6.2. 클러스터 자동 스케일러 구성


먼저 클러스터 자동 스케일러를 배포하여 OpenShift Container Platform 클러스터에서 리소스의 자동 스케일링을 관리합니다.

참고

클러스터 자동 스케일러의 범위는 전체 클러스터에 설정되므로 클러스터에 대해 하나의 클러스터 자동 스케일러만 만들 수 있습니다.

6.2.1. ClusterAutoscaler 리소스 정의

ClusterAutoscaler 리소스 정의는 클러스터 자동 스케일러의 매개 변수 및 샘플 값을 표시합니다.

apiVersion: "autoscaling.openshift.io/v1"
kind: "ClusterAutoscaler"
metadata:
  name: "default"
spec:
  podPriorityThreshold: -10 1
  resourceLimits:
    maxNodesTotal: 24 2
    cores:
      min: 8 3
      max: 128 4
    memory:
      min: 4 5
      max: 256 6
    gpus:
      - type: nvidia.com/gpu 7
        min: 0 8
        max: 16 9
      - type: amd.com/gpu
        min: 0
        max: 4
  scaleDown: 10
    enabled: true 11
    delayAfterAdd: 10m 12
    delayAfterDelete: 5m 13
    delayAfterFailure: 30s 14
    unneededTime: 5m 15
    utilizationThreshold: "0.4" 16
1
클러스터 자동 스케일러가 추가 노드를 배포하도록 하려면 pod가 초과해야하는 우선 순위를 지정합니다. 32 비트 정수 값을 입력합니다. podPriorityThreshold 값은 각 pod에 할당한 PriorityClass의 값과 비교됩니다.
2
배포할 최대 노드 수를 지정합니다. 이 값은 Autoscaler가 제어하는 머신뿐 만 아니라 클러스터에 배치 된 총 머신 수입니다. 이 값이 모든 컨트롤 플레인 및 컴퓨팅 머신과 MachineAutoscaler 리소스에 지정한 총 복제본 수에 대응할 수 있을 만큼 충분한 크기의 값인지 확인합니다.
3
클러스터에 배포할 최소 코어 수를 지정합니다.
4
클러스터에 배포할 최대 코어 수를 지정합니다.
5
클러스터에서 최소 메모리 크기를 GiB 단위로 지정합니다.
6
클러스터에서 최대 메모리 크기를 GiB단위로 지정합니다.
7
선택 사항: 배포할 GPU 노드 유형을 지정합니다. nvidia.com/gpuamd.com/gpu 만 유효한 유형입니다.
8
클러스터에 배포할 최소 GPU 수를 지정합니다.
9
클러스터에 배포할 최대 GPU 수를 지정합니다.
10
이 섹션에서는 ns, us, ms, s, mh를 포함하여 유효한 ParseDuration 간격을 사용하여 각 작업에 대해 대기하는 기간을 지정할 수 있습니다.
11
클러스터 자동 스케일러가 불필요한 노드를 제거할 수 있는지 여부를 지정합니다.
12
선택 사항: 최근에 노드가 추가된 후 노드를 삭제하기 전에 대기할 기간을 지정합니다. 값을 지정하지 않으면 기본값으로 10m이 사용됩니다.
13
선택 사항: 노드가 최근에 삭제된 후 노드를 삭제하기 전에 대기하는 기간을 지정합니다. 값을 지정하지 않으면 기본값 0s 가 사용됩니다.
14
선택 사항: 축소 실패 후 노드를 삭제하기 전에 대기할 기간을 지정합니다. 값을 지정하지 않으면 기본값으로 3m가 사용됩니다.
15
선택 사항: 불필요한 노드가 삭제되기 전에 기간을 지정합니다. 값을 지정하지 않으면 기본값으로 10m이 사용됩니다.
16
선택 사항: 불필요한 노드를 삭제할 수 있는 노드 사용률 수준을 지정합니다. 노드 사용률 수준은 노드에 할당된 리소스로 나누어진 요청된 리소스의 합계이며 "0" 보다 크고 "1" 미만의 값이어야 합니다. 값을 지정하지 않으면 클러스터 자동 스케일러는 기본값 "0.5" 를 사용합니다. 이 값은 50% 사용률에 해당합니다. 이 값은 문자열로 표현되어야 합니다.
참고

스케일링 작업을 수행할 때 클러스터 자동 스케일러는 클러스터에서 배포할 최소 및 최대 코어 수 또는 메모리 양과 같은 ClusterAutoscaler 리소스 정의에 설정된 범위 내에 유지됩니다. 그러나 클러스터 자동 스케일러는 해당 범위 내에 있는 클러스터의 현재 값을 수정하지 않습니다.

클러스터 자동 스케일러가 노드를 관리하지 않는 경우에도 최소 및 최대 CPU, 메모리 및 GPU 값은 클러스터의 모든 노드에서 해당 리소스를 계산하여 결정됩니다. 예를 들어 클러스터 자동 스케일러가 컨트롤 플레인 노드를 관리하지 않는 경우에도 컨트롤 플레인 노드는 클러스터의 총 메모리에서 고려됩니다.

6.2.2. 클러스터 자동 스케일러 배포

클러스터 자동 스케일러를 배포하려면 ClusterAutoscaler 리소스의 인스턴스를 만듭니다.

절차

  1. 사용자 정의된 리소스 정의가 포함된 ClusterAutoscaler리소스의 YAML 파일을 만듭니다.
  2. 클러스터에서 리소스를 생성합니다.

    $ oc create -f <filename>.yaml 1
    1
    <filename>은 사용자 정의 리소스 파일의 이름입니다.
Red Hat logoGithubRedditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

© 2024 Red Hat, Inc.