このコンテンツは選択した言語では利用できません。

2.3. Storage Concepts


Following are the common terms relating to file systems and storage used throughout the Red Hat Gluster Storage Administration Guide.
Brick
The glusterFS basic unit of storage, represented by an export directory on a server in the trusted storage pool. A brick is expressed by combining a server with an export directory in the following format:
SERVER:EXPORT
For example:
myhostname:/exports/myexportdir/
Volume
A volume is a logical collection of bricks. Most of the Red Hat Gluster Storage management operations happen on the volume.
Translator
A translator connects to one or more subvolumes, does something with them, and offers a subvolume connection.
Subvolume
A brick after being processed by at least one translator.
Volfile
Volume (vol) files are configuration files that determine the behavior of your Red Hat Gluster Storage trusted storage pool. At a high level, GlusterFS has three entities, that is, Server, Client and Management daemon. Each of these entities have their own volume files. Volume files for servers and clients are generated by the management daemon upon creation of a volume.
Server and Client Vol files are located in /var/lib/glusterd/vols/VOLNAME directory. The management daemon vol file is named as glusterd.vol and is located in /etc/glusterfs/ directory.

Warning

You must not modify any vol file in /var/lib/glusterd manually as Red Hat does not support vol files that are not generated by the management daemon.
glusterd
glusterd is the glusterFS Management Service that must run on all servers in the trusted storage pool.
Cluster
A trusted pool of linked computers working together, resembling a single computing resource. In Red Hat Gluster Storage, a cluster is also referred to as a trusted storage pool.
Client
The machine that mounts a volume (this may also be a server).
File System
A method of storing and organizing computer files. A file system organizes files into a database for the storage, manipulation, and retrieval by the computer's operating system.
Source: Wikipedia
Distributed File System
A file system that allows multiple clients to concurrently access data which is spread across servers/bricks in a trusted storage pool. Data sharing among multiple locations is fundamental to all distributed file systems.
Virtual File System (VFS)
VFS is a kernel software layer that handles all system calls related to the standard Linux file system. It provides a common interface to several kinds of file systems.
POSIX
Portable Operating System Interface (for Unix) (POSIX) is the name of a family of related standards specified by the IEEE to define the application programming interface (API), as well as shell and utilities interfaces, for software that is compatible with variants of the UNIX operating system. Red Hat Gluster Storage exports a fully POSIX compatible file system.
Metadata
Metadata is data providing information about other pieces of data.
FUSE
Filesystem in User space (FUSE) is a loadable kernel module for Unix-like operating systems that lets non-privileged users create their own file systems without editing kernel code. This is achieved by running file system code in user space while the FUSE module provides only a "bridge" to the kernel interfaces.
Source: Wikipedia
Geo-Replication
Geo-replication provides a continuous, asynchronous, and incremental replication service from one site to another over Local Area Networks (LAN), Wide Area Networks (WAN), and the Internet.
N-way Replication
Local synchronous data replication that is typically deployed across campus or Amazon Web Services Availability Zones.
Petabyte
A petabyte is a unit of information equal to one quadrillion bytes, or 1000 terabytes. The unit symbol for the petabyte is PB. The prefix peta- (P) indicates a power of 1000:
1 PB = 1,000,000,000,000,000 B = 1000^5 B = 10^15 B.
The term "pebibyte" (PiB), using a binary prefix, is used for the corresponding power of 1024.
Source: Wikipedia
RAID
Redundant Array of Independent Disks (RAID) is a technology that provides increased storage reliability through redundancy. It combines multiple low-cost, less-reliable disk drives components into a logical unit where all drives in the array are interdependent.
RRDNS
Round Robin Domain Name Service (RRDNS) is a method to distribute load across application servers. RRDNS is implemented by creating multiple records with the same name and different IP addresses in the zone file of a DNS server.
Server
The machine (virtual or bare metal) that hosts the file system in which data is stored.
Block Storage
Block special files, or block devices, correspond to devices through which the system moves data in the form of blocks. These device nodes often represent addressable devices such as hard disks, CD-ROM drives, or memory regions. As of Red Hat Gluster Storage 3.4, block storage supports only Container-Native Storage (CNS) and Container-Ready Storage (CRS) use cases. Block storage can be created and configured for this use case by using the gluster-block command line tool. For more information, see Container-Native Storage for OpenShift Container Platform.
Scale-Up Storage
Increases the capacity of the storage device in a single dimension. For example, adding additional disk capacity in a trusted storage pool.
Scale-Out Storage
Increases the capability of a storage device in single dimension. For example, adding more systems of the same size, or adding servers to a trusted storage pool that increases CPU, disk capacity, and throughput for the trusted storage pool.
Trusted Storage Pool
A storage pool is a trusted network of storage servers. When you start the first server, the storage pool consists of only that server.
Namespace
An abstract container or environment that is created to hold a logical grouping of unique identifiers or symbols. Each Red Hat Gluster Storage trusted storage pool exposes a single namespace as a POSIX mount point which contains every file in the trusted storage pool.
User Space
Applications running in user space do not directly interact with hardware, instead using the kernel to moderate access. User space applications are generally more portable than applications in kernel space. glusterFS is a user space application.
Distributed Hash Table Terminology

Hashed subvolume
A Distributed Hash Table Translator subvolume to which the file or directory name is hashed to.
Cached subvolume
A Distributed Hash Table Translator subvolume where the file content is actually present. For directories, the concept of cached-subvolume is not relevant. It is loosely used to mean subvolumes which are not hashed-subvolume.
Linkto-file
For a newly created file, the hashed and cached subvolumes are the same. When directory entry operations like rename (which can change the name and hence hashed subvolume of the file) are performed on the file, instead of moving the entire data in the file to a new hashed subvolume, a file is created with the same name on the newly hashed subvolume. The purpose of this file is only to act as a pointer to the node where the data is present. In the extended attributes of this file, the name of the cached subvolume is stored. This file on the newly hashed-subvolume is called a linkto-file. The linkto file is relevant only for non-directory entities.
Directory Layout
The directory layout helps determine where files in a gluster volume are stored.
When a client creates or requests a file, the DHT translator hashes the file's path to create an integer. Each directory in a gluster subvolume holds files that have integers in a specific range, so the hash of any given file maps to a specific subvolume in the gluster volume. The directory layout determines which integer ranges are assigned to a given directory across all subvolumes.
Directory layouts are assigned when a directory is first created, and can be reassigned by running a rebalance operation on the volume. If a brick or subvolume is offline when a directory is created, it will not be part of the layout until after a rebalance is run.
You should rebalance a volume to recalculate its directory layout after bricks are added to the volume. See Section 11.11, “Rebalancing Volumes” for more information.
Fix Layout
A command that is executed during the rebalance process.
The rebalance process itself comprises of two stages:
  1. Fixes the layouts of directories to accommodate any subvolumes that are added or removed. It also heals the directories, checks whether the layout is non-contiguous, and persists the layout in extended attributes, if needed. It also ensures that the directories have the same attributes across all the subvolumes.
  2. Migrates the data from the cached-subvolume to the hashed-subvolume.
Red Hat logoGithubRedditYoutubeTwitter

詳細情報

試用、購入および販売

コミュニティー

Red Hat ドキュメントについて

Red Hat をお使いのお客様が、信頼できるコンテンツが含まれている製品やサービスを活用することで、イノベーションを行い、目標を達成できるようにします。

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。このような変更は、段階的に実施される予定です。詳細情報: Red Hat ブログ.

会社概要

Red Hat は、企業がコアとなるデータセンターからネットワークエッジに至るまで、各種プラットフォームや環境全体で作業を簡素化できるように、強化されたソリューションを提供しています。

© 2024 Red Hat, Inc.