9.2. IBM Z 및 LinuxONE에 z/VM으로 클러스터 설치
OpenShift Container Platform 버전 4.8에서는 사용자가 제공하는 IBM Z 또는 LinuxONE 인프라에 클러스터를 설치할 수 있습니다.
이 문서는 IBM Z에 대해서만 설명하지만 여기에 있는 모든 정보는 LinuxONE에도 적용됩니다.
베어 메탈 이외의 플랫폼의 경우 추가 고려 사항이 있습니다. OpenShift Container Platform 클러스터를 설치하기 전에 guidelines for deploying OpenShift Container Platform on non-tested platforms에 있는 내용을 확인하십시오.
9.2.1. 사전 요구 사항
- OpenShift Container Platform 설치 및 업데이트 프로세스에 대한 세부 사항을 검토합니다.
- 클러스터 설치 방법 선택 및 사용자를 위한 준비에 대한 문서를 읽습니다.
- 설치 프로세스를 시작하기 전에 설치 디렉터리를 정리해야 합니다. 이렇게 하면 설치 프로세스 중에 필요한 설치 파일이 생성되고 업데이트됩니다.
-
클러스터 용 NFS를 사용하여 영구 스토리지를 프로비저닝합니다. 프라이빗 이미지 레지스트리를 배포하려면 스토리지에서
ReadWriteMany
액세스 모드를 제공해야 합니다. - 방화벽을 사용하는 경우 클러스터가 액세스해야 하는 사이트를 허용하도록 방화벽을 구성해야 합니다.
프록시를 구성하는 경우에도 해당 사이트 목록을 검토하십시오.
9.2.2. OpenShift Container Platform 용 인터넷 액세스
OpenShift Container Platform 4.8에서 클러스터를 설치하려면 인터넷 액세스가 필요합니다.
다음의 경우 인터넷 액세스가 필요합니다.
- OpenShift Cluster Manager 에 액세스하여 설치 프로그램을 다운로드하고 서브스크립션 관리를 수행합니다. 클러스터가 인터넷에 액세스할 수 있고 Telemetry 서비스를 비활성화하지 않은 경우, 클러스터에 자동으로 권한이 부여됩니다.
- Quay.io에 액세스. 클러스터를 설치하는 데 필요한 패키지를 받을 수 있습니다.
- 클러스터 업데이트를 수행하는 데 필요한 패키지를 받을 수 있습니다.
클러스터가 직접 인터넷에 액세스할 수 없는 경우, 프로비저닝하는 일부 유형의 인프라에서 제한된 네트워크 설치를 수행할 수 있습니다. 설치를 수행하는 프로세스에서 필요한 내용을 다운로드한 다음, 이를 사용하여 클러스터를 설치하고 설치 프로그램을 생성하는 데 필요한 패키지로 미러 레지스트리를 채웁니다. 설치 유형에 따라서는 클러스터를 설치하는 환경에 인터넷 액세스가 필요하지 않을 수도 있습니다. 클러스터를 업데이트하기 전에 미러 레지스트리의 내용을 업데이트합니다.
9.2.3. 사용자 프로비저닝 인프라를 포함한 클러스터의 시스템 요구사항
사용자 프로비저닝 인프라가 포함된 클러스터의 경우, 필요한 모든 시스템을 배포해야 합니다.
이 섹션에서는 사용자 프로비저닝 인프라에 OpenShift Container Platform을 배포해야 하는 요구 사항에 대해 설명합니다.
9.2.3.1. 필요한 시스템
최소 OpenShift Container Platform 클러스터에 다음과 같은 호스트가 필요합니다.
호스트 | 설명 |
---|---|
임시 부트스트랩 시스템 한 개 | 컨트롤 플레인 시스템 세 개에 OpenShift Container Platform 클러스터를 배포하기 위한 부트스트랩 시스템이 클러스터에 필요합니다. 클러스터를 설치한 후 부트스트랩 시스템을 제거할 수 있습니다. |
컨트롤 플레인 시스템 세 개 | 컨트롤 플레인 시스템은 컨트롤 플레인을 구성하는 Kubernetes 및 OpenShift Container Platform 서비스를 실행합니다. |
두 개 이상의 컴퓨팅 시스템(작업자 시스템이라고도 함). | OpenShift Container Platform 사용자가 요청한 워크로드는 컴퓨팅 머신에서 실행됩니다. |
클러스터의 고가용성을 개선하려면 컨트롤 플레인 시스템을 두 개 이상의 물리적 시스템의 서로 다른 z/VM 인스턴스에 배포하십시오.
부트스트랩, 컨트롤 플레인 시스템은 운영 체제로 RHCOS (Red Hat Enterprise Linux CoreOS)를 사용해야 합니다. 그러나 컴퓨팅 머신은 RHCOS(Red Hat Enterprise Linux CoreOS) 또는 RHEL (Red Hat Enterprise Linux) 7.9 중에서 선택할 수 있습니다.
RHCOS는 RHEL 8(Red Hat Enterprise Linux)을 기반으로하며 모든 하드웨어 인증 및 요구사항을 모두 이어받습니다. Red Hat Enterprise Linux 기술 기능 및 제한을 참조하십시오.
9.2.3.2. 최소 리소스 요구사항
각 클러스터 시스템이 다음과 같은 최소 요구사항을 충족해야 합니다.
시스템 | 운영 체제 | vCPU [1] | 가상 RAM | 스토리지 | IOPS |
---|---|---|---|---|---|
부트스트랩 | RHCOS | 4 | 16GB | 100GB | 해당 없음 |
컨트롤 플레인 | RHCOS | 4 | 16GB | 100GB | 해당 없음 |
Compute | RHCOS | 2 | 8GB | 100GB | 해당 없음 |
- SMT-2가 활성화된 경우 하나의 물리적 코어(IFL)는 두 개의 논리 코어(스레드)를 제공합니다. 하이퍼바이저는 두 개 이상의 vCPU를 제공할 수 있습니다.
9.2.3.3. 최소 IBM Z 시스템 환경
다음 IBM 하드웨어에 OpenShift Container Platform 버전 4.8를 설치할 수 있습니다.
- IBM z15(모든 모델), IBM z14(모든 모델), IBM z13 및 IBM z13s
- LinuxONE, 모든 버전
하드웨어 요구 사항
- 각 클러스터에 대해 SMT2를 사용할 수 있는 6개의 IFL과 동등합니다.
-
LoadBalancer
서비스에 연결하고 클러스터 외부 트래픽에 대한 데이터를 제공하는 네트워크 연결은 하나 이상 있습니다.
전용 또는 공유 IFL을 사용하여 충분한 컴퓨팅 리소스를 할당할 수 있습니다. 리소스 공유는 IBM Z의 주요 강점 중 하나입니다. 그러나 각 하이퍼바이저 계층에서 용량을 올바르게 조정하고 모든 OpenShift Container Platform 클러스터에 충분한 리소스를 확인해야 합니다.
클러스터의 전반적인 성능에 영향을 미칠 수 있으므로 OpenShift Container Platform 클러스터를 설정하는 데 사용되는 LPAR은 충분한 컴퓨팅 용량을 제공해야 합니다. 이 컨텍스트에서 하이퍼바이저 수준의 LPAR 가중치 관리, 권한 부여 및 CPU 공유는 중요한 역할을 합니다.
운영 체제 요구 사항
- z/VM 7.1 이상의 인스턴스 1개
z/VM 인스턴스에서 다음을 설정합니다.
- OpenShift Container Platform 컨트롤 플레인 시스템 용 게스트 가상 머신 3대
- OpenShift Container Platform 컴퓨팅 시스템 용 게스트 가상 머신 2 대
- 임시 OpenShift Container Platform 부트스트랩 머신 용 게스트 가상 머신 1 대
IBM Z 네트워크 연결 요구 사항
IBM Z의 z/VM에 설치하려면 레이어 2 모드의 단일 z/VM 가상 NIC가 필요합니다. 또한 다음이 필요합니다.
- 직접 연결된 OSA 또는 RoCE 네트워크 어댑터
- z/VM VSwitch 설정. 권장 설정의 경우 OSA 링크 통합을 사용합니다.
z/VM 게스트 가상 머신 용 디스크 스토리지
- FICON 연결 디스크 스토리지 (DASD). 이는 z/VM 미니 디스크, 풀팩 미니 디스크 또는 전용 DASD가 포함될 수 있으며, 모두 기본 CDL로 포맷되어야 합니다. Red Hat Enterprise Linux CoreOS (RHCOS) 설치에 필요한 최소 DASD 크기에 도달하려면 확장 주소 볼륨 (EAV)이 필요합니다. 사용 가능한 경우 HyperPAV를 사용하여 최적의 성능을 보장합니다.
- FCP 연결 디스크 스토리지
스토리지 / 메인 메모리
- OpenShift Container Platform 컨트롤 플레인 시스템용 16GB
- OpenShift Container Platform 컴퓨팅 머신 용 8GB
- 임시 OpenShift Container Platform 부트스트랩 머신 용 16GB
9.2.3.4. 권장되는 IBM Z 시스템 환경
하드웨어 요구 사항
- 각 클러스터에 대해 SMT2를 사용할 수 있는 6개의 IFL과 동일한 LPARS 3개.
-
LoadBalancer
서비스에 연결하는 두 개의 네트워크 연결과 클러스터 외부 트래픽에 대한 데이터를 제공합니다. - Hipersockets - 하나의 장치에 직접 연결되거나 z/VM 게스트에 투명하도록 하나의 z/VM VSWITCH와 브리징하여 노드에 연결됩니다. HiperSockets을 노드에 직접 연결하려면 RHEL 8 게스트를 통해 외부 네트워크의 게이트웨이를 설정하여 HiperSockets 네트워크에 연결해야 합니다.
운영 체제 요구 사항
- 고가용성의 z/VM 7.1 이상의 인스턴스 2개 또는 3개
z/VM 인스턴스에서 다음을 설정합니다.
- OpenShift Container Platform 컨트롤 플레인 시스템용 게스트 가상 머신 3개(Z/VM 인스턴스당 하나)
- z/VM 인스턴스에 분산된 OpenShift Container Platform 컴퓨팅 머신용 게스트 가상 머신 6개 이상
- 임시 OpenShift Container Platform 부트스트랩 머신 용 게스트 가상 머신 1 대
-
오버 커밋된 환경에서 통합 구성 요소를 사용하려면 CP 명령
SET SHARE
를 사용하여 컨트롤 플레인의 우선 순위를 높입니다. 인프라 노드가 있는 경우 동일한 작업을 수행합니다. IBM 문서의 SET SHARE를 참조하십시오.
IBM Z 네트워크 연결 요구 사항
IBM Z의 z/VM에 설치하려면 레이어 2 모드의 단일 z/VM 가상 NIC가 필요합니다. 또한 다음이 필요합니다.
- 직접 연결된 OSA 또는 RoCE 네트워크 어댑터
- z/VM VSwitch 설정. 권장 설정의 경우 OSA 링크 통합을 사용합니다.
z/VM 게스트 가상 머신 용 디스크 스토리지
- FICON 연결 디스크 스토리지 (DASD). 이는 z/VM 미니 디스크, 풀팩 미니 디스크 또는 전용 DASD가 포함될 수 있으며, 모두 기본 CDL로 포맷되어야 합니다. Red Hat Enterprise Linux CoreOS (RHCOS) 설치에 필요한 최소 DASD 크기에 도달하려면 확장 주소 볼륨 (EAV)이 필요합니다. 가능한 경우 HyperPAV 및 고성능 FICON (zHPF)을 사용하여 최적의 성능을 보장합니다.
- FCP 연결 디스크 스토리지
스토리지 / 메인 메모리
- OpenShift Container Platform 컨트롤 플레인 시스템용 16GB
- OpenShift Container Platform 컴퓨팅 머신 용 8GB
- 임시 OpenShift Container Platform 부트스트랩 머신 용 16GB
9.2.3.5. 인증서 서명 요청 관리
사용자가 프로비저닝하는 인프라를 사용하는 경우 자동 시스템 관리 기능으로 인해 클러스터의 액세스가 제한되므로 설치한 후 클러스터 인증서 서명 요청(CSR)을 승인하는 메커니즘을 제공해야 합니다. kube-controller-manager
는 kubelet 클라이언트 CSR만 승인합니다. machine-approver
는 올바른 시스템에서 발행한 요청인지 확인할 수 없기 때문에 kubelet 자격 증명을 사용하여 요청하는 서비스 인증서의 유효성을 보장할 수 없습니다. kubelet 서빙 인증서 요청의 유효성을 확인하고 요청을 승인하는 방법을 결정하여 구현해야 합니다.
추가 리소스
- IBM 문서에서 Bridging a HiperSockets LAN with a z/VM Virtual Switch를 참조하십시오.
- 성능 최적화를 위해 Scaling HyperPAV alias devices on Linux guests on z/VM을 참조하십시오.
- LPAR 가중치 관리 및 자격을 보려면 LPAR 성능의 주제를 참조하십시오.
- IBM Z 및 LinuxONE 환경에 대한 권장 호스트 사례
9.2.3.6. 사용자 프로비저닝 인프라에 대한 네트워킹 요구사항
모든 RHCOS(Red Hat Enterprise Linux CoreOS) 시스템이 부팅 중에 Ignition 구성 파일을 가져오려면 initramfs
에 네트워킹을 구성해야 합니다.
초기 부팅 과정에서 시스템에 Ignition 설정 파일을 다운로드하는 데 필요한 네트워크 연결을 구축하기 위해 HTTP 또는 HTTPS 서버가 있어야 합니다.
머신은 고정 IP 주소로 설정됩니다. DHCP 서버가 필요하지 않습니다. 시스템에 영구 IP 주소와 호스트 이름이 있는지 확인합니다.
Kubernetes API 서버가 클러스터 시스템의 노드 이름을 확인할 수 있어야 합니다. API 서버와 작업자 노드가 서로 다른 영역에 있는 경우, API 서버가 노드 이름을 확인할 수 있도록 기본 DNS 검색 영역을 설정할 수 있습니다. 노드 개체와 모든 DNS 요청에서 항상 정규화된 도메인 이름으로 호스트를 가리키는 것도 지원되는 방법입니다
9.2.3.6.1. 네트워크 연결 요구사항
OpenShift Container Platform 클러스터 구성 요소가 통신할 수 있도록 시스템 간 네트워크 연결을 구성해야 합니다. 각 시스템에서 클러스터에 있는 다른 모든 시스템의 호스트 이름을 확인할 수 있어야 합니다.
이 섹션에서는 필요한 포트에 대해 자세히 설명합니다.
연결된 OpenShift Container Platform 환경에서 모든 노드는 플랫폼 컨테이너의 이미지를 가져오고 Red Hat에 원격 측정 데이터를 제공하기 위해 인터넷에 액세스할 수 있어야 합니다.
프로토콜 | 포트 | 설명 |
---|---|---|
ICMP | 해당 없음 | 네트워크 연결성 테스트 |
TCP |
| 메트릭 |
|
| |
| Kubernetes에서 예약하는 기본 포트 | |
| openshift-sdn | |
UDP |
| VXLAN 및 Geneve |
| VXLAN 및 Geneve | |
|
| |
| IPsec IKE 패킷 | |
| IPsec NAT-T 패킷 | |
TCP/UDP |
| Kubernetes 노드 포트 |
ESP | 해당 없음 | IPsec Encapsulating Security Payload (ESP) |
프로토콜 | 포트 | 설명 |
---|---|---|
TCP |
| Kubernetes API |
프로토콜 | 포트 | 설명 |
---|---|---|
TCP |
| etcd 서버 및 피어 포트 |
사용자 프로비저닝 인프라에 대한 NTP 구성
OpenShift Container Platform 클러스터는 기본적으로 공용 NTP(Network Time Protocol) 서버를 사용하도록 구성되어 있습니다. 로컬 엔터프라이즈 NTP 서버를 사용하거나 클러스터가 연결이 끊긴 네트워크에 배포되는 경우 특정 시간 서버를 사용하도록 클러스터를 구성할 수 있습니다. 자세한 내용은 chrony 타임 서비스 설정 문서를 참조하십시오.
추가 리소스
9.2.3.7. 사용자 프로비저닝 DNS 요구사항
OpenShift Container Platform 배포의 경우 다음 구성 요소에 DNS 이름을 확인해야 합니다.
- Kubernetes API
- OpenShift Container Platform 애플리케이션 와일드카드
- 부트스트랩, 컨트롤 플레인 및 컴퓨팅 시스템
Kubernetes API, 부트스트랩 시스템, 컨트롤 플레인 시스템 및 컴퓨팅 시스템에 대한 역방향 DNS 확인이 필요합니다.
DNS A/AAAA 또는 CNAME 레코드는 이름 확인에 사용되며 PTR 레코드는 역방향 이름 확인에 사용됩니다. RHCOS (Red Hat Enterprise Linux CoreOS)는 DHCP에서 호스트 이름을 제공하지 않는 한 모든 노드의 호스트 이름을 설정할 때 역방향 레코드를 사용하기 때문에 역방향 레코드가 중요합니다. 또한 역방향 레코드는 OpenShift Container Platform이 작동하는 데 필요한 인증서 서명 요청 (CSR)을 생성하는 데 사용됩니다.
사용자가 프로비저닝한 OpenShift Container Platform 클러스터에 대해 다음 DNS 레코드가 필요하며 설치 전에 있어야 합니다. 각 레코드에서 <cluster_name>
은 클러스터 이름이고 <base_domain>
은 install-config.yaml
파일에서 지정하는 기반 도메인입니다. 전체 DNS 레코드는 <component>.<cluster_name>.<base_domain>
형식입니다.
구성 요소 | 레코드 | 설명 |
---|---|---|
Kubernetes API |
| API 로드 밸런서를 식별하는 DNS A/AAAA 또는 CNAME 레코드와 DNS PTR 레코드입니다. 이 레코드는 클러스터 외부의 클라이언트와 클러스터 내의 모든 노드에서 확인할 수 있어야 합니다. |
| 내부적으로 API 로드 밸런서를 식별하는 DNS A/AAAA 또는 CNAME 레코드와 DNS PTR 레코드입니다. 이 레코드는 클러스터 내의 모든 노드에서 확인할 수 있어야 합니다. 중요 API 서버는 Kubernetes에 기록된 호스트 이름으로 작업자 노드를 확인할 수 있어야 합니다. API 서버가 노드 이름을 확인할 수 없는 경우 프록시된 API 호출이 실패할 수 있으며 pod에서 로그를 검색할 수 없습니다. | |
라우트 |
| 애플리케이션 인그레스 로드 밸런서를 참조하는 와일드카드 DNS A/AAA 또는 CNAME 레코드입니다. 애플리케이션 인그레스 로드 밸런서는 Ingress 컨트롤러 Pod를 실행하는 머신을 대상으로 합니다. Ingress 컨트롤러 Pod는 기본적으로 컴퓨팅 머신에서 실행됩니다. 이 레코드는 클러스터 외부의 클라이언트와 클러스터 내의 모든 노드에서 확인할 수 있어야 합니다.
예를 들어 |
부트스트랩 시스템 |
| 부트스트랩 머신을 식별하는 DNS A/AAAA 또는 CNAME 레코드와 DNS PTR 레코드입니다. 이 레코드는 클러스터 내의 노드에서 확인할 수 있어야 합니다. |
컨트롤 플레인 머신 |
| 컨트롤 플레인 노드 (마스터 노드라고도 함)의 각 머신을 식별하는 DNS A/AAAA 또는 CNAME 레코드와 DNS PTR 레코드입니다. 이 레코드는 클러스터 내의 노드에서 확인할 수 있어야 합니다. |
컴퓨팅 머신 |
| 작업자 노드의 각 머신을 식별하는 DNS A/AAAA 또는 CNAME 레코드와 DNS PTR 레코드입니다. 이 레코드는 클러스터 내의 노드에서 확인할 수 있어야 합니다. |
OpenShift Container Platform 4.4 이상에서는 DNS 구성에서 etcd 호스트 및 SRV 레코드를 지정할 필요가 없습니다.
dig
명령을 사용하여 이름과 역방향 이름을 확인할 수 있습니다. 자세한 검증 단계는 사용자 프로비저닝 인프라의 DNS 확인 섹션을 참조하십시오.
9.2.3.7.1. 사용자 프로비저닝 클러스터의 DNS 구성 예
이 섹션에서는 사용자 프로비저닝 인프라에 OpenShift Container Platform을 배포하기 위한 DNS 요구 사항을 충족하는 A 및 PTR 레코드 구성 샘플을 제공합니다. 샘플은 하나의 DNS 솔루션을 선택하기 위한 조언을 제공하기 위한 것이 아닙니다.
이 예제에서 클러스터 이름은 ocp4
이고 기본 도메인은 example.com
입니다.
사용자 프로비저닝 클러스터의 DNS A 레코드 구성 예
다음 BIND 영역 파일의 예제에서는 사용자가 프로비저닝한 클러스터의 이름 확인을 위한 샘플 A 레코드를 보여줍니다.
예 9.1. 샘플 DNS 영역 데이터베이스
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. IN MX 10 smtp.example.com. ; ; ns1.example.com. IN A 192.168.1.5 smtp.example.com. IN A 192.168.1.5 ; helper.example.com. IN A 192.168.1.5 helper.ocp4.example.com. IN A 192.168.1.5 ; api.ocp4.example.com. IN A 192.168.1.5 1 api-int.ocp4.example.com. IN A 192.168.1.5 2 ; *.apps.ocp4.example.com. IN A 192.168.1.5 3 ; bootstrap.ocp4.example.com. IN A 192.168.1.96 4 ; master0.ocp4.example.com. IN A 192.168.1.97 5 master1.ocp4.example.com. IN A 192.168.1.98 6 master2.ocp4.example.com. IN A 192.168.1.99 7 ; worker0.ocp4.example.com. IN A 192.168.1.11 8 worker1.ocp4.example.com. IN A 192.168.1.7 9 ; ;EOF
- 1
- Kubernetes API의 이름 확인을 제공합니다. 레코드는 API 로드 밸런서의 IP 주소를 나타냅니다.
- 2
- Kubernetes API의 이름 확인을 제공합니다. 레코드는 API 로드 밸런서의 IP 주소를 참조하며 내부 클러스터 통신에 사용됩니다.
- 3
- 와일드카드 경로의 이름 확인을 제공합니다. 레코드는 애플리케이션 인그레스 로드 밸런서의 IP 주소를 나타냅니다. 애플리케이션 인그레스 로드 밸런서는 Ingress 컨트롤러 Pod를 실행하는 머신을 대상으로 합니다. Ingress 컨트롤러 Pod는 기본적으로 컴퓨팅 머신에서 실행됩니다.참고
이 예제에서는 Kubernetes API 및 애플리케이션 인그레스 트래픽에 동일한 로드 밸런서를 사용합니다. 프로덕션 시나리오에서는 각각에 대해 개별적으로 로드 밸런서 인프라를 확장할 수 있도록 API 및 애플리케이션 인그레스 로드 밸런서를 별도로 배포할 수 있습니다.
- 4
- 부트스트랩 시스템의 이름 확인을 제공합니다.
- 5 6 7
- 컨트롤 플레인 시스템의 이름 확인을 제공합니다.
- 8 9
- 컴퓨팅 시스템의 이름 확인을 제공합니다.
사용자 프로비저닝 클러스터의 DNS PTR 레코드 구성 예
다음 예제 BIND 영역 파일은 사용자 프로비저닝 클러스터의 역방향 이름 확인을 위한 샘플 PTR 레코드를 보여줍니다.
예 9.2. 역방향 레코드의 샘플 DNS 영역 데이터베이스
$TTL 1W @ IN SOA ns1.example.com. root ( 2019070700 ; serial 3H ; refresh (3 hours) 30M ; retry (30 minutes) 2W ; expiry (2 weeks) 1W ) ; minimum (1 week) IN NS ns1.example.com. ; 5.1.168.192.in-addr.arpa. IN PTR api.ocp4.example.com. 1 5.1.168.192.in-addr.arpa. IN PTR api-int.ocp4.example.com. 2 ; 96.1.168.192.in-addr.arpa. IN PTR bootstrap.ocp4.example.com. 3 ; 97.1.168.192.in-addr.arpa. IN PTR master0.ocp4.example.com. 4 98.1.168.192.in-addr.arpa. IN PTR master1.ocp4.example.com. 5 99.1.168.192.in-addr.arpa. IN PTR master2.ocp4.example.com. 6 ; 11.1.168.192.in-addr.arpa. IN PTR worker0.ocp4.example.com. 7 7.1.168.192.in-addr.arpa. IN PTR worker1.ocp4.example.com. 8 ; ;EOF
OpenShift Container Platform 애플리케이션 와일드카드에는 PTR 레코드가 필요하지 않습니다.
9.2.3.8. 사용자 프로비저닝 인프라에 대한 로드 밸런싱 요구사항
OpenShift Container Platform을 설치하기 전에 API 및 애플리케이션 인그레스 로드 밸런싱 인프라를 프로비저닝해야 합니다. 프로덕션 시나리오에서는 각각에 대해 개별적으로 로드 밸런서 인프라를 확장할 수 있도록 API 및 애플리케이션 인그레스 로드 밸런서를 별도로 배포할 수 있습니다.
RHEL(Red Hat Enterprise Linux) 인스턴스를 사용하여 API 및 애플리케이션 인그레스 로드 밸런서를 배포하려면 RHEL 서브스크립션을 별도로 구매해야 합니다.
로드 밸런서 인프라는 다음 요구 사항을 충족해야 합니다.
API 로드 밸런서: 플랫폼과 상호 작용하고 구성하기 위한 사용자(인간 및 시스템) 모두에 공통 엔드포인트를 제공합니다. 다음 조건을 설정합니다.
- Layer 4 로드 밸런싱 전용입니다. 이를 Raw TCP, SSL Passthrough 또는 SSL Bridge 모드라고 합니다. SSL Bridge 모드를 사용하는 경우, API 경로에 대해 SNI(Server Name Indication, 서버 이름 표시)를 활성화해야 합니다.
- 스테이트리스 로드 밸런싱 알고리즘입니다. 옵션은 로드 밸런서 구현에 따라 달라집니다.
참고API 로드 밸런서가 제대로 작동하기 위해 세션 지속성이 필요하지 않습니다.
로드 밸런서의 전면과 후면 모두에서 다음 포트를 구성하십시오.
표 9.7. API 로드 밸런서 포트 백엔드 시스템(풀 멤버) 내부 외부 설명 6443
부트스트랩 및 컨트롤 플레인. 부트스트랩 시스템이 클러스터 컨트롤 플레인을 초기화한 후 로드 밸런서에서 부트스트랩 시스템을 제거합니다. API 서버 상태 검사 프로브에 대한
/readyz
끝점을 구성해야 합니다.X
X
Kubernetes API 서버
22623
부트스트랩 및 컨트롤 플레인. 부트스트랩 시스템이 클러스터 컨트롤 플레인을 초기화한 후 로드 밸런서에서 부트스트랩 시스템을 제거합니다.
X
시스템 구성 서버
참고API 서버가
/readyz
엔드포인트를 해제하는 시점부터 풀에서 API 서버 인스턴스가 제거되는 시점까지 시간이 30초를 넘지 않도록 로드 밸런서를 구성해야 합니다./readyz
가 오류를 반환하거나 정상 상태가 된 후 정해진 시간 안에 끝점이 제거 또는 추가되어야 합니다. 5초 또는 10초의 프로빙 주기(두 번의 성공적인 요청은 정상 상태, 세 번의 요청은 비정상 상태)는 충분한 테스트를 거친 값입니다.애플리케이션 인그레스 로드 밸런서: 클러스터 외부에서 애플리케이션 트래픽 흐름의 진입 지점을 제공합니다. 다음 조건을 설정합니다.
- Layer 4 로드 밸런싱 전용입니다. 이를 Raw TCP, SSL Passthrough 또는 SSL Bridge 모드라고 합니다. SSL Bridge 모드를 사용하는 경우 인그레스 경로에 대해 SNI(Server Name Indication, 서버 이름 표시)를 활성화해야 합니다.
- 사용 가능한 옵션과 플랫폼에서 호스팅되는 애플리케이션 유형에 따라 연결 기반 또는 세션 기반 지속성이 권장됩니다.
작은 정보애플리케이션 인그레스 로드 밸런서에서 클라이언트의 실제 IP 주소를 확인할 수 있는 경우 소스 IP 기반 세션 지속성을 활성화하면 엔드 투 엔드 TLS 암호화를 사용하는 애플리케이션의 성능을 향상시킬 수 있습니다.
로드 밸런서의 전면과 후면 모두에서 다음 포트를 구성하십시오.
표 9.8. 애플리케이션 인그레스 로드 밸런서 포트 백엔드 시스템(풀 멤버) 내부 외부 설명 443
기본적으로 인그레스 컨트롤러 pod, 컴퓨팅 또는 작업자를 실행하는 시스템입니다.
X
X
HTTPS 트래픽
80
기본적으로 인그레스 컨트롤러 pod, 컴퓨팅 또는 작업자를 실행하는 시스템입니다.
X
X
HTTP 트래픽
1936
기본적으로 Ingress 컨트롤러 Pod를 실행하는 작업자 노드입니다. 수신 상태 점검 프로브에 대해
/healthz/ready
끝점을 구성해야 합니다.X
X
HTTP 트래픽
컴퓨팅 노드가 0인 3-노드 클러스터를 배포하는 경우 Ingress 컨트롤러 Pod는 컨트롤 플레인 노드에서 실행됩니다. 3-노드 클러스터 배포에서 HTTP 및 HTTPS 트래픽을 컨트롤 플레인 노드로 라우팅하도록 애플리케이션 인그레스 로드 밸런서를 구성해야 합니다.
인그레스 라우터에 대한 작업 구성이 OpenShift Container Platform 클러스터에 필요합니다. 컨트롤 플레인 초기화 후 인그레스 라우터를 설정해야 합니다.
9.2.3.8.1. 사용자 프로비저닝 클러스터의 로드 밸런서 구성 예
이 섹션에서는 사용자 프로비저닝 클러스터의 로드 밸런싱 요구 사항을 충족하는 API 및 애플리케이션 수신 로드 밸런서 구성 예를 제공합니다. 샘플은 HAProxy 로드 밸런서에 대한 /etc/haproxy/haproxy.cfg
구성입니다. 이 예제에서는 하나의 로드 밸런싱 솔루션을 선택하기 위한 조언을 제공하는 것을 목적으로 하지 않습니다.
이 예제에서는 Kubernetes API 및 애플리케이션 인그레스 트래픽에 동일한 로드 밸런서를 사용합니다. 프로덕션 시나리오에서는 각각에 대해 개별적으로 로드 밸런서 인프라를 확장할 수 있도록 API 및 애플리케이션 인그레스 로드 밸런서를 별도로 배포할 수 있습니다.
예 9.3. API 및 애플리케이션 인그레스 로드 밸런서 구성 샘플
global log 127.0.0.1 local2 pidfile /var/run/haproxy.pid maxconn 4000 daemon defaults mode http log global option dontlognull option http-server-close option redispatch retries 3 timeout http-request 10s timeout queue 1m timeout connect 10s timeout client 1m timeout server 1m timeout http-keep-alive 10s timeout check 10s maxconn 3000 frontend stats bind *:1936 mode http log global maxconn 10 stats enable stats hide-version stats refresh 30s stats show-node stats show-desc Stats for ocp4 cluster 1 stats auth admin:ocp4 stats uri /stats listen api-server-6443 2 bind *:6443 mode tcp server bootstrap bootstrap.ocp4.example.com:6443 check inter 1s backup 3 server master0 master0.ocp4.example.com:6443 check inter 1s server master1 master1.ocp4.example.com:6443 check inter 1s server master2 master2.ocp4.example.com:6443 check inter 1s listen machine-config-server-22623 4 bind *:22623 mode tcp server bootstrap bootstrap.ocp4.example.com:22623 check inter 1s backup 5 server master0 master0.ocp4.example.com:22623 check inter 1s server master1 master1.ocp4.example.com:22623 check inter 1s server master2 master2.ocp4.example.com:22623 check inter 1s listen ingress-router-443 6 bind *:443 mode tcp balance source server worker0 worker0.ocp4.example.com:443 check inter 1s server worker1 worker1.ocp4.example.com:443 check inter 1s listen ingress-router-80 7 bind *:80 mode tcp balance source server worker0 worker0.ocp4.example.com:80 check inter 1s server worker1 worker1.ocp4.example.com:80 check inter 1s
- 1
- 이 예에서 클러스터 이름은
ocp4
입니다. - 2
- 포트
6443
은 Kubernetes API 트래픽을 처리하고 컨트롤 플레인 시스템을 가리킵니다. - 3 5
- 부트스트랩 항목은 OpenShift Container Platform 클러스터 설치 전에 있어야 하며 부트스트랩 프로세스가 완료된 후 제거해야 합니다.
- 4
- 포트
22623
은 머신 구성 서버 트래픽을 처리하고 컨트롤 플레인 시스템을 가리킵니다. - 6
- 포트
443
은 HTTPS 트래픽을 처리하고 Ingress 컨트롤러 Pod를 실행하는 시스템을 가리킵니다. Ingress 컨트롤러 Pod는 기본적으로 컴퓨팅 머신에서 실행됩니다. - 7
- 포트
80
은 HTTP 트래픽을 처리하고 Ingress 컨트롤러 Pod를 실행하는 머신을 가리킵니다. Ingress 컨트롤러 Pod는 기본적으로 컴퓨팅 머신에서 실행됩니다.참고컴퓨팅 노드가 0인 3-노드 클러스터를 배포하는 경우 Ingress 컨트롤러 Pod는 컨트롤 플레인 노드에서 실행됩니다. 3-노드 클러스터 배포에서 HTTP 및 HTTPS 트래픽을 컨트롤 플레인 노드로 라우팅하도록 애플리케이션 인그레스 로드 밸런서를 구성해야 합니다.
HAProxy를 로드 밸런서로 사용하는 경우 HAProxy 노드에서 netstat -nltupe
를 실행하여 haproxy
프로세스가 포트 6443
, 22623
, 443
및 80
에서 수신 대기 중인지 확인할 수 있습니다.
HAProxy를 로드 밸런서로 사용하고 SELinux가 enforcing
으로 설정된 경우 HAProxy 서비스가 setsebool -P haproxy_connect_any=1
을 실행하여 구성된 TCP 포트에 바인딩할 수 있는지 확인해야 합니다.
9.2.4. 사용자 프로비저닝 인프라 준비
사용자 프로비저닝 인프라에 OpenShift Container Platform을 설치하기 전에 기본 인프라를 준비해야 합니다.
이 섹션에서는 OpenShift Container Platform 설치를 준비하기 위해 클러스터 인프라를 설정하는 데 필요한 높은 수준의 단계에 대해 자세히 설명합니다. 여기에는 클러스터 노드에 대한 IP 네트워킹 및 네트워크 연결 구성, Ignition 파일의 웹 서버 준비, 방화벽을 통해 필요한 포트 활성화, 필수 DNS 및 로드 밸런싱 인프라 설정 등이 포함됩니다.
준비 후 클러스터 인프라는 사용자 프로비저닝 인프라가 있는 클러스터의 요구 사항 섹션에 설명된 요구 사항을 충족해야 합니다.
사전 요구 사항
- OpenShift Container Platform 4.x 테스트된 통합 페이지를 검토했습니다.
- 사용자 프로비저닝 인프라가 있는 클러스터의 요구 사항 섹션에 자세히 설명된 인프라 요구 사항을 검토했습니다.
프로세스
- 고정 IP 주소를 설정합니다.
- 클러스터 노드에 Ignition 파일을 제공하기 위해 HTTP 또는 HTTPS 서버를 설정합니다.
- 네트워크 인프라가 클러스터 구성 요소 간 필수 네트워크 연결을 제공하는지 확인합니다. 요구 사항에 대한 자세한 내용은 사용자 프로비저닝 인프라 섹션의 네트워킹 요구 사항 섹션을 참조하십시오.
- OpenShift Container Platform 클러스터 구성 요소가 통신하는 데 필요한 포트를 활성화하도록 방화벽을 구성합니다. 필요한 포트에 대한 자세한 내용은 사용자 프로비저닝 인프라 섹션의 네트워킹 요구 사항 섹션을 참조하십시오.
클러스터에 필요한 DNS 인프라를 설정합니다.
- Kubernetes API, 애플리케이션 와일드카드, 부트스트랩 시스템, 컨트롤 플레인 시스템 및 컴퓨팅 시스템의 DNS 이름 확인을 구성합니다.
Kubernetes API, 부트스트랩 시스템, 컨트롤 플레인 시스템 및 컴퓨팅 시스템에 대한 역방향 DNS 확인을 구성합니다.
OpenShift Container Platform DNS 요구 사항에 대한 자세한 내용은 사용자 프로비저닝 DNS 요구 사항 섹션을 참조하십시오.
DNS 구성을 확인합니다.
- 설치 노드에서 Kubernetes API의 레코드 이름, 와일드카드 경로 및 클러스터 노드에 대해 DNS 조회를 실행합니다. 응답의 IP 주소가 올바른 구성 요소에 해당하는지 확인합니다.
설치 노드에서 로드 밸런서 및 클러스터 노드의 IP 주소에 대해 역방향 DNS 조회를 실행합니다. 응답의 레코드 이름이 올바른 구성 요소에 해당하는지 확인합니다.
자세한 DNS 검증 단계는 사용자 프로비저닝 인프라에 대한 DNS 확인 섹션을 참조하십시오.
- 필요한 API 및 애플리케이션 수신 로드 밸런싱 인프라를 프로비저닝합니다. 요구 사항에 대한 자세한 내용은 사용자 프로비저닝 인프라에 대한 로드 밸런싱 요구 사항 섹션을 참조하십시오.
일부 로드 밸런싱 솔루션에는 로드 밸런싱을 초기화하기 전에 클러스터 노드의 DNS 이름을 확인해야 합니다.
9.2.5. 사용자 프로비저닝 인프라에 대한 DNS 확인 검증
사용자 프로비저닝 인프라에 OpenShift Container Platform을 설치하기 전에 DNS 구성을 확인할 수 있습니다.
클러스터를 설치하기 전에 이 섹션에 설명된 검증 단계를 성공해야 합니다.
사전 요구 사항
- 사용자 프로비저닝 인프라에 필요한 DNS 레코드를 구성했습니다.
프로세스
설치 노드에서 Kubernetes API의 레코드 이름, 와일드카드 경로 및 클러스터 노드에 대해 DNS 조회를 실행합니다. 응답에 포함된 IP 주소가 올바른 구성 요소에 해당하는지 확인합니다.
Kubernetes API 레코드 이름을 조회합니다. 결과가 API 로드 밸런서의 IP 주소를 가리키는지 확인합니다.
$ dig +noall +answer @<nameserver_ip> api.<cluster_name>.<base_domain> 1
- 1
<nameserver_ip>
를 네임서버의 IP 주소로,<cluster_name>
을 클러스터 이름으로,<base_domain>
을 기본 도메인 이름으로 바꿉니다.
출력 예
api.ocp4.example.com. 0 IN A 192.168.1.5
Kubernetes 내부 API 레코드 이름을 조회합니다. 결과가 API 로드 밸런서의 IP 주소를 가리키는지 확인합니다.
$ dig +noall +answer @<nameserver_ip> api-int.<cluster_name>.<base_domain>
출력 예
api-int.ocp4.example.com. 0 IN A 192.168.1.5
예제
*.apps.<cluster_name>.<base_domain>
을 테스트합니다. DNS 와일드카드를 조회합니다. 모든 애플리케이션 와일드카드 조회는 애플리케이션 인그레스 로드 밸런서의 IP 주소로 확인되어야 합니다.$ dig +noall +answer @<nameserver_ip> random.apps.<cluster_name>.<base_domain>
출력 예
random.apps.ocp4.example.com. 0 IN A 192.168.1.5
참고예제 출력에서는 Kubernetes API 및 애플리케이션 인그레스 트래픽에 동일한 로드 밸런서를 사용합니다. 프로덕션 시나리오에서는 각각에 대해 개별적으로 로드 밸런서 인프라를 확장할 수 있도록 API 및 애플리케이션 인그레스 로드 밸런서를 별도로 배포할 수 있습니다.
random
항목을 다른 와일드카드 값으로 교체할 수 있습니다. 예를 들어 OpenShift Container Platform 콘솔의 경로를 쿼리할 수 있습니다.$ dig +noall +answer @<nameserver_ip> console-openshift-console.apps.<cluster_name>.<base_domain>
출력 예
console-openshift-console.apps.ocp4.example.com. 0 IN A 192.168.1.5
부트스트랩 DNS 레코드 이름에 대해 조회를 실행합니다. 결과가 부트스트랩 노드의 IP 주소를 가리키는지 확인합니다.
$ dig +noall +answer @<nameserver_ip> bootstrap.<cluster_name>.<base_domain>
출력 예
bootstrap.ocp4.example.com. 0 IN A 192.168.1.96
- 이 방법을 사용하여 컨트롤 플레인 및 컴퓨팅 노드의 DNS 레코드 이름에 대해 조회를 수행합니다. 결과가 각 노드의 IP 주소에 해당하는지 확인합니다.
설치 노드에서 로드 밸런서 및 클러스터 노드의 IP 주소에 대해 역방향 DNS 조회를 실행합니다. 응답에 포함된 레코드 이름이 올바른 구성 요소에 해당하는지 확인합니다.
API 로드 밸런서의 IP 주소에 대해 역방향 조회를 수행합니다. 응답에 Kubernetes API 및 Kubernetes 내부 API의 레코드 이름이 포함되어 있는지 확인합니다.
$ dig +noall +answer @<nameserver_ip> -x 192.168.1.5
출력 예
5.1.168.192.in-addr.arpa. 0 IN PTR api-int.ocp4.example.com. 1 5.1.168.192.in-addr.arpa. 0 IN PTR api.ocp4.example.com. 2
참고OpenShift Container Platform 애플리케이션 와일드카드에는 PTR 레코드가 필요하지 않습니다. 애플리케이션 인그레스 로드 밸런서의 IP 주소에 대한 역방향 DNS 확인에는 유효성 검사 단계가 필요하지 않습니다.
부트스트랩 노드의 IP 주소에 대해 역방향 조회를 수행합니다. 결과가 부트스트랩 노드의 DNS 레코드 이름을 가리키는지 확인합니다.
$ dig +noall +answer @<nameserver_ip> -x 192.168.1.96
출력 예
96.1.168.192.in-addr.arpa. 0 IN PTR bootstrap.ocp4.example.com.
- 이 방법을 사용하여 컨트롤 플레인 및 컴퓨팅 노드의 IP 주소에 대해 역방향 조회를 수행합니다. 결과가 각 노드의 DNS 레코드 이름과 일치하는지 확인합니다.
9.2.6. 클러스터 노드 SSH 액세스를 위한 키 쌍 생성
OpenShift Container Platform을 설치하는 동안 SSH 공개 키를 설치 프로그램에 지정할 수 있습니다. 키는 Ignition 구성 파일을 통해 RHCOS(Red Hat Enterprise Linux CoreOS) 노드에 전달되며 노드에 대한 SSH 액세스를 인증하는 데 사용됩니다. 키는 각 노드에서 core
사용자의 ~/.ssh/authorized_keys
목록에 추가되어 암호 없는 인증을 활성화합니다.
키가 노드에 전달되면 키 쌍을 사용하여 사용자 core
로 RHCOS 노드에 SSH로 SSH 연결을 수행할 수 있습니다 . SSH를 통해 노드에 액세스하려면 로컬 사용자의 SSH에서 개인 키 ID를 관리해야 합니다.
설치 디버깅 또는 재해 복구를 수행하기 위해 클러스터 노드에 SSH를 실행하려면 설치 프로세스 중에 SSH 공용 키를 지정해야 합니다. ./openshift-install gather
명령에도 SSH 공개 키가 클러스터 노드에 있어야 합니다.
재해 복구 및 디버깅이 필요한 프로덕션 환경에서는이 단계를 생략하지 마십시오.
프로세스
로컬 시스템에 클러스터 노드의 인증에 사용할 기존 SSH 키 쌍이 없는 경우 새로 생성합니다. 예를 들어 Linux 운영 체제를 사용하는 컴퓨터에서 다음 명령을 실행합니다.
$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
- 1
- 새 SSH 키의 경로 및 파일 이름(예:
~/.ssh/id_ed25519
)을 지정합니다. 기존 키 쌍이 있는 경우 공개 키가'~/.ssh
디렉터리에 있는지 확인하십시오.
참고x86_64
아키텍처에 FIPS 검증 / 진행중인 모듈 (Modules in Process) 암호화 라이브러리를 사용하는 OpenShift Container Platform 클러스터를 설치하려면ed25519
알고리즘을 사용하는 키를 생성하지 마십시오. 대신rsa
또는ecdsa
알고리즘을 사용하는 키를 생성합니다.공개 SSH 키를 확인합니다.
$ cat <path>/<file_name>.pub
예를 들어 다음을 실행하여
~/.ssh/id_ed25519.pub
공개 키를 확인합니다.$ cat ~/.ssh/id_ed25519.pub
아직 추가되지 않은 경우 로컬 사용자의 SSH 에이전트에 SSH 개인 키 ID를 추가합니다. 키의 SSH 에이전트 관리는 클러스터 노드에 암호 없는 SSH 인증을 수행하거나
./openshift-install gather
명령을 사용하려는 경우 필요합니다.참고일부 배포에서는
~/.ssh/id_rsa
및~/.ssh/id_dsa
와 같은 기본 SSH 개인 키 ID가 자동으로 관리됩니다.ssh-agent
프로세스가 로컬 사용자에 대해 실행되지 않은 경우 백그라운드 작업으로 시작합니다.$ eval "$(ssh-agent -s)"
출력 예
Agent pid 31874
참고클러스터가 FIPS 모드인 경우 FIPS 호환 알고리즘만 사용하여 SSH 키를 생성합니다. 키는 RSA 또는 ECDSA여야 합니다.
ssh-agent
에 SSH 개인 키를 추가합니다.$ ssh-add <path>/<file_name> 1
- 1
- SSH 개인 키의 경로 및 파일 이름을 지정합니다(예:
~/.ssh/id_ed25519
).
출력 예
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
다음 단계
- OpenShift Container Platform을 설치할 때 SSH 공개 키를 설치 프로그램에 지정합니다.
9.2.7. 설치 프로그램 받기
OpenShift Container Platform을 설치하기 전에 프로비저닝 머신에 설치 파일을 다운로드하십시오.
사전 요구 사항
- Linux를 실행하는 머신(예: 로컬 디스크 공간이 500MB인 Red Hat Enterprise Linux 8)이 있습니다.
프로세스
- OpenShift Cluster Manager 사이트의 인프라 공급자 페이지에 액세스합니다. Red Hat 계정이 있으면 사용자 자격 증명으로 로그인합니다. 계정이 없으면 계정을 만드십시오.
- 인프라 공급자를 선택합니다.
설치 유형 페이지로 이동한 다음, 운영 체제에 맞는 설치 프로그램을 다운로드하여 설치 구성 파일을 저장할 디렉터리에 파일을 저장합니다.
중요설치 프로그램은 클러스터를 설치하는 데 사용하는 컴퓨터에 여러 파일을 만듭니다. 클러스터 설치를 마친 후 설치 프로그램과 설치 프로그램으로 생성되는 파일을 보관해야 합니다. 클러스터를 삭제하려면 두 파일이 모두 필요합니다.
중요클러스터 설치에 실패하거나 설치 프로그램으로 만든 파일을 삭제해도 클러스터는 제거되지 않습니다. 클러스터를 제거하려면 해당 클라우드 공급자에 적용되는 OpenShift Container Platform 설치 제거 절차를 완료해야 합니다.
설치 프로그램 파일의 압축을 풉니다. 예를 들어 Linux 운영 체제를 사용하는 컴퓨터에서 다음 명령을 실행합니다.
$ tar xvf openshift-install-linux.tar.gz
- Red Hat OpenShift Cluster Manager에서 설치 풀 시크릿 을 다운로드합니다. 이 풀 시크릿을 사용하면 OpenShift Container Platform 구성 요소에 대한 컨테이너 이미지를 제공하는 Quay.io를 포함하여 인증 기관에서 제공하는 서비스로 인증할 수 있습니다.
9.2.8. 바이너리를 다운로드하여 OpenShift CLI 설치
명령줄 인터페이스를 사용하여 OpenShift Container Platform과 상호 작용하기 위해 OpenShift CLI(oc
)를 설치할 수 있습니다. Linux, Windows 또는 macOS에 oc
를 설치할 수 있습니다.
이전 버전의 oc
를 설치한 경우, OpenShift Container Platform 4.8의 모든 명령을 완료하는 데 해당 버전을 사용할 수 없습니다. 새 버전의 oc
를 다운로드하여 설치합니다.
Linux에서 OpenShift CLI 설치
다음 절차를 사용하여 Linux에서 OpenShift CLI(oc
) 바이너리를 설치할 수 있습니다.
프로세스
- Red Hat 고객 포털에서 OpenShift Container Platform 다운로드 페이지로 이동합니다.
- 버전 드롭다운 메뉴에서 적절한 버전을 선택합니다.
- OpenShift v4.8 Linux Client 항목 옆에 있는 지금 다운로드를 클릭하고 파일을 저장합니다.
아카이브의 압축을 풉니다.
$ tar xvzf <file>
oc
바이너리를PATH
에 있는 디렉터리에 배치합니다.PATH
를 확인하려면 다음 명령을 실행합니다.$ echo $PATH
OpenShift CLI를 설치한 후 oc
명령을 사용할 수 있습니다.
$ oc <command>
Windows에서 OpenSfhit CLI 설치
다음 절차에 따라 Windows에 OpenShift CLI(oc
) 바이너리를 설치할 수 있습니다.
프로세스
- Red Hat 고객 포털에서 OpenShift Container Platform 다운로드 페이지로 이동합니다.
- 버전 드롭다운 메뉴에서 적절한 버전을 선택합니다.
- OpenShift v4.8 Windows Client 항목 옆에 있는 지금 다운로드를 클릭하고 파일을 저장합니다.
- ZIP 프로그램으로 아카이브의 압축을 풉니다.
oc
바이너리를PATH
에 있는 디렉터리로 이동합니다.PATH
를 확인하려면 명령 프롬프트를 열고 다음 명령을 실행합니다.C:\> path
OpenShift CLI를 설치한 후 oc
명령을 사용할 수 있습니다.
C:\> oc <command>
macOS에 OpenShift CLI 설치
다음 절차에 따라 macOS에서 OpenShift CLI(oc
) 바이너리를 설치할 수 있습니다.
프로세스
- Red Hat 고객 포털에서 OpenShift Container Platform 다운로드 페이지로 이동합니다.
- 버전 드롭다운 메뉴에서 적절한 버전을 선택합니다.
- OpenShift v4.8 MacOSX Client 항목 옆에 있는 지금 다운로드를 클릭하고 파일을 저장합니다.
- 아카이브의 압축을 해제하고 압축을 풉니다.
oc
바이너리 PATH의 디렉터리로 이동합니다.PATH
를 확인하려면 터미널을 열고 다음 명령을 실행합니다.$ echo $PATH
OpenShift CLI를 설치한 후 oc
명령을 사용할 수 있습니다.
$ oc <command>
9.2.9. 수동으로 설치 구성 파일 만들기
OpenShift Container Platform을 사용자가 프로비저닝한 설치의 경우 설치 구성 파일을 수동으로 생성합니다.
사전 요구 사항
- 로컬 시스템에 설치 프로그램에 제공할 SSH 공개 키가 있습니다. 키는 디버깅 및 재해 복구를 위해 클러스터 노드에 대한 SSH 인증에 사용됩니다.
- OpenShift Container Platform 설치 프로그램과 클러스터의 풀 시크릿이 있습니다.
프로세스
필요한 설치 자산을 저장할 설치 디렉터리를 만듭니다.
$ mkdir <installation_directory>
중요디렉터리를 만들어야 합니다. 부트스트랩 X.509 인증서와 같은 일부 설치 자산은 단기간에 만료되므로 설치 디렉터리를 재사용해서는 안 됩니다. 다른 클러스터 설치의 개별 파일을 재사용하려면 해당 파일을 사용자 디렉터리에 복사하면 됩니다. 그러나 설치 자산의 파일 이름은 릴리스간에 변경될 수 있습니다. 따라서 이전 OpenShift Container Platform 버전에서 설치 파일을 복사할 때는 주의하십시오.
샘플
install-config.yaml
파일 템플릿을 사용자 지정하여<installation_directory>
에 저장합니다.참고이 설정 파일의 이름을
install-config.yaml
로 지정해야 합니다.참고일부 플랫폼 유형의 경우 대체로
./openshift-install create install-config --dir <installation_directory>
를 실행하여install-config.yaml
파일을 생성할 수 있습니다. 프롬프트에서 클러스터 구성에 대한 세부 정보를 제공할 수 있습니다.여러 클러스터를 설치하는 데 사용할 수 있도록
install-config.yaml
파일을 백업합니다.중요install-config.yaml
파일은 설치 과정의 다음 단계에서 사용됩니다. 이 시점에서 이를 백업해야 합니다.
9.2.9.1. 설치 구성 매개변수
OpenShift Container Platform 클러스터를 배포하기 전에 환경에 대한 세부 정보를 설명하는 사용자 지정 install-config.yaml
설치 구성 파일을 제공합니다.
설치한 후에는 install-config.yaml
파일에서 이러한 매개변수를 수정할 수 없습니다.
openshift-install
명령은 매개변수의 필드 이름을 검증하지 않습니다. 잘못된 이름이 지정되면 관련 파일 또는 오브젝트가 생성되지 않으며 오류가 보고되지 않습니다. 지정된 매개변수의 필드 이름이 올바른지 확인합니다.
9.2.9.1.1. 필수 구성 매개변수
필수 설치 구성 매개변수는 다음 표에 설명되어 있습니다.
매개변수 | 설명 | 값 |
---|---|---|
|
| 문자열 |
|
클라우드 공급자의 기본 도메인입니다. 기본 도메인은 OpenShift Container Platform 클러스터 구성 요소에 대한 경로를 생성하는 데 사용됩니다. 클러스터의 전체 DNS 이름은 |
정규화된 도메인 또는 하위 도메인 이름(예: |
|
Kubernetes 리소스 | 개체 |
|
클러스터의 이름입니다. 클러스터의 DNS 레코드는 |
소문자, 하이픈( |
|
설치를 수행할 특정 플랫폼에 대한 구성: | 개체 |
| Red Hat OpenShift Cluster Manager에서 풀 시크릿 을 가져와서 Quay.io와 같은 서비스에서 OpenShift Container Platform 구성 요소의 컨테이너 이미지 다운로드를 인증합니다. |
{ "auths":{ "cloud.openshift.com":{ "auth":"b3Blb=", "email":"you@example.com" }, "quay.io":{ "auth":"b3Blb=", "email":"you@example.com" } } } |
9.2.9.1.2. 네트워크 구성 매개변수
기존 네트워크 인프라의 요구 사항에 따라 설치 구성을 사용자 지정할 수 있습니다. 예를 들어 클러스터 네트워크의 IP 주소 블록을 확장하거나 기본값과 다른 IP 주소 블록을 제공할 수 있습니다.
IPv4 주소만 지원됩니다.
매개변수 | 설명 | 값 |
---|---|---|
| 클러스터의 네트워크의 구성입니다. | 개체 참고
설치한 후에는 |
| 설치할 클러스터 네트워크 공급자 CNI(Container Network Interface) 플러그인입니다. |
|
| Pod의 IP 주소 블록입니다.
기본값은 여러 IP 주소 블록을 지정하는 경우 블록이 겹치지 않아야 합니다. | 개체의 배열입니다. 예를 들면 다음과 같습니다. networking: clusterNetwork: - cidr: 10.128.0.0/14 hostPrefix: 23 |
|
IPv4 네트워크입니다. |
CIDR(Classless Inter-Domain Routing) 표기법의 IP 주소 블록입니다. IPv4 블록의 접두사 길이는 |
|
개별 노드 각각에 할당할 서브넷 접두사 길이입니다. 예를 들어 | 서브넷 접두사입니다.
기본값은 |
|
서비스의 IP 주소 블록입니다. 기본값은 OpenShift SDN 및 OVN-Kubernetes 네트워크 공급자는 서비스 네트워크에 대한 단일 IP 주소 블록만 지원합니다. | CIDR 형식의 IP 주소 블록이 있는 어레이입니다. 예를 들면 다음과 같습니다. networking: serviceNetwork: - 172.30.0.0/16 |
| 시스템의 IP 주소 블록입니다. 여러 IP 주소 블록을 지정하는 경우 블록이 겹치지 않아야 합니다.
여러 IP 커널 인수를 지정하는 경우 | 개체의 배열입니다. 예를 들면 다음과 같습니다. networking: machineNetwork: - cidr: 10.0.0.0/16 |
|
| CIDR 표기법의 IP 네트워크 블록입니다.
예: 참고
기본 NIC가 상주하는 CIDR과 일치하도록 |
9.2.9.1.3. 선택적 구성 매개변수
선택적 설치 구성 매개변수는 다음 표에 설명되어 있습니다.
매개변수 | 설명 | 값 |
---|---|---|
| 노드의 신뢰할 수 있는 인증서 스토리지에 추가되는 PEM 인코딩 X.509 인증서 번들입니다. 이 신뢰할 수 있는 번들은 프록시가 구성되었을 때에도 사용할 수 있습니다. | 문자열 |
| 컴퓨팅 노드를 구성하는 시스템의 구성입니다. |
|
|
풀에 있는 시스템의 명령어 집합 아키텍처를 결정합니다. 이기종 클러스터는 현재 지원되지 않으므로 모든 풀이 동일한 아키텍처를 지정해야 합니다. 유효한 값은 | 문자열 |
|
컴퓨팅 시스템에서 동시 멀티스레딩 또는 중요 동시 멀티스레딩을 비활성화하는 경우 용량 계획에서 시스템 성능이 크게 저하될 수 있는 문제를 고려해야 합니다. |
|
|
|
|
|
|
|
| 프로비저닝할 컴퓨팅 시스템(작업자 시스템이라고도 함) 수입니다. |
|
| 컨트롤 플레인을 구성하는 시스템들의 구성입니다. |
|
|
풀에 있는 시스템의 명령어 집합 아키텍처를 결정합니다. 현재 이기종 클러스터는 지원되지 않으므로 모든 풀에서 동일한 아키텍처를 지정해야 합니다. 유효한 값은 | 문자열 |
|
컨트롤 플레인 시스템에서 동시 멀티스레딩 또는 중요 동시 멀티스레딩을 비활성화하는 경우 용량 계획에서 시스템 성능이 크게 저하될 수 있는 문제를 고려해야 합니다. |
|
|
|
|
|
|
|
| 프로비저닝하는 컨트롤 플레인 시스템의 수입니다. |
지원되는 유일한 값은 기본값인 |
| Cloud Credential Operator (CCO) 모드입니다. 모드가 지정되지 않은 경우 CCO는 여러 모드가 지원되는 플랫폼에서 Mint 모드가 우선으로 되어 지정된 인증 정보의 기능을 동적으로 확인하려고합니다. 참고 모든 클라우드 공급자에서 모든 CCO 모드가 지원되는 것은 아닙니다. CCO 모드에 대한 자세한 내용은 Cluster Operators 의 Cloud Credential Operator 를 참조하십시오. |
|
|
FIPS 모드를 활성화 또는 비활성화합니다. 기본값은 중요
FIPS 검증 / 진행중인 모듈 암호화 라이브러리 사용은 참고 Azure File 스토리지를 사용하는 경우 FIPS 모드를 활성화할 수 없습니다. |
|
| 릴리스 이미지 내용의 소스 및 리포지토리입니다. |
개체의 배열입니다. 이 표의 다음 행에 설명된 대로 |
|
| 문자열 |
| 동일한 이미지를 포함할 수도 있는 하나 이상의 리포지토리를 지정합니다. | 문자열 배열 |
| Kubernetes API, OpenShift 경로와 같이 클러스터의 사용자 끝점을 게시하거나 노출하는 방법입니다. |
이 필드를 |
| 클러스터 시스템 액세스 인증에 필요한 하나 이상의 SSH 키입니다. 참고
설치 디버깅 또는 재해 복구를 수행하려는 프로덕션 OpenShift Container Platform 클러스터의 경우 | 하나 이상의 키입니다. 예를 들면 다음과 같습니다. sshKey: <key1> <key2> <key3> |
9.2.9.2. IBM Z의 샘플 install-config.yaml 파일
install-config.yaml
파일을 사용자 지정하여 OpenShift Container Platform 클러스터 플랫폼에 대한 자세한 정보를 지정하거나 필수 매개변수 값을 수정할 수 있습니다.
apiVersion: v1 baseDomain: example.com 1 compute: 2 - hyperthreading: Enabled 3 name: worker replicas: 0 4 architecture : s390x controlPlane: 5 hyperthreading: Enabled 6 name: master replicas: 3 7 architecture : s390x metadata: name: test 8 networking: clusterNetwork: - cidr: 10.128.0.0/14 9 hostPrefix: 23 10 networkType: OpenShiftSDN serviceNetwork: 11 - 172.30.0.0/16 platform: none: {} 12 fips: false 13 pullSecret: '{"auths": ...}' 14 sshKey: 'ssh-ed25519 AAAA...' 15
- 1
- 클러스터의 기본 도메인입니다. 모든 DNS 레코드는 이 기본 도메인의 하위 도메인이어야 하며 클러스터 이름을 포함해야 합니다.
- 2 5
controlPlane
섹션은 단일 매핑이지만compute
섹션은 일련의 매핑입니다. 서로 다른 데이터 구조의 요구사항을 충족하도록compute
섹션의 첫 번째 줄은 하이픈(-
)으로 시작해야 하며controlPlane
섹션의 첫 번째 줄은 하이픈으로 시작할 수 없습니다. 하나의 컨트롤 플레인 풀만 사용됩니다.- 3 6
- 동시 멀티스레딩(SMT) 또는 hyperthreading 활성화/비활성화 여부를 지정합니다. 시스템 코어의 성능을 높이기 위해 기본적으로 SMT가 활성화됩니다. 매개변수 값을
Disabled
로 설정하여 비활성화할 수 있습니다. SMT를 비활성화하는 경우 모든 클러스터 머신에서 이를 비활성화해야 합니다. 여기에는 컨트롤 플레인과 컴퓨팅 머신이 모두 포함됩니다.참고SMT(동시 멀티 스레딩)는 기본적으로 활성화되어 있습니다. BIOS 설정에서 SMT를 활성화하지 않으면
hyperthreading
매개변수가 적용되지 않습니다.중요BIOS에서든
install-config.yaml
에서든hyperthreading
을 비활성화한 경우 용량 계획에서 시스템 성능이 크게 저하될 수 있는 문제를 고려해야 합니다. - 4
- 사용자 프로비저닝 인프라에 OpenShift Container Platform을 설치할 때 이 값을
0
으로 설정해야 합니다. 설치 프로그램에서 제공하는 설치에서 매개 변수는 클러스터가 생성 및 관리하는 컴퓨팅 머신 수를 제어합니다. 사용자 프로비저닝 설치에서는 클러스터 설치를 완료하기 전에 컴퓨팅 시스템을 수동으로 배포해야 합니다.참고3-노드 클러스터를 설치하는 경우 RHCOS(Red Hat Enterprise Linux CoreOS) 시스템을 설치할 때 컴퓨팅 머신을 배포하지 마십시오.
- 7
- 클러스터에 추가하는 컨트롤 플레인 시스템의 수입니다. 클러스터에서 이 값을 클러스터의 etcd 끝점 수로 사용하므로 이 값은 배포하는 컨트롤 플레인 시스템의 수와 일치해야 합니다.
- 8
- DNS 레코드에 지정한 클러스터 이름입니다.
- 9
- Pod IP 주소가 할당되는 IP 주소 블록입니다. 이 블록은 기존 물리적 네트워크와 중복되지 않아야합니다. 이러한 IP 주소는 Pod 네트워크에 사용됩니다. 외부 네트워크에서 Pod에 액세스해야 하는 경우, 트래픽을 관리하도록 로드 밸런서와 라우터를 설정해야 합니다.참고
클래스 E CIDR 범위는 향후 사용을 위해 예약되어 있습니다. 클래스 E CIDR 범위를 사용하려면 네트워킹 환경에서 클래스 E CIDR 범위 내에서 IP 주소를 수락하는지 확인해야 합니다.
- 10
- 개별 노드 각각에 할당할 서브넷 접두사 길이입니다. 예를 들어
hostPrefix
를23
으로 설정하면 지정된cidr
이외/23
서브넷이 각 노드에 할당되어 510(2^(32 - 23) - 2) Pod IP 주소가 허용됩니다. 외부 네트워크에서 노드에 액세스해야 하는 경우 트래픽을 관리하도록 로드 밸런서와 라우터를 구성합니다. - 11
- 서비스 IP 주소에 사용할 IP 주소 풀입니다. IP 주소 풀은 하나만 입력할 수 있습니다. 이 블록은 기존 물리적 네트워크와 중복되지 않아야합니다. 외부 네트워크에서 서비스에 액세스해야 하는 경우, 트래픽을 관리하도록 로드 밸런서와 라우터를 구성합니다.
- 12
- 플랫폼을
none
으로 설정해야 합니다. IBM Z 인프라에 대한 추가 플랫폼 구성 변수는 지정할 수 없습니다.주의Red Hat Virtualization은 현재 oVirt 플랫폼에서 사용자 프로비저닝 인프라를 사용하여 설치를 지원하지 않습니다. 따라서 플랫폼을
none
으로 설정해야 OpenShift Container Platform에서 각 노드를 베어 메탈 노드로 식별하고 클러스터를 베어 메탈 클러스터로 식별할 수 있습니다. 이는 모든 플랫폼에 클러스터를 설치하는 것과 동일하며 다음과 같은 제한 사항이 있습니다.- 클러스터 공급자가 없으므로 각 머신을 수동으로 추가해야 하며 노드 확장 기능이 없습니다.
- oVirt CSI 드라이버가 설치되지 않으며 CSI 기능이 없습니다.
- 13
- FIPS 모드 활성화 또는 비활성화 여부입니다. 기본적으로 FIPS 모드는 비활성화됩니다. FIPS 모드가 활성화되면 OpenShift Container Platform이 실행되는 RHCOS(Red Hat Enterprise Linux CoreOS) 시스템에서 기본 Kubernetes 암호화 제품군은 우회하고 RHCOS와 함께 제공되는 암호화 모듈을 대신 사용합니다.중요
FIPS 검증 / 진행중인 모듈 암호화 라이브러리 사용은
x86_64
아키텍처의 OpenShift Container Platform 배포에서만 지원됩니다. - 14
- Red Hat OpenShift Cluster Manager의 풀 시크릿. 이 풀 시크릿을 사용하면 OpenShift Container Platform 구성 요소에 대한 컨테이너 이미지를 제공하는 Quay.io를 포함하여 인증 기관에서 제공하는 서비스로 인증할 수 있습니다.
- 15
- RHCOS(Red Hat Enterprise Linux CoreOS)의
core
사용자에 대한 SSH 공용 키입니다.참고설치 디버깅 또는 재해 복구를 수행하려는 프로덕션 OpenShift Container Platform 클러스터의 경우
ssh-agent
프로세스가 사용하는 SSH 키를 지정합니다.
9.2.9.3. 설치 중 클러스터 단위 프록시 구성
프로덕션 환경에서는 인터넷에 대한 직접 액세스를 거부하고 대신 HTTP 또는 HTTPS 프록시를 사용할 수 있습니다. install-config.yaml
파일에서 프록시 설정을 구성하여 프록시가 사용되도록 새 OpenShift Container Platform 클러스터를 구성할 수 있습니다.
사전 요구 사항
-
기존
install-config.yaml
파일이 있습니다. 클러스터에서 액세스해야 하는 사이트를 검토하고 프록시를 바이패스해야 하는지 확인했습니다. 기본적으로 호스팅 클라우드 공급자 API에 대한 호출을 포함하여 모든 클러스터 발신(Egress) 트래픽이 프록시됩니다. 필요한 경우 프록시를 바이패스하기 위해
Proxy
오브젝트의spec.noProxy
필드에 사이트를 추가했습니다.참고Proxy
오브젝트의status.noProxy
필드는 설치 구성에 있는networking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
,networking.serviceNetwork[]
필드의 값으로 채워집니다.Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure 및 Red Hat OpenStack Platform (RHOSP)에 설치하는 경우
Proxy
오브젝트status.noProxy
필드도 인스턴스 메타데이터 끝점(169.254.169.254
)로 채워집니다.
절차
install-config.yaml
파일을 편집하고 프록시 설정을 추가합니다. 예를 들면 다음과 같습니다.apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- ...
- 1
- 클러스터 외부에서 HTTP 연결을 구축하는 데 사용할 프록시 URL입니다. URL 스키마는
http
여야 합니다. - 2
- 클러스터 외부에서 HTTPS 연결을 구축하는 데 사용할 프록시 URL입니다.
- 3
- 대상 도메인 이름, IP 주소 또는 프록시에서 제외할 기타 네트워크 CIDR로 이루어진 쉼표로 구분된 목록입니다. 하위 도메인과 일치하려면 도메인 앞에
.
을 입력합니다. 예를 들어,.y.com
은x.y.com
과 일치하지만y.com
은 일치하지 않습니다.*
를 사용하여 모든 대상에 대해 프록시를 바이패스합니다. - 4
- 이 값을 제공하면 설치 프로그램에서 추가 CA 인증서를 보유할
openshift
이라는 구성 맵을 생성합니다.-config 네임스페이스에 user-ca-
bundleadditionalTrustBundle
및 하나 이상의 프록시 설정을 제공하는 경우프록시
오브젝트는trustedCA
필드의user-ca-bundle
구성 맵을 참조하도록 구성됩니다. 그러면 Cluster Network Operator에서trustedCA
매개변수에 대해 지정된 콘텐츠를 RHCOS 신뢰 번들과 병합하는trusted-ca-bundle
구성 맵을 생성합니다. 프록시의 ID 인증서를 RHCOS 트러스트 번들에 있는 기관에서 서명하지 않은 경우additionalTrustBundle
필드가 있어야 합니다.
참고설치 프로그램에서 프록시
adinessEndpoints
필드를 지원하지 않습니다.- 파일을 저장해 놓고 OpenShift Container Platform을 설치할 때 참조하십시오.
제공되는 install-config.yaml
파일의 프록시 설정을 사용하는 cluster
라는 이름의 클러스터 전체 프록시가 설치 프로그램에 의해 생성됩니다. 프록시 설정을 제공하지 않아도 cluster
Proxy
오브젝트는 계속 생성되지만 spec
은 nil이 됩니다.
cluster
라는 Proxy
오브젝트만 지원되며 추가 프록시는 생성할 수 없습니다.
9.2.9.4. 3개의 노드 클러스터 구성
필요한 경우 세 개의 컨트롤 플레인 시스템으로 구성된 베어 메탈 클러스터에 제로 컴퓨팅 머신을 배포할 수 있습니다. 이를 통해 클러스터 관리자와 개발자들이 테스트, 개발, 프로덕션에 사용할 수 있는 소형화되고 리소스 효율이 높은 클러스터를 제공합니다.
3-노드 OpenShift Container Platform 환경에서 세 개의 컨트롤 플레인 머신을 예약할 수 있습니다. 즉, 애플리케이션 워크로드가 해당 플랫폼에서 실행되도록 예약됩니다.
사전 요구 사항
-
기존
install-config.yaml
파일이 있습니다.
절차
install-config.yaml
파일에서 다음compute
스탠자에 표시된 대로 컴퓨팅 복제본 수가0
으로 설정되어 있는지 확인합니다.compute: - name: worker platform: {} replicas: 0
참고배포 중인 컴퓨팅 머신 수에 관계없이 사용자 프로비저닝 인프라에 OpenShift Container Platform을 설치할 때 컴퓨팅 머신의
replicas
매개변수 값을0
으로 설정해야 합니다. 설치 프로그램에서 제공하는 설치에서 매개 변수는 클러스터가 생성 및 관리하는 컴퓨팅 머신 수를 제어합니다. 이 설정은 컴퓨팅 시스템이 수동으로 배포되는 사용자 프로비저닝 설치에는 적용되지 않습니다.참고컨트롤 플레인 노드의 기본 리소스는 vCPU 6개와 21GB입니다. 3개의 컨트롤 플레인 노드의 경우 메모리 + vCPU는 최소 5-노드 클러스터와 동등합니다. SMT2가 활성화된 IFL 3개와 함께 각각 120GB 디스크에 설치된 3개의 노드를 백업해야 합니다. 테스트된 최소 설정은 각 컨트롤 플레인 노드에 대해 120GB 디스크에서 3개의 vCPU와 10GB입니다.
3-노드 클러스터 설치의 경우 다음 단계를 따르십시오.
- 컴퓨팅 노드가 0인 3-노드 클러스터를 배포하는 경우 Ingress 컨트롤러 Pod는 컨트롤 플레인 노드에서 실행됩니다. 3-노드 클러스터 배포에서 HTTP 및 HTTPS 트래픽을 컨트롤 플레인 노드로 라우팅하도록 애플리케이션 인그레스 로드 밸런서를 구성해야 합니다. 자세한 내용은 사용자 프로비저닝 인프라 섹션에 대한 로드 밸런싱 요구 사항 섹션을 참조하십시오.
-
다음 절차에서 Kubernetes 매니페스트 파일을 생성할 때
<installation_directory>/manifests/cluster-scheduler-02-config.yml
파일의mastersSchedulable
매개변수가true
로 설정되어 있는지 확인합니다. 이렇게 하면 애플리케이션 워크로드를 컨트롤 플레인 노드에서 실행할 수 있습니다. - RHCOS(Red Hat Enterprise Linux CoreOS) 시스템을 생성할 때 컴퓨팅 노드를 배포하지 마십시오.
9.2.10. CNO(Cluster Network Operator) 구성
클러스터 네트워크의 구성은 CNO(Cluster Network Operator) 구성의 일부로 지정되며 cluster
라는 이름의 CR(사용자 정의 리소스) 오브젝트에 저장됩니다. CR은 operator.openshift.io
API 그룹에서 Network
API의 필드를 지정합니다.
CNO 구성은 Network.config.openshift.io
API 그룹의 Network
API에서 클러스터 설치 중에 다음 필드를 상속하며 이러한 필드는 변경할 수 없습니다.
clusterNetwork
- Pod IP 주소가 할당되는 IP 주소 풀입니다.
serviceNetwork
- 서비스를 위한 IP 주소 풀입니다.
defaultNetwork.type
- OpenShift SDN 또는 OVN-Kubernetes와 같은 클러스터 네트워크 공급자입니다.
cluster
라는 CNO 오브젝트에서 defaultNetwork
오브젝트의 필드를 설정하여 클러스터의 클러스터 네트워크 공급자 구성을 지정할 수 있습니다.
9.2.10.1. CNO(Cluster Network Operator) 구성 오브젝트
CNO(Cluster Network Operator)의 필드는 다음 표에 설명되어 있습니다.
필드 | 유형 | 설명 |
---|---|---|
|
|
CNO 개체 이름입니다. 이 이름은 항상 |
|
| Pod IP 주소가 할당되는 IP 주소 블록과 클러스터의 각 개별 노드에 할당된 서브넷 접두사 길이를 지정하는 목록입니다. 예를 들면 다음과 같습니다. spec: clusterNetwork: - cidr: 10.128.0.0/19 hostPrefix: 23 - cidr: 10.128.32.0/19 hostPrefix: 23
매니페스트를 생성하기 전에 |
|
| 서비스의 IP 주소 블록입니다. OpenShift SDN 및 OVN-Kubernetes CNI(Container Network Interface) 네트워크 공급자는 서비스 네트워크에 대한 단일 IP 주소 블록만 지원합니다. 예를 들면 다음과 같습니다. spec: serviceNetwork: - 172.30.0.0/14
매니페스트를 생성하기 전에 |
|
| 클러스터 네트워크의 CNI(Container Network Interface) 클러스터 네트워크 공급자를 구성합니다. |
|
| 이 개체의 필드는 kube-proxy 구성을 지정합니다. OVN-Kubernetes 클러스터 네트워크 공급자를 사용하는 경우 kube-proxy 구성이 적용되지 않습니다. |
defaultNetwork 오브젝트 구성
defaultNetwork
오브젝트의 값은 다음 표에 정의되어 있습니다.
필드 | 유형 | 설명 |
---|---|---|
|
|
참고 OpenShift Container Platform은 기본적으로 OpenShift SDN CNI(Container Network Interface) 클러스터 네트워크 공급자를 사용합니다. |
|
| 이 오브젝트는 OpenShift SDN 클러스터 네트워크 공급자에만 유효합니다. |
|
| 이 오브젝트는 OVN-Kubernetes 클러스터 네트워크 공급자에만 유효합니다. |
OpenShift SDN CNI 네트워크 공급자에 대한 구성
다음 표에서는 OpenShift SDN Container Network Interface (CNI) 클러스터 네트워크 공급자의 구성 필드를 설명합니다.
필드 | 유형 | 설명 |
---|---|---|
|
|
OpenShift SDN의 네트워크 격리 모드를 구성합니다. 기본값은
|
|
| VXLAN 오버레이 네트워크의 최대 전송 단위(MTU)입니다. 이는 기본 네트워크 인터페이스의 MTU를 기준으로 자동 탐지됩니다. 일반적으로 감지된 MTU를 재정의할 필요는 없습니다. 자동 감지 값이 예상 밖인 경우 노드의 기본 네트워크 인터페이스의 MTU가 올바른지 확인합니다. 이 옵션을 사용하여 노드의 기본 네트워크 인터페이스의 MTU 값을 변경할 수 없습니다.
클러스터에 다른 노드에 대한 다른 MTU 값이 필요한 경우 이 값을 클러스터의 가장 낮은 MTU 값보다 클러스터를 설치한 후에는 이 값을 변경할 수 없습니다. |
|
|
모든 VXLAN 패킷에 사용할 포트입니다. 기본값은 기존 노드가 다른 VXLAN 네트워크에 속하는 가상 환경에서 실행 중인 경우에는 기본값을 변경해야 할 수도 있습니다. 예를 들어 VMware NSX-T 위에서 OpenShift SDN 오버레이를 실행할 때 두 SDN이 동일한 기본 VXLAN 포트 번호를 사용하므로 VXLAN의 대체 포트를 선택해야 합니다.
AWS(Amazon Web Services)에서는 포트 |
OpenShift SDN 구성 예
defaultNetwork: type: OpenShiftSDN openshiftSDNConfig: mode: NetworkPolicy mtu: 1450 vxlanPort: 4789
OVN-Kubernetes CNI 클러스터 네트워크 공급자에 대한 구성
다음 표에서는 OVN-Kubernetes CNI 클러스터 네트워크 공급자의 구성 필드를 설명합니다.
필드 | 유형 | 설명 |
---|---|---|
|
| Geneve(Generic Network Virtualization Encapsulation) 오버레이 네트워크의 MTU(최대 전송 단위)입니다. 이는 기본 네트워크 인터페이스의 MTU를 기준으로 자동 탐지됩니다. 일반적으로 감지된 MTU를 재정의할 필요는 없습니다. 자동 감지 값이 예상 밖인 경우 노드의 기본 네트워크 인터페이스의 MTU가 올바른지 확인합니다. 이 옵션을 사용하여 노드의 기본 네트워크 인터페이스의 MTU 값을 변경할 수 없습니다.
클러스터에 다른 노드에 대한 다른 MTU 값이 필요한 경우, 이 값을 클러스터의 가장 낮은 MTU 값보다 클러스터를 설치한 후에는 이 값을 변경할 수 없습니다. |
|
|
모든 Geneve 패킷에 사용할 포트입니다. 기본값은 |
|
| 네트워크 정책 감사 로깅을 사용자 정의할 구성 오브젝트를 지정합니다. 설정되지 않으면 기본값 감사 로그 설정이 사용됩니다. |
필드 | 유형 | 설명 |
---|---|---|
| integer |
노드당 1초마다 생성할 최대 메시지 수입니다. 기본값은 초당 |
| integer |
감사 로그의 최대 크기(바이트)입니다. 기본값은 |
| string | 다음 추가 감사 로그 대상 중 하나입니다.
|
| string |
RFC5424에 정의된 |
OVN-Kubernetes 구성 예
defaultNetwork: type: OVNKubernetes ovnKubernetesConfig: mtu: 1400 genevePort: 6081
kubeProxyConfig 오브젝트 구성
kubeProxyConfig
오브젝트의 값은 다음 표에 정의되어 있습니다.
필드 | 유형 | 설명 |
---|---|---|
|
|
참고
OpenShift Container Platform 4.3 이상에서는 성능이 개선되어 더 이상 |
|
|
kubeProxyConfig: proxyArguments: iptables-min-sync-period: - 0s |
9.2.11. Kubernetes 매니페스트 및 Ignition 설정 파일 생성
일부 클러스터 정의 파일을 수정하고 클러스터 시스템을 수동으로 시작해야 하므로 클러스터가 시스템을 구성하는 데 필요한 Kubernetes 매니페스트 및 Ignition 구성 파일을 사용자가 생성해야 합니다.
설치 구성 파일은 Kubernetes 매니페스트로 변환됩니다. 매니페스트는 나중에 클러스터 머신을 구성하는 데 사용되는 Ignition 구성 파일로 래핑됩니다.
-
OpenShift Container Platform 설치 프로그램에서 생성하는 Ignition 구성 파일에 24시간 후에 만료되는 인증서가 포함되어 있습니다. 이 인증서는 그 후에 갱신됩니다. 인증서를 갱신하기 전에 클러스터가 종료되고 24시간이 지난 후에 클러스터가 다시 시작되면 클러스터는 만료된 인증서를 자동으로 복구합니다. 예외적으로 kubelet 인증서를 복구하려면 대기 중인
node-bootstrapper
인증서 서명 요청(CSR)을 수동으로 승인해야 합니다. 자세한 내용은 만료된 컨트롤 플레인 인증서에서 복구 문서를 참조하십시오. - 클러스터를 설치한 후 24시간에서 22시간까지의 인증서가 교체되기 때문에 생성된 후 12시간 이내에 Ignition 구성 파일을 사용하는 것이 좋습니다. 12시간 이내에 Ignition 구성 파일을 사용하면 설치 중에 인증서 업데이트가 실행되는 경우 설치 실패를 방지할 수 있습니다.
매니페스트 및 Ignition 파일을 생성하는 설치 프로그램은 아키텍처에 따라 다르며 클라이언트 이미지 미러에서 얻을 수 있습니다. 설치 프로그램의 Linux 버전은 s390x에서만 실행됩니다. 이 설치 프로그램은 Mac OS 버전으로도 사용할 수 있습니다.
사전 요구 사항
- OpenShift Container Platform 설치 프로그램을 가져오셨습니다.
-
install-config.yaml
설치 구성 파일을 생성하셨습니다.
프로세스
OpenShift Container Platform 설치 프로그램이 포함된 디렉터리로 변경하고 클러스터에 대한 Kubernetes 매니페스트를 생성합니다.
$ ./openshift-install create manifests --dir <installation_directory> 1
- 1
<installation_directory>
는 사용자가 만든install-config.yaml
파일이 포함된 설치 디렉터리를 지정합니다.
주의3 노드 클러스터를 실행 중이면 다음 단계를 건너 뛰어 컨트롤 플레인 노드 일정을 계획할 수 있도록 하십시오.
중요예약할 수 없는 기본에서 컨트롤 플레인 노드를 구성하면 추가 서브스크립션이 필요합니다. 이는 컨트롤 플레인 노드가 작업자 노드가 되기 때문입니다.
<installation_directory>/manifests/cluster-scheduler-02-config.yml
Kubernetes 매니페스트 파일의mastersSchedulable
매개변수가false
로 설정되어 있는지 확인합니다. 이 설정으로 인해 컨트롤 플레인 머신에서 포드가 예약되지 않습니다.-
<installation_directory>/manifests/cluster-scheduler-02-config.yml
파일을 엽니다. -
mastersSchedulable
매개변수를 찾아서 값을False
로 설정되어 있는지 확인합니다. - 파일을 저장하고 종료합니다.
-
Ignition 구성 파일을 생성하려면 설치 프로그램이 포함된 디렉터리에서 다음 명령을 실행합니다.
$ ./openshift-install create ignition-configs --dir <installation_directory> 1
- 1
<installation_directory>
는 동일한 설치 디렉터리를 지정합니다.
설치 디렉터리의 부트스트랩, 컨트롤 플레인 및 컴퓨팅 노드에 대한 Ignition 구성 파일이 생성됩니다.
kubeadmin-password
및kubeconfig
파일은./<installation_directory>/auth
디렉터리에 생성됩니다.. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
9.2.12. RHCOS 설치 및 OpenShift Container Platform 부트스트랩 프로세스 시작
프로비저닝하는 IBM Z 인프라에 OpenShift Container Platform을 설치하려면 z/VM 게스트 가상 머신에 RHCOS(Red Hat Enterprise Linux CoreOS)를 설치해야 합니다. RHCOS를 설치할 때 설치 중인 머신 유형에 대해 OpenShift Container Platform 설치 프로그램에서 생성한 Ignition 구성 파일을 제공해야 합니다. 적합한 네트워킹, DNS 및 로드 밸런싱 인프라를 구성한 경우 RHCOS z/VM 게스트 가상 머신이 재부팅된 후 OpenShift Container Platform 부트스트랩 프로세스가 자동으로 시작됩니다.
머신을 생성하려면 다음 단계를 완료하십시오.
사전 요구 사항
- 생성한 머신에 액세스할 수 있는 프로비저닝 머신에서 실행 중인 HTTP 또는 HTTPS 서버.
프로세스
- 프로비저닝 머신에서 Linux에 로그인합니다.
RHCOS 이미지 미러 에서 RHCOS(Red Hat Enterprise Linux CoreOS) 커널, initramfs 및 rootfs 파일을 가져옵니다.
중요RHCOS 이미지는 OpenShift Container Platform 릴리스에 따라 변경되지 않을 수 있습니다. 설치하는 OpenShift Container Platform 버전과 같거나 그 이하의 버전 중 가장 최신 버전의 이미지를 다운로드해야 합니다. 이 프로세스에는 아래 설명된 적절한 kernel, initramfs 및 rootfs 아티팩트만 사용하십시오.
OpenShift Container Platform 버전 번호가 파일 이름에 포함됩니다. 다음 예와 유사합니다.
-
kernel:
rhcos-<version>-live-kernel-<architecture>
-
initramfs:
rhcos-<version>-live-initramfs.<architecture>.img
rootfs:
rhcos-<version>-live-rootfs.<architecture>.img
참고rootfs 이미지는 FCP 및 DASD에 대해 동일합니다.
-
kernel:
매개 변수 파일을 생성합니다. 다음 매개 변수는 특정 가상 머신에 지정해야 합니다.
ip=
에 다음 7 개의 항목을 지정하십시오.- 컴퓨터의 IP 주소
- 빈 문자열
- 게이트웨이
- 넷 마스크
-
hostname.domainname
형식의 시스템 호스트 및 도메인 이름. RHCOS가 설정하도록 하려면 이 값을 생략하십시오. - 네트워크 인터페이스 이름. RHCOS가 설정하도록 하려면 이 값을 생략하십시오.
-
고정 IP 주소를 사용하는 경우
none
을 지정합니다.
-
coreos.inst.ignition_url=
의 경우 시스템 역할의 Ignition 파일을 지정합니다.bootstrap.ign
,master.ign
또는worker.ign
을 사용하십시오. HTTP 및 HTTPS 프로토콜만 지원됩니다. -
coreos.live.rootfs_url=
의 경우 부팅 중인 커널 및 initramfs와 일치하는 rootfs 아티팩트를 지정합니다. HTTP 및 HTTPS 프로토콜만 지원됩니다. DASD 유형 디스크에 설치하려면 다음 작업을 완료합니다.
-
coreos.inst.install_dev=
의 경우dasda
를 지정합니다. -
rd.dasd=
의 경우 RHCOS를 설치할 DASD를 지정합니다. 변경되지 않은 다른 모든 매개변수는 그대로 두십시오.
부트스트랩 시스템의 매개 변수 파일 예
bootstrap-0.parm
rd.neednet=1 \ console=ttysclp0 \ coreos.inst.install_dev=dasda \ coreos.live.rootfs_url=http://cl1.provide.example.com:8080/assets/rhcos-live-rootfs.s390x.img \ coreos.inst.ignition_url=http://cl1.provide.example.com:8080/ignition/bootstrap.ign \ ip=172.18.78.2::172.18.78.1:255.255.255.0:::none nameserver=172.18.78.1 \ rd.znet=qeth,0.0.bdf0,0.0.bdf1,0.0.bdf2,layer2=1,portno=0 \ zfcp.allow_lun_scan=0 \ rd.dasd=0.0.3490
매개 변수 파일의 모든 옵션을 한 줄로 작성하고 줄 바꿈 문자가 없는지 확인합니다.
-
FCP 유형 디스크에 설치하려면 다음 작업을 완료합니다.
RHCOS를 설치할 FCP 디스크를 지정하려면
rd.zfcp=<adapter>,<wwpn>,<lun>
을 사용합니다. 멀티패스의 경우 추가 경로마다 이 단계를 반복합니다.참고여러 경로를 사용하여 설치할 때 나중에 문제가 발생할 수 있으므로 설치 후에 직접 멀티패스를 활성화해야 합니다.
설치 장치를
coreos.inst.install_dev=sda
로 설정합니다.참고NPIV로 추가 LUN을 구성하는 경우 FCP에는
zfcp.allow_lun_scan=0
이 필요합니다. 예를 들어 CSI 드라이버를 사용하므로zfcp.allow_lun_scan=1
을 활성화해야 하는 경우, 각 노드가 다른 노드의 부팅 파티션에 액세스할 수 없도록 NPIV를 구성해야 합니다.변경되지 않은 다른 모든 매개변수는 그대로 두십시오.
중요멀티패스를 완전히 활성화하려면 추가 설치 후 단계가 필요합니다. 자세한 내용은 설치 후 머신 구성 작업의 "RHCOS에서 커널 인수를 사용하여 다중 경로 활성화"를 참조하십시오.
다음은 다중 경로가 있는 작업자 노드의 예제 매개변수 파일
worker-1.parm
입니다.rd.neednet=1 \ console=ttysclp0 \ coreos.inst.install_dev=sda \ coreos.live.rootfs_url=http://cl1.provide.example.com:8080/assets/rhcos-live-rootfs.s390x.img \ coreos.inst.ignition_url=http://cl1.provide.example.com:8080/ignition/worker.ign \ ip=172.18.78.2::172.18.78.1:255.255.255.0:::none nameserver=172.18.78.1 \ rd.znet=qeth,0.0.bdf0,0.0.bdf1,0.0.bdf2,layer2=1,portno=0 \ zfcp.allow_lun_scan=0 \ rd.zfcp=0.0.1987,0x50050763070bc5e3,0x4008400B00000000 \ rd.zfcp=0.0.19C7,0x50050763070bc5e3,0x4008400B00000000 \ rd.zfcp=0.0.1987,0x50050763071bc5e3,0x4008400B00000000 \ rd.zfcp=0.0.19C7,0x50050763071bc5e3,0x4008400B00000000
매개 변수 파일의 모든 옵션을 한 줄로 작성하고 줄 바꿈 문자가 없는지 확인합니다.
- initramfs, 커널, 매개 변수 파일 및 RHCOS 이미지를 z/VM에 전송합니다 (예: FTP 사용). FTP를 사용하여 파일을 전송하고 가상 리더에서 부팅하는 방법에 대한 자세한 내용은 Z/VM에서 설치를 참조하십시오.
부트스트랩 노드가 될 z/VM 게스트 가상 머신의 가상 리더에 파일 punch를 실행합니다.
IBM 문서의 PUNCH를 참조하십시오.
작은 정보CP PUNCH 명령을 사용하거나 Linux를 사용하는 경우 vmur 명령을 사용하여 두 개의 z/VM 게스트 가상 머신간에 파일을 전송할 수 있습니다.
- 부트스트랩 시스템에서 CMS에 로그인합니다.
리더에서 부트스트랩 머신에 대해 IPL을 수행합니다.
$ ipl c
IBM 문서의 IPL 을 참조하십시오.
- 클러스터의 다른 컴퓨터에 대해 이 프로세스를 반복합니다.
9.2.12.1. 고급 RHCOS 설치 참조
여기서는 RHCOS(Red Hat Enterprise Linux CoreOS) 수동 설치 프로세스를 수정하는 데 사용할 수 있는 네트워킹 구성 및 기타 고급 옵션에 대해 설명합니다. 다음 표에서는 RHCOS 라이브 설치 프로그램 및 coreos-installer
명령과 함께 사용할 수있는 커널 인수 및 명령 줄 옵션에 대해 설명합니다.
9.2.12.1.1. ISO 설치를 위한 네트워킹 및 본딩 옵션
ISO 이미지에서 RHCOS를 설치하는 경우, 해당 이미지를 부팅할 때 수동으로 커널 인수를 추가하여 노드의 네트워킹을 구성할 수 있습니다. 네트워킹 인수를 지정하지 않으면 RHCOS에서 Ignition 구성 파일을 가져오는 데 네트워킹이 필요함을 감지하면 initramfs에서 DHCP가 활성화됩니다.
네트워킹 인수를 수동으로 추가할 때 initramfs에서 네트워크를 가져오려면 rd.neednet=1
커널 인수도 추가해야 합니다.
다음 정보는 ISO 설치를 위해 RHCOS 노드에서 네트워킹 및 본딩 구성의 예를 제공합니다. 예제에서는 ip=
, nameserver=
, bond=
커널 인수를 사용하는 방법을 설명합니다.
커널 인수를 추가할 때 순서가 중요합니다: ip=
, nameserver=
및 bond=
입니다.
이는 시스템 부팅 중에 dracut
툴로 전달되는 네트워킹 옵션입니다. dracut
에서 지원하는 네트워킹 옵션에 대한 자세한 내용은 dracut.cmdline
메뉴얼 페이지를 참조하십시오.
다음 예제는 ISO 설치를 위한 네트워킹 옵션입니다.
DHCP 또는 고정 IP 주소 구성
IP 주소를 구성하려면 DHCP(ip=dhcp
)를 사용하거나 개별 고정 IP 주소(ip=<host_ip>
)를 설정합니다. 정적 IP를 설정하는 경우 각 노드에서 DNS 서버 IP 주소 (nameserver=<dns_ip>
)를 확인합니다. 다음 예제에서는 다음을 설정합니다.
-
노드의 IP 주소는
10.10.10.2
로 설정됩니다. -
게이트웨이 주소는
10.10.10.254
로 설정됩니다. -
넷마스크는
255.255.255.0
으로 -
core0.example.com
에 대한 호스트 이름 -
4.4.4.41
의 DNS 서버 주소 -
auto-configuration 값을
none
으로 설정합니다. IP 네트워킹이 정적으로 구성되면 자동 구성이 필요하지 않습니다.
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none nameserver=4.4.4.41
DHCP를 사용하여 RHCOS 시스템의 IP 주소 지정을 구성하는 경우 시스템은 DHCP를 통해 DNS 서버 정보도 가져옵니다. DHCP 기반 배포의 경우 DHCP 서버 구성을 통해 RHCOS 노드에서 사용할 DNS 서버 주소를 정의할 수 있습니다.
고정 호스트 이름 없이 IP 주소 구성
정적 호스트 이름을 할당하지 않고 IP 주소를 구성할 수 있습니다. 사용자가 정적 호스트 이름을 설정하지 않으면 역방향 DNS 조회에 의해 자동으로 선택됩니다. 정적 호스트 이름이 없는 IP 주소를 구성하려면 다음 예제를 참조합니다.
-
노드의 IP 주소는
10.10.10.2
로 설정됩니다. -
게이트웨이 주소는
10.10.10.254
로 설정됩니다. -
넷마스크는
255.255.255.0
으로 -
4.4.4.41
의 DNS 서버 주소 -
auto-configuration 값을
none
으로 설정합니다. IP 네트워킹이 정적으로 구성되면 자동 구성이 필요하지 않습니다.
ip=10.10.10.2::10.10.10.254:255.255.255.0::enp1s0:none nameserver=4.4.4.41
여러 네트워크 인터페이스 지정
여러 ip=
항목을 설정하여 여러 네트워크 인터페이스를 지정할 수 있습니다.
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none
기본 게이트웨이 및 경로 구성
선택 사항: an rd.route=
값을 설정하여 추가 네트워크에 대한 경로를 구성할 수 있습니다.
하나 이상의 네트워크를 구성할 때 하나의 기본 게이트웨이가 필요합니다. 추가 네트워크 게이트웨이가 기본 네트워크 게이트웨이와 다른 경우 기본 게이트웨이가 기본 네트워크 게이트웨이어야 합니다.
다음 명령을 실행하여 기본 게이트웨이를 구성합니다.
ip=::10.10.10.254::::
다음 명령을 입력하여 추가 네트워크의 경로를 구성합니다.
rd.route=20.20.20.0/24:20.20.20.254:enp2s0
단일 인터페이스에서 DHCP 비활성화
두 개 이상의 네트워크 인터페이스가 있고 하나의 인터페이스만 사용되는 경우와 같이 단일 인터페이스에서 DHCP를 비활성화할 수 있습니다. 이 예에서 enp1s0
인터페이스에는 정적 네트워킹 구성이 있으며 enp2s0
용으로 DHCP가 사용되지 않습니다.
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none ip=::::core0.example.com:enp2s0:none
DHCP 및 고정 IP 구성 결합
다음과 같이 시스템의 DHCP 및 고정 IP 구성을 여러 네트워크 인터페이스와 결합할 수 있습니다.
ip=enp1s0:dhcp ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none
개별 인터페이스에서 VLAN 구성
선택 사항: vlan=
매개 변수를 사용하여 개별 인터페이스에서 VLAN을 구성할 수 있습니다.
네트워크 인터페이스에서 VLAN을 구성하고 고정 IP 주소를 사용하려면 다음 명령을 실행합니다.
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none vlan=enp2s0.100:enp2s0
네트워크 인터페이스에서 VLAN을 구성하고 DHCP를 사용하려면 다음 명령을 실행합니다.
ip=enp2s0.100:dhcp vlan=enp2s0.100:enp2s0
여러 DNS 서버 제공
각 서버에 nameserver=
항목을 추가하여 여러 DNS 서버를 제공할 수 있습니다. 예를 들면 다음과 같습니다.
nameserver=1.1.1.1 nameserver=8.8.8.8
단일 인터페이스에 여러 네트워크 인터페이스 본딩
선택 사항: bond=
옵션을 사용하여 여러 네트워크 인터페이스를 단일 인터페이스에 결합할 수 있습니다. 다음 예제를 참조하십시오.
결합된 인터페이스를 구성하는 구문:
bond = name [: network_interfaces] [: options]
name은 결합하는 기기 이름(
bond0
)이고 network_interfaces는 쉼표로 구분되는 물리적(이더넷) 인터페이스 목록(em1, em2
)이며, options은 쉼표로 구분되는 결합 옵션 목록입니다. 사용 가능한 옵션을 보려면modinfo bonding
을 입력하십시오.-
bond=
를 사용하여 결합된 인터페이스를 생성할 때 IP 주소가 할당되는 방법과 결합된 인터페이스에 대한 기타 정보를 지정해야 합니다. DHCP를 사용하도록 결합된 인터페이스를 구성하려면 bond의 IP 주소를
dhcp
로 설정하십시오. 예를 들면 다음과 같습니다.bond=bond0:em1,em2:mode=active-backup ip=bond0:dhcp
- 고정 IP 주소를 사용하도록 결합된 인터페이스를 구성하려면 원하는 특정 IP 주소 및 관련 정보를 입력합니다. 예를 들면 다음과 같습니다.
bond=bond0:em1,em2:mode=active-backup,fail_over_mac=1 ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none
공유 OSA/RoCE 카드가 사용될 때 문제를 방지하기 위해 항상 active-backup 모드에서 옵션 fail_over_mac=1
을 설정합니다.
단일 인터페이스에 여러 네트워크 인터페이스 본딩
선택 사항: vlan=
매개변수를 사용하고 DHCP를 사용하도록 결합된 인터페이스에서 VLAN을 구성할 수 있습니다. 예를 들면 다음과 같습니다.
ip=bond0.100:dhcp bond=bond0:em1,em2:mode=active-backup vlan=bond0.100:bond0
다음 예제를 사용하여 VLAN을 사용하여 결합된 인터페이스를 구성하고 고정 IP 주소를 사용합니다.
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0.100:none bond=bond0:em1,em2:mode=active-backup vlan=bond0.100:bond0
네트워크 팀 구성 사용
선택 사항: team=
매개변수를 사용하여 네트워크 팀을 결합의 대안으로 사용할 수 있습니다.
팀 인터페이스를 구성하는 구문은
team=name[:network_interfaces]
입니다.name 은 팀 장치 이름(
team0)
이고 network_interfaces 는 쉼표로 구분된 실제(이더넷) 인터페이스 목록(em1, em2)을 나타냅니다.
RHCOS가 향후 RHEL 버전으로 전환되면 티밍이 더 이상 사용되지 않을 예정입니다. 자세한 내용은 이 Red Hat 지식베이스 문서를 참조하십시오.
다음 예제를 사용하여 네트워크 팀을 구성합니다.
team=team0:em1,em2 ip=team0:dhcp
9.2.13. 부트스트랩 프로세스가 완료될 때까지 대기 중
OpenShift Container Platform 부트스트랩 프로세스는 클러스터 노드가 먼저 디스크에 설치된 영구 RHCOS 환경으로 부팅된 후에 시작됩니다. Ignition 구성 파일을 통해 제공되는 구성 정보는 부트스트랩 프로세스를 초기화하고 머신에 OpenShift Container Platform을 설치하는 데 사용됩니다. 부트스트랩 프로세스가 완료될 때까지 기다려야 합니다.
사전 요구 사항
- 클러스터에 대한 Ignition 구성 파일이 생성되어 있습니다.
- 적합한 네트워크, DNS 및 로드 밸런싱 인프라가 구성되어 있습니다.
- 설치 프로그램을 받아서 클러스터의 Ignition 구성 파일을 생성했습니다.
- 클러스터 머신에 RHCOS를 설치하고 OpenShift Container Platform 설치 프로그램에서 생성된 Ignition 구성 파일을 제공했습니다.
- 사용자 시스템에서 직접 인터넷에 액세스하거나 HTTP 또는 HTTPS 프록시를 사용할 수 있습니다.
프로세스
부트스트랩 프로세스를 모니터링합니다.
$ ./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ 1 --log-level=info 2
출력 예
INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443... INFO API v1.21.0 up INFO Waiting up to 30m0s for bootstrapping to complete... INFO It is now safe to remove the bootstrap resources
이 명령은 Kubernetes API 서버가 컨트롤 플레인 시스템에서 부트스트랩되었다는 신호를 보낼 때 성공합니다.
부트스트랩 프로세스가 완료된 후 로드 밸런서에서 부트스트랩 시스템을 제거합니다.
중요이 시점에 로드 밸런서에서 부트스트랩 시스템을 제거해야 합니다. 부트스트랩 머신 자체를 제거하거나 다시 포맷할 수도 있습니다.
9.2.14. CLI를 사용하여 클러스터에 로그인
클러스터 kubeconfig
파일을 내보내서 기본 시스템 사용자로 클러스터에 로그인할 수 있습니다. kubeconfig
파일에는 CLI에서 올바른 클러스터 및 API 서버에 클라이언트를 연결하는 데 사용하는 클러스터에 대한 정보가 포함되어 있습니다. 이 파일은 클러스터별로 고유하며 OpenShift Container Platform 설치 과정에서 생성됩니다.
사전 요구 사항
- OpenShift Container Platform 클러스터를 배포했습니다.
-
oc
CLI를 설치했습니다.
프로세스
kubeadmin
인증 정보를 내보냅니다.$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
<installation_directory>
는 설치 파일을 저장한 디렉터리의 경로를 지정합니다.
내보낸 구성을 사용하여
oc
명령을 성공적으로 실행할 수 있는지 확인합니다.$ oc whoami
출력 예
system:admin
9.2.15. 머신의 인증서 서명 요청 승인
클러스터에 시스템을 추가하면 추가한 시스템별로 보류 중인 인증서 서명 요청(CSR)이 두 개씩 생성됩니다. 이러한 CSR이 승인되었는지 확인해야 하며, 필요한 경우 이를 직접 승인해야 합니다. 클라이언트 요청을 먼저 승인한 다음 서버 요청을 승인해야 합니다.
사전 요구 사항
- 클러스터에 시스템을 추가했습니다.
프로세스
클러스터가 시스템을 인식하는지 확인합니다.
$ oc get nodes
출력 예
NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.21.0 master-1 Ready master 63m v1.21.0 master-2 Ready master 64m v1.21.0
출력에 생성된 모든 시스템이 나열됩니다.
참고이전 출력에는 일부 CSR이 승인될 때까지 컴퓨팅 노드(작업자 노드라고도 함)가 포함되지 않을 수 있습니다.
보류 중인 CSR을 검토하고 클러스터에 추가한 각 시스템에 대해
Pending
또는Approved
상태의 클라이언트 및 서버 요청이 표시되는지 확인합니다.$ oc get csr
출력 예
NAME AGE REQUESTOR CONDITION csr-mddf5 20m system:node:master-01.example.com Approved,Issued csr-z5rln 16m system:node:worker-21.example.com Approved,Issued
CSR이 승인되지 않은 경우, 추가된 시스템에 대한 모든 보류 중인 CSR이
Pending
상태로 전환된 후 클러스터 시스템의 CSR을 승인합니다.참고CSR은 교체 주기가 자동으로 만료되므로 클러스터에 시스템을 추가한 후 1시간 이내에 CSR을 승인하십시오. 한 시간 내에 승인하지 않으면 인증서가 교체되고 각 노드에 대해 두 개 이상의 인증서가 표시됩니다. 이러한 인증서를 모두 승인해야 합니다. 클라이언트 CSR이 승인되면 Kubelet은 인증서에 대한 보조 CSR을 생성하므로 수동 승인이 필요합니다. 그러면 Kubelet에서 동일한 매개변수를 사용하여 새 인증서를 요청하는 경우 인증서 갱신 요청은
machine-approver
에 의해 자동으로 승인됩니다.참고베어 메탈 및 기타 사용자 프로비저닝 인프라와 같이 머신 API를 사용하도록 활성화되지 않는 플랫폼에서 실행되는 클러스터의 경우 CSR(Kubelet service Certificate Request)을 자동으로 승인하는 방법을 구현해야 합니다. 요청이 승인되지 않으면 API 서버가 kubelet에 연결될 때 서비스 인증서가 필요하므로
oc exec
,oc rsh
,oc logs
명령을 성공적으로 수행할 수 없습니다. Kubelet 엔드 포인트에 연결하는 모든 작업을 수행하려면 이 인증서 승인이 필요합니다. 이 방법은 새 CSR을 감시하고 CSR이system:node
또는system:admin
그룹의node-bootstrapper
서비스 계정에 의해 제출되었는지 확인하고 노드의 ID를 확인합니다.개별적으로 승인하려면 유효한 CSR 각각에 대해 다음 명령을 실행하십시오.
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
은 현재 CSR 목록에 있는 CSR의 이름입니다.
보류 중인 CSR을 모두 승인하려면 다음 명령을 실행하십시오.
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
참고일부 Operator는 일부 CSR이 승인될 때까지 사용할 수 없습니다.
이제 클라이언트 요청이 승인되었으므로 클러스터에 추가한 각 머신의 서버 요청을 검토해야 합니다.
$ oc get csr
출력 예
NAME AGE REQUESTOR CONDITION csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
나머지 CSR이 승인되지 않고
Pending
상태인 경우 클러스터 머신의 CSR을 승인합니다.개별적으로 승인하려면 유효한 CSR 각각에 대해 다음 명령을 실행하십시오.
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
은 현재 CSR 목록에 있는 CSR의 이름입니다.
보류 중인 CSR을 모두 승인하려면 다음 명령을 실행하십시오.
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
모든 클라이언트 및 서버 CSR이 승인된 후 머신은
Ready
상태가 됩니다. 다음 명령을 실행하여 확인합니다.$ oc get nodes
출력 예
NAME STATUS ROLES AGE VERSION master-0 Ready master 73m v1.21.0 master-1 Ready master 73m v1.21.0 master-2 Ready master 74m v1.21.0 worker-0 Ready worker 11m v1.21.0 worker-1 Ready worker 11m v1.21.0
참고머신이
Ready
상태로 전환하는 데 서버 CSR의 승인 후 몇 분이 걸릴 수 있습니다.
추가 정보
- CSR에 대한 자세한 내용은 인증서 서명 요청을 참조하십시오.
9.2.16. Operator의 초기 설정
컨트롤 플레인이 초기화된 후 일부 Operator를 즉시 구성하여 모두 사용 가능하도록 해야 합니다.
사전 요구 사항
- 컨트롤 플레인이 초기화되어 있습니다.
프로세스
클러스터 구성 요소가 온라인 상태인지 확인합니다.
$ watch -n5 oc get clusteroperators
출력 예
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.8.2 True False False 19m baremetal 4.8.2 True False False 37m cloud-credential 4.8.2 True False False 40m cluster-autoscaler 4.8.2 True False False 37m config-operator 4.8.2 True False False 38m console 4.8.2 True False False 26m csi-snapshot-controller 4.8.2 True False False 37m dns 4.8.2 True False False 37m etcd 4.8.2 True False False 36m image-registry 4.8.2 True False False 31m ingress 4.8.2 True False False 30m insights 4.8.2 True False False 31m kube-apiserver 4.8.2 True False False 26m kube-controller-manager 4.8.2 True False False 36m kube-scheduler 4.8.2 True False False 36m kube-storage-version-migrator 4.8.2 True False False 37m machine-api 4.8.2 True False False 29m machine-approver 4.8.2 True False False 37m machine-config 4.8.2 True False False 36m marketplace 4.8.2 True False False 37m monitoring 4.8.2 True False False 29m network 4.8.2 True False False 38m node-tuning 4.8.2 True False False 37m openshift-apiserver 4.8.2 True False False 32m openshift-controller-manager 4.8.2 True False False 30m openshift-samples 4.8.2 True False False 32m operator-lifecycle-manager 4.8.2 True False False 37m operator-lifecycle-manager-catalog 4.8.2 True False False 37m operator-lifecycle-manager-packageserver 4.8.2 True False False 32m service-ca 4.8.2 True False False 38m storage 4.8.2 True False False 37m
- 사용할 수 없는 Operator를 구성합니다.
9.2.16.1. 이미지 레지스트리 스토리지 구성
기본 스토리지를 제공하지 않는 플랫폼에서는 처음에 Image Registry Operator를 사용할 수 없습니다. 설치한 후에 스토리지를 사용하도록 레지스트리를 구성하여 Registry Operator를 사용 가능하도록 만들어야 합니다.
프로덕션 클러스터에 필요한 영구 볼륨을 구성하는 과정의 지침이 표시됩니다. 해당하는 경우, 프로덕션 환경 외 클러스터에서만 사용할 수 있는 저장 위치로서 빈 디렉터리를 구성하는 과정의 지침이 표시됩니다.
업그레이드 중에 Recreate
롤아웃 전략을 사용하여 이미지 레지스트리의 블록 스토리지 유형 사용을 허용하기 위한 추가 지침이 제공됩니다.
9.2.16.1.1. IBM Z용 레지스트리 스토리지 구성
클러스터 관리자는 설치한 후 스토리지를 사용하도록 레지스트리를 구성해야 합니다.
사전 요구 사항
-
cluster-admin
역할의 사용자로 클러스터에 액세스할 수 있어야 합니다. - IBM Z에 클러스터가 있습니다.
클러스터용 영구 스토리지를 프로비저닝하십시오.
중요OpenShift Container Platform은 복제본이 하나만 있는 경우 이미지 레지스트리 스토리지에 대한
ReadWriteOnce
액세스를 지원합니다.ReadWriteOnce
액세스에서는 레지스트리가Recreate
롤아웃 전략을 사용해야 합니다. 두 개 이상의 복제본으로 고 가용성을 지원하는 이미지 레지스트리를 배포하려면ReadWriteMany
액세스가 필요합니다.- "100Gi" 용량이 필요합니다.
절차
스토리지를 사용하도록 레지스트리를 구성하기 위해
configs.imageregistry/cluster
리소스에서spec.storage.pvc
를 변경합니다.참고공유 스토리지를 사용할 때 보안 설정을 확인하여 외부에서의 액세스를 방지합니다.
레지스트리 pod가 없는지 확인합니다.
$ oc get pod -n openshift-image-registry -l docker-registry=default
출력 예
No resourses found in openshift-image-registry namespace
참고출력에 레지스트리 Pod가 있는 경우 이 절차를 계속할 필요가 없습니다.
레지스트리 구성을 확인합니다.
$ oc edit configs.imageregistry.operator.openshift.io
출력 예
storage: pvc: claim:
image-registry-storage
PVC의 자동 생성을 허용하도록claim
필드를 비워 둡니다.clusteroperator
상태를 확인합니다.$ oc get clusteroperator image-registry
출력 예
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE MESSAGE image-registry 4.7 True False False 6h50m
이미지를 빌드 및 푸시할 수 있도록 레지스트리의 관리가 설정되어 있는지 확인하십시오.
다음을 실행합니다.
$ oc edit configs.imageregistry/cluster
다음으로 라인을 변경하십시오.
managementState: Removed
다음으로 변경
managementState: Managed
9.2.16.1.2. 프로덕션 환경 외 클러스터에서 이미지 레지스트리의 스토리지 구성
이미지 레지스트리 Operator에 대한 스토리지를 구성해야 합니다. 프로덕션 환경 외 클러스터의 경우, 이미지 레지스트리를 빈 디렉터리로 설정할 수 있습니다. 이렇게 하는 경우 레지스트리를 다시 시작하면 모든 이미지가 손실됩니다.
절차
이미지 레지스트리 스토리지를 빈 디렉터리로 설정하려면 다음을 수행하십시오.
$ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
주의프로덕션 환경 외 클러스터에 대해서만 이 옵션을 구성하십시오.
Image Registry Operator가 구성 요소를 초기화하기 전에 이 명령을 실행하면
oc patch
명령이 실패하며 다음 오류가 발생합니다.Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found
몇 분 후에 명령을 다시 실행하십시오.
9.2.17. 사용자 프로비저닝 인프라에 설치 완료
Operator 구성을 완료한 후 제공하는 인프라에 클러스터 설치를 완료할 수 있습니다.
사전 요구 사항
- 컨트롤 플레인이 초기화되어 있습니다.
- 초기 Operator 구성을 완료해야 합니다.
절차
다음 명령을 사용하여 모든 클러스터 구성 요소가 온라인 상태인지 확인합니다.
$ watch -n5 oc get clusteroperators
출력 예
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE authentication 4.8.2 True False False 19m baremetal 4.8.2 True False False 37m cloud-credential 4.8.2 True False False 40m cluster-autoscaler 4.8.2 True False False 37m config-operator 4.8.2 True False False 38m console 4.8.2 True False False 26m csi-snapshot-controller 4.8.2 True False False 37m dns 4.8.2 True False False 37m etcd 4.8.2 True False False 36m image-registry 4.8.2 True False False 31m ingress 4.8.2 True False False 30m insights 4.8.2 True False False 31m kube-apiserver 4.8.2 True False False 26m kube-controller-manager 4.8.2 True False False 36m kube-scheduler 4.8.2 True False False 36m kube-storage-version-migrator 4.8.2 True False False 37m machine-api 4.8.2 True False False 29m machine-approver 4.8.2 True False False 37m machine-config 4.8.2 True False False 36m marketplace 4.8.2 True False False 37m monitoring 4.8.2 True False False 29m network 4.8.2 True False False 38m node-tuning 4.8.2 True False False 37m openshift-apiserver 4.8.2 True False False 32m openshift-controller-manager 4.8.2 True False False 30m openshift-samples 4.8.2 True False False 32m operator-lifecycle-manager 4.8.2 True False False 37m operator-lifecycle-manager-catalog 4.8.2 True False False 37m operator-lifecycle-manager-packageserver 4.8.2 True False False 32m service-ca 4.8.2 True False False 38m storage 4.8.2 True False False 37m
또는 다음 명령은 모든 클러스터를 사용할 수 있을 때 알립니다. 또한 인증 정보를 검색하고 표시합니다.
$ ./openshift-install --dir <installation_directory> wait-for install-complete 1
- 1
<installation_directory>
는 설치 파일을 저장한 디렉터리의 경로를 지정합니다.
출력 예
INFO Waiting up to 30m0s for the cluster to initialize...
Cluster Version Operator가 Kubernetes API 서버에서 OpenShift Container Platform 클러스터 배포를 완료하면 명령이 성공합니다.
중요-
설치 프로그램에서 생성하는 Ignition 구성 파일에 24시간 후에 만료되는 인증서가 포함되어 있습니다. 이 인증서는 그 후에 갱신됩니다. 인증서를 갱신하기 전에 클러스터가 종료되고 24시간이 지난 후에 클러스터가 다시 시작되면 클러스터는 만료된 인증서를 자동으로 복구합니다. 예외적으로 kubelet 인증서를 복구하려면 대기 중인
node-bootstrapper
인증서 서명 요청(CSR)을 수동으로 승인해야 합니다. 자세한 내용은 Recovering from expired control plane certificates 문서를 참조하십시오. - 클러스터를 설치한 후 24시간에서 22시간까지의 인증서가 교체되기 때문에 생성된 후 12시간 이내에 Ignition 구성 파일을 사용하는 것이 좋습니다. 12시간 이내에 Ignition 구성 파일을 사용하면 설치 중에 인증서 업데이트가 실행되는 경우 설치 실패를 방지할 수 있습니다.
Kubernetes API 서버가 Pod와 통신하고 있는지 확인합니다.
모든 Pod 목록을 보려면 다음 명령을 사용하십시오.
$ oc get pods --all-namespaces
출력 예
NAMESPACE NAME READY STATUS RESTARTS AGE openshift-apiserver-operator openshift-apiserver-operator-85cb746d55-zqhs8 1/1 Running 1 9m openshift-apiserver apiserver-67b9g 1/1 Running 0 3m openshift-apiserver apiserver-ljcmx 1/1 Running 0 1m openshift-apiserver apiserver-z25h4 1/1 Running 0 2m openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8 1/1 Running 0 5m ...
다음 명령을 사용하여 이전 명령의 출력에 나열된 Pod의 로그를 표시합니다.
$ oc logs <pod_name> -n <namespace> 1
- 1
- 이전 명령의 출력에 표시된 대로 Pod 이름과 네임스페이스를 지정합니다.
Pod 로그가 표시되면 Kubernetes API 서버는 클러스터 시스템과 통신할 수 있습니다.
FCP(Fibre Channel Protocol)를 사용하는 설치에는 다중 경로를 활성화하기 위해 추가 단계가 필요합니다. 설치 중에 멀티패스를 활성화하지 마십시오.
자세한 내용은 설치 후 머신 구성 작업 설명서에서 "RHCOS에서 커널 인수를 사용하여 멀티패스 활성화"를 참조하십시오.
9.2.18. OpenShift Container Platform의 Telemetry 액세스
OpenShift Container Platform 4.8에서는 클러스터 상태 및 업데이트 진행에 대한 메트릭을 제공하기 위해 기본적으로 실행되는 Telemetry 서비스에 인터넷 액세스가 필요합니다. 클러스터가 인터넷에 연결되어 있으면 Telemetry가 자동으로 실행되고 OpenShift Cluster Manager 에 클러스터가 자동으로 등록됩니다.
OpenShift Cluster Manager 인벤토리가 올바르거나 OpenShift Cluster Manager를 사용하여 자동으로 또는 OpenShift Cluster Manager를 사용하여 수동으로 유지 관리되는지 확인한 후 subscription watch를 사용하여 계정 또는 다중 클러스터 수준에서 OpenShift Container Platform 서브스크립션을 추적합니다.
추가 리소스
- Telemetry 서비스에 대한 자세한 내용은 원격 상태 모니터링 정보를 참조하십시오.
9.2.19. 디버깅 정보 수집
IBM Z에서 OpenShift Container Platform 설치와 관련된 특정 문제를 해결하고 디버깅하는데 도움이 될 수 있는 디버깅 정보를 수집할 수 있습니다.
사전 요구 사항
-
oc
CLI 도구가 설치되어 있어야 합니다.
절차
클러스터에 로그인합니다.
$ oc login -u <username>
하드웨어 정보를 수집하는 노드에서 디버깅 컨테이너를 시작합니다.
$ oc debug node/<nodename>
/host 파일 시스템으로 변경하고
toolbox
를 시작합니다.$ chroot /host $ toolbox
dbginfo
데이터를 수집합니다.$ dbginfo.sh
-
다음으로
scp
를 사용하여 데이터를 검색할 수 있습니다.
추가 리소스
9.2.20. 다음 단계
- RHCOS에서 커널 인수를 사용하여 멀티패스 활성화
- 클러스터를 사용자 지정합니다.
- 필요한 경우 원격 상태 보고 옵트아웃을 수행할 수 있습니다.