prints the LUKS required size value. The value is the memory size required for LUKS encrypted target.

Procedure

  1. Print the estimate crashkernel= value:

    # *kdumpctl estimate*
    
    Encrypted kdump target requires extra memory, assuming using the keyslot with minimum memory requirement
       Reserved crashkernel:    256M
       Recommended crashkernel: 652M
    
       Kernel image size:   47M
       Kernel modules size: 8M
       Initramfs size:      20M
       Runtime reservation: 64M
       LUKS required size:  512M
       Large modules: <none>
       WARNING: Current crashkernel size is lower than recommended size 652M.
  2. Configure the amount of required memory by increasing the crashkernel= value.
  3. Reboot the system.
Note

If the kdump service still fails to save the dump file to the encrypted target, increase the crashkernel= value as required.

41.10. Firmware assisted dump mechanisms

Firmware assisted dump (fadump) is a dump capturing mechanism, provided as an alternative to the kdump mechanism on IBM POWER systems. The kexec and kdump mechanisms are useful for capturing core dumps on AMD64 and Intel 64 systems. However, some hardware, such as mini systems and mainframe computers, uses the onboard firmware to isolate regions of memory and prevent any accidental overwriting of data that is important to the crash analysis. The fadump utility is optimized for the fadump mechanisms and their integration with RHEL on IBM POWER systems.

41.10.1. Firmware assisted dump on IBM PowerPC hardware

The fadump utility captures the vmcore file from a fully-reset system with PCI and I/O devices. This mechanism uses firmware to preserve memory regions during a crash and then reuses the kdump userspace scripts to save the vmcore file. The memory regions consist of all system memory contents, except the boot memory, system registers, and hardware Page Table Entries (PTEs).

The fadump mechanism offers improved reliability over the traditional dump type, by rebooting the partition and using a new kernel to dump the data from the previous kernel crash. The fadump requires an IBM POWER6 processor-based or later version hardware platform.

For further details about the fadump mechanism, including PowerPC specific methods of resetting hardware, see the /usr/share/doc/kexec-tools/fadump-howto.txt file.

Note

The area of memory that is not preserved, known as boot memory, is the amount of RAM required to successfully boot the kernel after a crash event. By default, the boot memory size is 256MB or 5% of total system RAM, whichever is larger.

Unlike kexec-initiated event, the fadump mechanism uses the production kernel to recover a crash dump. When booting after a crash, PowerPC hardware makes the device node /proc/device-tree/rtas/ibm.kernel-dump available to the proc filesystem (procfs). The fadump-aware kdump scripts, check for the stored vmcore, and then complete the system reboot cleanly.

41.10.2. Enabling firmware assisted dump mechanism

You can enhance the crash dumping capabilities of IBM POWER systems by enabling the firmware assisted dump (fadump) mechanism.

In the Secure Boot environment, the GRUB boot loader allocates a boot memory region, known as the Real Mode Area (RMA). The RMA has a size of 512 MB, divided among the boot components. If a component exceeds its size allocation, GRUB fails with an out-of-memory (OOM) error.

Warning

Do not enable firmware assisted dump (fadump) mechanism in the Secure Boot environment on RHEL 8.7 and 8.6 versions. The GRUB2 boot loader fails with the following error:

error: ../../grub-core/kern/mm.c:376:out of memory.
Press any key to continue…

The system is recoverable only if you increase the default initramfs size due to the fadump configuration.

For information about workaround methods to recover the system, see the System boot ends in GRUB Out of Memory (OOM) article.

Procedure

  1. Install and configure kdump.
  2. Enable the fadump=on kernel option:

    # grubby --update-kernel=ALL --args="fadump=on"
  3. Optional: If you want to specify reserved boot memory instead of using the defaults, enable the crashkernel=xxM option, where xx is the amount of the memory required in megabytes:

    # grubby --update-kernel=ALL --args="crashkernel=xxM fadump=on"
    Important

    When specifying boot configuration options, test all boot configuration options before you run them. If the kdump kernel fails to boot, increase the value specified in crashkernel= argument gradually to set an appropriate value.

41.10.3. Firmware assisted dump mechanisms on IBM Z hardware

IBM Z systems support the following firmware assisted dump mechanisms:

  • Stand-alone dump (sadump)
  • VMDUMP

The kdump infrastructure is supported and utilized on IBM Z systems. However, using one of the firmware assisted dump (fadump) methods for IBM Z has the following benefits:

  • The system console initiates and controls the sadump mechanism, and stores it on an IPL bootable device.
  • The VMDUMP mechanism is similar to sadump. This tool is also initiated from the system console, but retrieves the resulting dump from hardware and copies it to the system for analysis.
  • These methods (similarly to other hardware based dump mechanisms) have the ability to capture the state of a machine in the early boot phase, before the kdump service starts.
  • Although VMDUMP contains a mechanism to receive the dump file into a Red Hat Enterprise Linux system, the configuration and control of VMDUMP is managed from the IBM Z Hardware console.

41.10.4. Using sadump on Fujitsu PRIMEQUEST systems

The Fujitsu sadump mechanism provides a fallback dump capture when kdump is unable to complete successfully. You can manually invoke sadump from the system Management Board (MMB) interface. Using MMB, configure kdump like for an Intel 64 or AMD64 server and then proceed to enable sadump.

Procedure

  1. Add or edit the following lines in the /etc/sysctl.conf file to ensure that kdump starts as expected for sadump:

    kernel.panic=0
    kernel.unknown_nmi_panic=1
    Warning

    In particular, ensure that after kdump, the system does not reboot. If the system reboots after kdump has failed to save the vmcore file, then it is not possible to invoke the sadump.

  2. Set the failure_action parameter in /etc/kdump.conf appropriately as halt or shell.

    failure_action shell

Additional resources

  • The FUJITSU Server PRIMEQUEST 2000 Series Installation Manual

41.11. Analyzing a core dump

To identify the cause of the system crash, you can use the crash utility, which provides an interactive prompt similar to the GNU Debugger (GDB). By using crash, you can analyze a core dump created by kdump, netdump, diskdump, or xendump and a running Linux system. Alternatively, you can use the Kernel Oops Analyzer or the Kdump Helper tool.

41.11.1. Installing the crash utility

With the provided information, understand the required packages and the procedure to install the crash utility. The crash utility might not be installed by default on your Red Hat Enterprise Linux 8 systems. crash is a tool to interactively analyze a system’s state while it is running or after a kernel crash occurs and a core dump file is created. The core dump file is also known as the vmcore file.

Procedure

  1. Enable the relevant repositories:

    # subscription-manager repos --enable baseos repository
    # subscription-manager repos --enable appstream repository
    # subscription-manager repos --enable rhel-8-for-x86_64-baseos-debug-rpms
  2. Install the crash package:

    # yum install crash
  3. Install the kernel-debuginfo package:

    # yum install kernel-debuginfo

    The package kernel-debuginfo will correspond to the running kernel and provides the data necessary for the dump analysis.

41.11.2. Running and exiting the crash utility

The crash utility is a powerful tool for analyzing kdump. By running crash on a crash dump file, you can gain insights into the system’s state at the time of the crash, identify the root cause of the issue, and troubleshoot kernel-related problems.

Prerequisites

  • Identify the currently running kernel (for example 4.18.0-5.el8.x86_64).

Procedure

  1. To start the crash utility, pass the following two necessary parameters:

    • The debug-info (a decompressed vmlinuz image), for example /usr/lib/debug/lib/modules/4.18.0-5.el8.x86_64/vmlinux provided through a specific kernel-debuginfo package.
    • The actual vmcore file, for example /var/crash/127.0.0.1-2018-10-06-14:05:33/vmcore.

      The resulting crash command will be as follows:

      # crash /usr/lib/debug/lib/modules/4.18.0-5.el8.x86_64/vmlinux /var/crash/127.0.0.1-2018-10-06-14:05:33/vmcore

      Use the same <kernel> version that was captured by kdump.

      Example 41.1. Running the crash utility

      The following example shows analyzing a core dump created on October 6 2018 at 14:05 PM, using the 4.18.0-5.el8.x86_64 kernel.

      ...
      WARNING: kernel relocated [202MB]: patching 90160 gdb minimal_symbol values
      
            KERNEL: /usr/lib/debug/lib/modules/4.18.0-5.el8.x86_64/vmlinux
          DUMPFILE: /var/crash/127.0.0.1-2018-10-06-14:05:33/vmcore  [PARTIAL DUMP]
              CPUS: 2
              DATE: Sat Oct  6 14:05:16 2018
            UPTIME: 01:03:57
      LOAD AVERAGE: 0.00, 0.00, 0.00
             TASKS: 586
          NODENAME: localhost.localdomain
           RELEASE: 4.18.0-5.el8.x86_64
           VERSION: #1 SMP Wed Aug 29 11:51:55 UTC 2018
           MACHINE: x86_64  (2904 Mhz)
            MEMORY: 2.9 GB
             PANIC: "sysrq: SysRq : Trigger a crash"
               PID: 10635
           COMMAND: "bash"
              TASK: ffff8d6c84271800  [THREAD_INFO: ffff8d6c84271800]
               CPU: 1
             STATE: TASK_RUNNING (SYSRQ)
      
      crash>
  2. To exit the interactive prompt and stop crash, type exit or q.

    crash> exit
    ~]#
Note

The crash command is also utilized as a powerful tool for debugging a live system. However, you must use it with caution to avoid system-level issues.

41.11.3. Displaying various indicators in the crash utility

Use the crash utility to display various indicators, such as a kernel message buffer, a backtrace, a process status, virtual memory information and open files.

Displaying the message buffer

  • To display the kernel message buffer, type the log command at the interactive prompt:

    crash> log
    ... several lines omitted ...
    EIP: 0060:[<c068124f>] EFLAGS: 00010096 CPU: 2
    EIP is at sysrq_handle_crash+0xf/0x20
    EAX: 00000063 EBX: 00000063 ECX: c09e1c8c EDX: 00000000
    ESI: c0a09ca0 EDI: 00000286 EBP: 00000000 ESP: ef4dbf24
     DS: 007b ES: 007b FS: 00d8 GS: 00e0 SS: 0068
    Process bash (pid: 5591, ti=ef4da000 task=f196d560 task.ti=ef4da000)
    Stack:
     c068146b c0960891 c0968653 00000003 00000000 00000002 efade5c0 c06814d0
    <0> fffffffb c068150f b7776000 f2600c40 c0569ec4 ef4dbf9c 00000002 b7776000
    <0> efade5c0 00000002 b7776000 c0569e60 c051de50 ef4dbf9c f196d560 ef4dbfb4
    Call Trace:
     [<c068146b>] ? __handle_sysrq+0xfb/0x160
     [<c06814d0>] ? write_sysrq_trigger+0x0/0x50
     [<c068150f>] ? write_sysrq_trigger+0x3f/0x50
     [<c0569ec4>] ? proc_reg_write+0x64/0xa0
     [<c0569e60>] ? proc_reg_write+0x0/0xa0
     [<c051de50>] ? vfs_write+0xa0/0x190
     [<c051e8d1>] ? sys_write+0x41/0x70
     [<c0409adc>] ? syscall_call+0x7/0xb
    Code: a0 c0 01 0f b6 41 03 19 d2 f7 d2 83 e2 03 83 e0 cf c1 e2 04 09 d0 88 41 03 f3 c3 90 c7 05 c8 1b 9e c0 01 00 00 00 0f ae f8 89 f6 <c6> 05 00 00 00 00 01 c3 89 f6 8d bc 27 00 00 00 00 8d 50 d0 83
    EIP: [<c068124f>] sysrq_handle_crash+0xf/0x20 SS:ESP 0068:ef4dbf24
    CR2: 0000000000000000

    Type help log for more information about the command usage.

    Note

    The kernel message buffer includes the most essential information about the system crash. It is always dumped first in to the vmcore-dmesg.txt file. If you fail to obtain the full vmcore file, for example, due to insufficient space on the target location, you can obtain the required information from the kernel message buffer. By default, vmcore-dmesg.txt is placed in the /var/crash/ directory.

Displaying a backtrace

  • To display the kernel stack trace, use the bt command.

    crash> bt
    PID: 5591   TASK: f196d560  CPU: 2   COMMAND: "bash"
     #0 [ef4dbdcc] crash_kexec at c0494922
     #1 [ef4dbe20] oops_end at c080e402
     #2 [ef4dbe34] no_context at c043089d
     #3 [ef4dbe58] bad_area at c0430b26
     #4 [ef4dbe6c] do_page_fault at c080fb9b
     #5 [ef4dbee4] error_code (via page_fault) at c080d809
        EAX: 00000063  EBX: 00000063  ECX: c09e1c8c  EDX: 00000000  EBP: 00000000
        DS:  007b      ESI: c0a09ca0  ES:  007b      EDI: 00000286  GS:  00e0
        CS:  0060      EIP: c068124f  ERR: ffffffff  EFLAGS: 00010096
     #6 [ef4dbf18] sysrq_handle_crash at c068124f
     #7 [ef4dbf24] __handle_sysrq at c0681469
     #8 [ef4dbf48] write_sysrq_trigger at c068150a
     #9 [ef4dbf54] proc_reg_write at c0569ec2
    #10 [ef4dbf74] vfs_write at c051de4e
    #11 [ef4dbf94] sys_write at c051e8cc
    #12 [ef4dbfb0] system_call at c0409ad5
        EAX: ffffffda  EBX: 00000001  ECX: b7776000  EDX: 00000002
        DS:  007b      ESI: 00000002  ES:  007b      EDI: b7776000
        SS:  007b      ESP: bfcb2088  EBP: bfcb20b4  GS:  0033
        CS:  0073      EIP: 00edc416  ERR: 00000004  EFLAGS: 00000246

    Type bt <pid> to display the backtrace of a specific process or type help bt for more information about bt usage.

Displaying a process status

  • To display the status of processes in the system, use the ps command.

    crash> ps
       PID    PPID  CPU   TASK    ST  %MEM     VSZ    RSS  COMM
    >     0      0   0  c09dc560  RU   0.0       0      0  [swapper]
    >     0      0   1  f7072030  RU   0.0       0      0  [swapper]
          0      0   2  f70a3a90  RU   0.0       0      0  [swapper]
    >     0      0   3  f70ac560  RU   0.0       0      0  [swapper]
          1      0   1  f705ba90  IN   0.0    2828   1424  init
    ... several lines omitted ...
       5566      1   1  f2592560  IN   0.0   12876    784  auditd
       5567      1   2  ef427560  IN   0.0   12876    784  auditd
       5587   5132   0  f196d030  IN   0.0   11064   3184  sshd
    >  5591   5587   2  f196d560  RU   0.0    5084   1648  bash

    Use ps <pid> to display the status of a single specific process. Use help ps for more information about ps usage.

Displaying virtual memory information

  • To display basic virtual memory information, type the vm command at the interactive prompt.

    crash> vm
    PID: 5591   TASK: f196d560  CPU: 2   COMMAND: "bash"
       MM       PGD      RSS    TOTAL_VM
    f19b5900  ef9c6000  1648k    5084k
      VMA       START      END    FLAGS  FILE
    f1bb0310    242000    260000 8000875  /lib/ld-2.12.so
    f26af0b8    260000    261000 8100871  /lib/ld-2.12.so
    efbc275c    261000    262000 8100873  /lib/ld-2.12.so
    efbc2a18    268000    3ed000 8000075  /lib/libc-2.12.so
    efbc23d8    3ed000    3ee000 8000070  /lib/libc-2.12.so
    efbc2888    3ee000    3f0000 8100071  /lib/libc-2.12.so
    efbc2cd4    3f0000    3f1000 8100073  /lib/libc-2.12.so
    efbc243c    3f1000    3f4000 100073
    efbc28ec    3f6000    3f9000 8000075  /lib/libdl-2.12.so
    efbc2568    3f9000    3fa000 8100071  /lib/libdl-2.12.so
    efbc2f2c    3fa000    3fb000 8100073  /lib/libdl-2.12.so
    f26af888    7e6000    7fc000 8000075  /lib/libtinfo.so.5.7
    f26aff2c    7fc000    7ff000 8100073  /lib/libtinfo.so.5.7
    efbc211c    d83000    d8f000 8000075  /lib/libnss_files-2.12.so
    efbc2504    d8f000    d90000 8100071  /lib/libnss_files-2.12.so
    efbc2950    d90000    d91000 8100073  /lib/libnss_files-2.12.so
    f26afe00    edc000    edd000 4040075
    f1bb0a18   8047000   8118000 8001875  /bin/bash
    f1bb01e4   8118000   811d000 8101873  /bin/bash
    f1bb0c70   811d000   8122000 100073
    f26afae0   9fd9000   9ffa000 100073
    ... several lines omitted ...

    Use vm <pid> to display information about a single specific process, or use help vm for more information about vm usage.

Displaying open files

  • To display information about open files, use the files command.

    crash> files
    PID: 5591   TASK: f196d560  CPU: 2   COMMAND: "bash"
    ROOT: /    CWD: /root
     FD    FILE     DENTRY    INODE    TYPE  PATH
      0  f734f640  eedc2c6c  eecd6048  CHR   /pts/0
      1  efade5c0  eee14090  f00431d4  REG   /proc/sysrq-trigger
      2  f734f640  eedc2c6c  eecd6048  CHR   /pts/0
     10  f734f640  eedc2c6c  eecd6048  CHR   /pts/0
    255  f734f640  eedc2c6c  eecd6048  CHR   /pts/0

    Use files <pid> to display files opened by only one selected process, or use help files for more information about files usage.

41.11.4. Using Kernel Oops Analyzer

The Kernel Oops Analyzer tool analyzes the crash dump by comparing the oops messages with known issues in the knowledge base.

Prerequisites

  • An oops message is secured to feed the Kernel Oops Analyzer.

Procedure

  1. Access the Kernel Oops Analyzer tool.
  2. To diagnose a kernel crash issue, upload a kernel oops log generated in vmcore.

    • Alternatively, you can diagnose a kernel crash issue by providing a text message or a vmcore-dmesg.txt as an input.
  3. Click DETECT to compare the oops message based on information from the makedumpfile against known solutions.

Additional resources

41.11.5. The Kdump Helper tool

The Kdump Helper tool helps to set up the kdump using the provided information. Kdump Helper generates a configuration script based on your preferences. Initiating and running the script on your server sets up the kdump service.

Additional resources

41.12. Using early kdump to capture boot time crashes

Early kdump is a feature of the kdump mechanism that captures the vmcore file if a system or kernel crash occurs during the early phases of the boot process before the system services start. Early kdump loads the crash kernel and the initramfs of crash kernel in the memory much earlier.

A kernel crash can sometimes occur during the early boot phase before the kdump service starts and is able to capture and save the contents of the crashed kernel memory. Therefore, crucial information related to the crash that is important for troubleshooting is lost. To address this problem, you can use the early kdump feature, which is a part of the kdump service.

41.12.1. Enabling early kdump

The early kdump feature sets up the crash kernel and the initial RAM disk image (initramfs) to load early enough to capture the vmcore information for an early crash. This helps to eliminate the risk of losing information about the early boot kernel crashes.

Prerequisites

  • An active RHEL subscription.
  • A repository containing the kexec-tools package for your system CPU architecture.
  • Fulfilled kdump configuration and targets requirements. For more information see, Supported kdump configurations and targets.

Procedure

  1. Verify that the kdump service is enabled and active:

    # systemctl is-enabled kdump.service && systemctl is-active kdump.service
    enabled
    active

    If kdump is not enabled and running, set all required configurations and verify that kdump service is enabled.

  2. Rebuild the initramfs image of the booting kernel with the early kdump functionality:

    # dracut -f --add earlykdump
  3. Add the rd.earlykdump kernel command line parameter:

    # grubby --update-kernel=/boot/vmlinuz-$(uname -r) --args="rd.earlykdump"
  4. Reboot the system to reflect the changes:

    # reboot

Verification

  • Verify that rd.earlykdump is successfully added and early kdump feature is enabled:

    # cat /proc/cmdline
    BOOT_IMAGE=(hd0,msdos1)/vmlinuz-4.18.0-187.el8.x86_64 root=/dev/mapper/rhel-root ro crashkernel=auto resume=/dev/mapper/rhel-swap rd.lvm.lv=rhel/root rd.lvm.lv=rhel/swap rhgb quiet rd.earlykdump
    
    # journalctl -x | grep early-kdump
    Mar 20 15:44:41 redhat dracut-cmdline[304]: early-kdump is enabled.
    Mar 20 15:44:42 redhat dracut-cmdline[304]: kexec: loaded early-kdump kernel

Additional resources

Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.