Questo contenuto non è disponibile nella lingua selezionata.
Chapter 2. Working with pods
2.1. Using pods
A pod is one or more containers deployed together on one host, and the smallest compute unit that can be defined, deployed, and managed.
2.1.1. Understanding pods
Pods are the rough equivalent of a machine instance (physical or virtual) to a Container. Each pod is allocated its own internal IP address, therefore owning its entire port space, and containers within pods can share their local storage and networking.
Pods have a lifecycle; they are defined, then they are assigned to run on a node, then they run until their container(s) exit or they are removed for some other reason. Pods, depending on policy and exit code, might be removed after exiting, or can be retained to enable access to the logs of their containers.
OpenShift Container Platform treats pods as largely immutable; changes cannot be made to a pod definition while it is running. OpenShift Container Platform implements changes by terminating an existing pod and recreating it with modified configuration, base image(s), or both. Pods are also treated as expendable, and do not maintain state when recreated. Therefore pods should usually be managed by higher-level controllers, rather than directly by users.
For the maximum number of pods per OpenShift Container Platform node host, see the Cluster Limits.
Bare pods that are not managed by a replication controller will be not rescheduled upon node disruption.
2.1.2. Example pod configurations
OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more containers deployed together on one host, and the smallest compute unit that can be defined, deployed, and managed.
The following is an example definition of a pod from a Rails application. It demonstrates many features of pods, most of which are discussed in other topics and thus only briefly mentioned here:
Pod
object definition (YAML)
kind: Pod apiVersion: v1 metadata: name: example namespace: default selfLink: /api/v1/namespaces/default/pods/example uid: 5cc30063-0265780783bc resourceVersion: '165032' creationTimestamp: '2019-02-13T20:31:37Z' labels: app: hello-openshift 1 annotations: openshift.io/scc: anyuid spec: restartPolicy: Always 2 serviceAccountName: default imagePullSecrets: - name: default-dockercfg-5zrhb priority: 0 schedulerName: default-scheduler terminationGracePeriodSeconds: 30 nodeName: ip-10-0-140-16.us-east-2.compute.internal securityContext: 3 seLinuxOptions: level: 's0:c11,c10' containers: 4 - resources: {} terminationMessagePath: /dev/termination-log name: hello-openshift securityContext: capabilities: drop: - MKNOD procMount: Default ports: - containerPort: 8080 protocol: TCP imagePullPolicy: Always volumeMounts: 5 - name: default-token-wbqsl readOnly: true mountPath: /var/run/secrets/kubernetes.io/serviceaccount 6 terminationMessagePolicy: File image: registry.redhat.io/openshift4/ose-ogging-eventrouter:v4.3 7 serviceAccount: default 8 volumes: 9 - name: default-token-wbqsl secret: secretName: default-token-wbqsl defaultMode: 420 dnsPolicy: ClusterFirst status: phase: Pending conditions: - type: Initialized status: 'True' lastProbeTime: null lastTransitionTime: '2019-02-13T20:31:37Z' - type: Ready status: 'False' lastProbeTime: null lastTransitionTime: '2019-02-13T20:31:37Z' reason: ContainersNotReady message: 'containers with unready status: [hello-openshift]' - type: ContainersReady status: 'False' lastProbeTime: null lastTransitionTime: '2019-02-13T20:31:37Z' reason: ContainersNotReady message: 'containers with unready status: [hello-openshift]' - type: PodScheduled status: 'True' lastProbeTime: null lastTransitionTime: '2019-02-13T20:31:37Z' hostIP: 10.0.140.16 startTime: '2019-02-13T20:31:37Z' containerStatuses: - name: hello-openshift state: waiting: reason: ContainerCreating lastState: {} ready: false restartCount: 0 image: openshift/hello-openshift imageID: '' qosClass: BestEffort
- 1
- Pods can be "tagged" with one or more labels, which can then be used to select and manage groups of pods in a single operation. The labels are stored in key/value format in the
metadata
hash. - 2
- The pod restart policy with possible values
Always
,OnFailure
, andNever
. The default value isAlways
. - 3
- OpenShift Container Platform defines a security context for containers which specifies whether they are allowed to run as privileged containers, run as a user of their choice, and more. The default context is very restrictive but administrators can modify this as needed.
- 4
containers
specifies an array of one or more container definitions.- 5
- The container specifies where external storage volumes are mounted within the container. In this case, there is a volume for storing access to credentials the registry needs for making requests against the OpenShift Container Platform API.
- 6
- Specify the volumes to provide for the pod. Volumes mount at the specified path. Do not mount to the container root,
/
, or any path that is the same in the host and the container. This can corrupt your host system if the container is sufficiently privileged, such as the host/dev/pts
files. It is safe to mount the host by using/host
. - 7
- Each container in the pod is instantiated from its own container image.
- 8
- Pods making requests against the OpenShift Container Platform API is a common enough pattern that there is a
serviceAccount
field for specifying which service account user the pod should authenticate as when making the requests. This enables fine-grained access control for custom infrastructure components. - 9
- The pod defines storage volumes that are available to its container(s) to use. In this case, it provides an ephemeral volume for a
secret
volume containing the default service account tokens.If you attach persistent volumes that have high file counts to pods, those pods can fail or can take a long time to start. For more information, see When using Persistent Volumes with high file counts in OpenShift, why do pods fail to start or take an excessive amount of time to achieve "Ready" state?.
This pod definition does not include attributes that are filled by OpenShift Container Platform automatically after the pod is created and its lifecycle begins. The Kubernetes pod documentation has details about the functionality and purpose of pods.
2.1.3. Additional resources
- For more information on pods and storage see Understanding persistent storage and Understanding ephemeral storage.
2.2. Viewing pods
As an administrator, you can view the pods in your cluster and to determine the health of those pods and the cluster as a whole.
2.2.1. About pods
OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more containers deployed together on one host, and the smallest compute unit that can be defined, deployed, and managed. Pods are the rough equivalent of a machine instance (physical or virtual) to a container.
You can view a list of pods associated with a specific project or view usage statistics about pods.
2.2.2. Viewing pods in a project
You can view a list of pods associated with the current project, including the number of replica, the current status, number or restarts and the age of the pod.
Procedure
To view the pods in a project:
Change to the project:
$ oc project <project-name>
Run the following command:
$ oc get pods
For example:
$ oc get pods
Example output
NAME READY STATUS RESTARTS AGE console-698d866b78-bnshf 1/1 Running 2 165m console-698d866b78-m87pm 1/1 Running 2 165m
Add the
-o wide
flags to view the pod IP address and the node where the pod is located.$ oc get pods -o wide
Example output
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE console-698d866b78-bnshf 1/1 Running 2 166m 10.128.0.24 ip-10-0-152-71.ec2.internal <none> console-698d866b78-m87pm 1/1 Running 2 166m 10.129.0.23 ip-10-0-173-237.ec2.internal <none>
2.2.3. Viewing pod usage statistics
You can display usage statistics about pods, which provide the runtime environments for containers. These usage statistics include CPU, memory, and storage consumption.
Prerequisites
-
You must have
cluster-reader
permission to view the usage statistics. - Metrics must be installed to view the usage statistics.
Procedure
To view the usage statistics:
Run the following command:
$ oc adm top pods
For example:
$ oc adm top pods -n openshift-console
Example output
NAME CPU(cores) MEMORY(bytes) console-7f58c69899-q8c8k 0m 22Mi console-7f58c69899-xhbgg 0m 25Mi downloads-594fcccf94-bcxk8 3m 18Mi downloads-594fcccf94-kv4p6 2m 15Mi
Run the following command to view the usage statistics for pods with labels:
$ oc adm top pod --selector=''
You must choose the selector (label query) to filter on. Supports
=
,==
, and!=
.For example:
$ oc adm top pod --selector='name=my-pod'
2.2.4. Viewing resource logs
You can view the log for various resources in the OpenShift CLI (oc) and web console. Logs read from the tail, or end, of the log.
Prerequisites
- Access to the OpenShift CLI (oc).
Procedure (UI)
In the OpenShift Container Platform console, navigate to Workloads
Pods or navigate to the pod through the resource you want to investigate. NoteSome resources, such as builds, do not have pods to query directly. In such instances, you can locate the Logs link on the Details page for the resource.
- Select a project from the drop-down menu.
- Click the name of the pod you want to investigate.
- Click Logs.
Procedure (CLI)
View the log for a specific pod:
$ oc logs -f <pod_name> -c <container_name>
where:
-f
- Optional: Specifies that the output follows what is being written into the logs.
<pod_name>
- Specifies the name of the pod.
<container_name>
- Optional: Specifies the name of a container. When a pod has more than one container, you must specify the container name.
For example:
$ oc logs ruby-58cd97df55-mww7r
$ oc logs -f ruby-57f7f4855b-znl92 -c ruby
The contents of log files are printed out.
View the log for a specific resource:
$ oc logs <object_type>/<resource_name> 1
- 1
- Specifies the resource type and name.
For example:
$ oc logs deployment/ruby
The contents of log files are printed out.
2.3. Configuring an OpenShift Container Platform cluster for pods
As an administrator, you can create and maintain an efficient cluster for pods.
By keeping your cluster efficient, you can provide a better environment for your developers using such tools as what a pod does when it exits, ensuring that the required number of pods is always running, when to restart pods designed to run only once, limit the bandwidth available to pods, and how to keep pods running during disruptions.
2.3.1. Configuring how pods behave after restart
A pod restart policy determines how OpenShift Container Platform responds when Containers in that pod exit. The policy applies to all Containers in that pod.
The possible values are:
-
Always
- Tries restarting a successfully exited Container on the pod continuously, with an exponential back-off delay (10s, 20s, 40s) capped at 5 minutes. The default isAlways
. -
OnFailure
- Tries restarting a failed Container on the pod with an exponential back-off delay (10s, 20s, 40s) capped at 5 minutes. -
Never
- Does not try to restart exited or failed Containers on the pod. Pods immediately fail and exit.
After the pod is bound to a node, the pod will never be bound to another node. This means that a controller is necessary in order for a pod to survive node failure:
Condition | Controller Type | Restart Policy |
---|---|---|
Pods that are expected to terminate (such as batch computations) | Job |
|
Pods that are expected to not terminate (such as web servers) | Replication controller |
|
Pods that must run one-per-machine | Daemon set | Any |
If a Container on a pod fails and the restart policy is set to OnFailure
, the pod stays on the node and the Container is restarted. If you do not want the Container to restart, use a restart policy of Never
.
If an entire pod fails, OpenShift Container Platform starts a new pod. Developers must address the possibility that applications might be restarted in a new pod. In particular, applications must handle temporary files, locks, incomplete output, and so forth caused by previous runs.
Kubernetes architecture expects reliable endpoints from cloud providers. When a cloud provider is down, the kubelet prevents OpenShift Container Platform from restarting.
If the underlying cloud provider endpoints are not reliable, do not install a cluster using cloud provider integration. Install the cluster as if it was in a no-cloud environment. It is not recommended to toggle cloud provider integration on or off in an installed cluster.
For details on how OpenShift Container Platform uses restart policy with failed Containers, see the Example States in the Kubernetes documentation.
2.3.2. Limiting the bandwidth available to pods
You can apply quality-of-service traffic shaping to a pod and effectively limit its available bandwidth. Egress traffic (from the pod) is handled by policing, which simply drops packets in excess of the configured rate. Ingress traffic (to the pod) is handled by shaping queued packets to effectively handle data. The limits you place on a pod do not affect the bandwidth of other pods.
Procedure
To limit the bandwidth on a pod:
Write an object definition JSON file, and specify the data traffic speed using
kubernetes.io/ingress-bandwidth
andkubernetes.io/egress-bandwidth
annotations. For example, to limit both pod egress and ingress bandwidth to 10M/s:Limited
Pod
object definition{ "kind": "Pod", "spec": { "containers": [ { "image": "openshift/hello-openshift", "name": "hello-openshift" } ] }, "apiVersion": "v1", "metadata": { "name": "iperf-slow", "annotations": { "kubernetes.io/ingress-bandwidth": "10M", "kubernetes.io/egress-bandwidth": "10M" } } }
Create the pod using the object definition:
$ oc create -f <file_or_dir_path>
2.3.3. Understanding how to use pod disruption budgets to specify the number of pods that must be up
A pod disruption budget allows the specification of safety constraints on pods during operations, such as draining a node for maintenance.
PodDisruptionBudget
is an API object that specifies the minimum number or percentage of replicas that must be up at a time. Setting these in projects can be helpful during node maintenance (such as scaling a cluster down or a cluster upgrade) and is only honored on voluntary evictions (not on node failures).
A PodDisruptionBudget
object’s configuration consists of the following key parts:
- A label selector, which is a label query over a set of pods.
An availability level, which specifies the minimum number of pods that must be available simultaneously, either:
-
minAvailable
is the number of pods must always be available, even during a disruption. -
maxUnavailable
is the number of pods can be unavailable during a disruption.
-
Available
refers to the number of pods that has condition Ready=True
. Ready=True
refers to the pod that is able to serve requests and should be added to the load balancing pools of all matching services.
A maxUnavailable
of 0%
or 0
or a minAvailable
of 100%
or equal to the number of replicas is permitted but can block nodes from being drained.
You can check for pod disruption budgets across all projects with the following:
$ oc get poddisruptionbudget --all-namespaces
Example output
NAMESPACE NAME MIN AVAILABLE MAX UNAVAILABLE ALLOWED DISRUPTIONS AGE openshift-apiserver openshift-apiserver-pdb N/A 1 1 121m openshift-cloud-controller-manager aws-cloud-controller-manager 1 N/A 1 125m openshift-cloud-credential-operator pod-identity-webhook 1 N/A 1 117m openshift-cluster-csi-drivers aws-ebs-csi-driver-controller-pdb N/A 1 1 121m openshift-cluster-storage-operator csi-snapshot-controller-pdb N/A 1 1 122m openshift-cluster-storage-operator csi-snapshot-webhook-pdb N/A 1 1 122m openshift-console console N/A 1 1 116m #...
The PodDisruptionBudget
is considered healthy when there are at least minAvailable
pods running in the system. Every pod above that limit can be evicted.
Depending on your pod priority and preemption settings, lower-priority pods might be removed despite their pod disruption budget requirements.
2.3.3.1. Specifying the number of pods that must be up with pod disruption budgets
You can use a PodDisruptionBudget
object to specify the minimum number or percentage of replicas that must be up at a time.
Procedure
To configure a pod disruption budget:
Create a YAML file with the an object definition similar to the following:
apiVersion: policy/v1 1 kind: PodDisruptionBudget metadata: name: my-pdb spec: minAvailable: 2 2 selector: 3 matchLabels: name: my-pod
- 1
PodDisruptionBudget
is part of thepolicy/v1
API group.- 2
- The minimum number of pods that must be available simultaneously. This can be either an integer or a string specifying a percentage, for example,
20%
. - 3
- A label query over a set of resources. The result of
matchLabels
andmatchExpressions
are logically conjoined. Leave this paramter blank, for exampleselector {}
, to select all pods in the project.
Or:
apiVersion: policy/v1 1 kind: PodDisruptionBudget metadata: name: my-pdb spec: maxUnavailable: 25% 2 selector: 3 matchLabels: name: my-pod
- 1
PodDisruptionBudget
is part of thepolicy/v1
API group.- 2
- The maximum number of pods that can be unavailable simultaneously. This can be either an integer or a string specifying a percentage, for example,
20%
. - 3
- A label query over a set of resources. The result of
matchLabels
andmatchExpressions
are logically conjoined. Leave this paramter blank, for exampleselector {}
, to select all pods in the project.
Run the following command to add the object to project:
$ oc create -f </path/to/file> -n <project_name>
2.3.4. Preventing pod removal using critical pods
There are a number of core components that are critical to a fully functional cluster, but, run on a regular cluster node rather than the master. A cluster might stop working properly if a critical add-on is evicted.
Pods marked as critical are not allowed to be evicted.
Procedure
To make a pod critical:
Create a
Pod
spec or edit existing pods to include thesystem-cluster-critical
priority class:apiVersion: v1 kind: Pod metadata: name: my-pdb spec: template: metadata: name: critical-pod priorityClassName: system-cluster-critical 1
- 1
- Default priority class for pods that should never be evicted from a node.
Alternatively, you can specify
system-node-critical
for pods that are important to the cluster but can be removed if necessary.Create the pod:
$ oc create -f <file-name>.yaml
2.3.5. Reducing pod timeouts when using persistent volumes with high file counts
If a storage volume contains many files (~1,000,000 or greater), you might experience pod timeouts.
This can occur because, when volumes are mounted, OpenShift Container Platform recursively changes the ownership and permissions of the contents of each volume in order to match the fsGroup
specified in a pod’s securityContext
. For large volumes, checking and changing the ownership and permissions can be time consuming, resulting in a very slow pod startup.
You can reduce this delay by applying one of the following workarounds:
- Use a security context constraint (SCC) to skip the SELinux relabeling for a volume.
-
Use the
fsGroupChangePolicy
field inside an SCC to control the way that OpenShift Container Platform checks and manages ownership and permissions for a volume. - Use a runtime class to skip the SELinux relabeling for a volume.
For information, see When using Persistent Volumes with high file counts in OpenShift, why do pods fail to start or take an excessive amount of time to achieve "Ready" state?.
2.4. Automatically scaling pods with the horizontal pod autoscaler
As a developer, you can use a horizontal pod autoscaler (HPA) to specify how OpenShift Container Platform should automatically increase or decrease the scale of a replication controller or deployment configuration, based on metrics collected from the pods that belong to that replication controller or deployment configuration. You can create an HPA for any any deployment, deployment config, replica set, replication controller, or stateful set.
For information on scaling pods based on custom metrics, see Automatically scaling pods based on custom metrics.
It is recommended to use a Deployment
object or ReplicaSet
object unless you need a specific feature or behavior provided by other objects. For more information on these objects, see Understanding Deployment and DeploymentConfig objects.
2.4.1. Understanding horizontal pod autoscalers
You can create a horizontal pod autoscaler to specify the minimum and maximum number of pods you want to run, as well as the CPU utilization or memory utilization your pods should target.
After you create a horizontal pod autoscaler, OpenShift Container Platform begins to query the CPU and/or memory resource metrics on the pods. When these metrics are available, the horizontal pod autoscaler computes the ratio of the current metric utilization with the desired metric utilization, and scales up or down accordingly. The query and scaling occurs at a regular interval, but can take one to two minutes before metrics become available.
For replication controllers, this scaling corresponds directly to the replicas of the replication controller. For deployment configurations, scaling corresponds directly to the replica count of the deployment configuration. Note that autoscaling applies only to the latest deployment in the Complete
phase.
OpenShift Container Platform automatically accounts for resources and prevents unnecessary autoscaling during resource spikes, such as during start up. Pods in the unready
state have 0 CPU
usage when scaling up and the autoscaler ignores the pods when scaling down. Pods without known metrics have 0% CPU
usage when scaling up and 100% CPU
when scaling down. This allows for more stability during the HPA decision. To use this feature, you must configure readiness checks to determine if a new pod is ready for use.
To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics.
2.4.1.1. Supported metrics
The following metrics are supported by horizontal pod autoscalers:
Metric | Description | API version |
---|---|---|
CPU utilization | Number of CPU cores used. Can be used to calculate a percentage of the pod’s requested CPU. |
|
Memory utilization | Amount of memory used. Can be used to calculate a percentage of the pod’s requested memory. |
|
For memory-based autoscaling, memory usage must increase and decrease proportionally to the replica count. On average:
- An increase in replica count must lead to an overall decrease in memory (working set) usage per-pod.
- A decrease in replica count must lead to an overall increase in per-pod memory usage.
Use the OpenShift Container Platform web console to check the memory behavior of your application and ensure that your application meets these requirements before using memory-based autoscaling.
The following example shows autoscaling for the image-registry
Deployment
object. The initial deployment requires 3 pods. The HPA object increases the minimum to 5. If CPU usage on the pods reaches 75%, the pods increase to 7:
$ oc autoscale deployment/image-registry --min=5 --max=7 --cpu-percent=75
Example output
horizontalpodautoscaler.autoscaling/image-registry autoscaled
Sample HPA for the image-registry
Deployment
object with minReplicas
set to 3
apiVersion: autoscaling/v1 kind: HorizontalPodAutoscaler metadata: name: image-registry namespace: default spec: maxReplicas: 7 minReplicas: 3 scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: image-registry targetCPUUtilizationPercentage: 75 status: currentReplicas: 5 desiredReplicas: 0
View the new state of the deployment:
$ oc get deployment image-registry
There are now 5 pods in the deployment:
Example output
NAME REVISION DESIRED CURRENT TRIGGERED BY image-registry 1 5 5 config
2.4.2. How does the HPA work?
The horizontal pod autoscaler (HPA) extends the concept of pod auto-scaling. The HPA lets you create and manage a group of load-balanced nodes. The HPA automatically increases or decreases the number of pods when a given CPU or memory threshold is crossed.
Figure 2.1. High level workflow of the HPA
The HPA is an API resource in the Kubernetes autoscaling API group. The autoscaler works as a control loop with a default of 15 seconds for the sync period. During this period, the controller manager queries the CPU, memory utilization, or both, against what is defined in the YAML file for the HPA. The controller manager obtains the utilization metrics from the resource metrics API for per-pod resource metrics like CPU or memory, for each pod that is targeted by the HPA.
If a utilization value target is set, the controller calculates the utilization value as a percentage of the equivalent resource request on the containers in each pod. The controller then takes the average of utilization across all targeted pods and produces a ratio that is used to scale the number of desired replicas. The HPA is configured to fetch metrics from metrics.k8s.io
, which is provided by the metrics server. Because of the dynamic nature of metrics evaluation, the number of replicas can fluctuate during scaling for a group of replicas.
To implement the HPA, all targeted pods must have a resource request set on their containers.
2.4.3. About requests and limits
The scheduler uses the resource request that you specify for containers in a pod, to decide which node to place the pod on. The kubelet enforces the resource limit that you specify for a container to ensure that the container is not allowed to use more than the specified limit. The kubelet also reserves the request amount of that system resource specifically for that container to use.
How to use resource metrics?
In the pod specifications, you must specify the resource requests, such as CPU and memory. The HPA uses this specification to determine the resource utilization and then scales the target up or down.
For example, the HPA object uses the following metric source:
type: Resource resource: name: cpu target: type: Utilization averageUtilization: 60
In this example, the HPA keeps the average utilization of the pods in the scaling target at 60%. Utilization is the ratio between the current resource usage to the requested resource of the pod.
2.4.4. Best practices
All pods must have resource requests configured
The HPA makes a scaling decision based on the observed CPU or memory utilization values of pods in an OpenShift Container Platform cluster. Utilization values are calculated as a percentage of the resource requests of each pod. Missing resource request values can affect the optimal performance of the HPA.
Configure the cool down period
During horizontal pod autoscaling, there might be a rapid scaling of events without a time gap. Configure the cool down period to prevent frequent replica fluctuations. You can specify a cool down period by configuring the stabilizationWindowSeconds
field. The stabilization window is used to restrict the fluctuation of replicas count when the metrics used for scaling keep fluctuating. The autoscaling algorithm uses this window to infer a previous desired state and avoid unwanted changes to workload scale.
For example, a stabilization window is specified for the scaleDown
field:
behavior: scaleDown: stabilizationWindowSeconds: 300
In the above example, all desired states for the past 5 minutes are considered. This approximates a rolling maximum, and avoids having the scaling algorithm frequently remove pods only to trigger recreating an equivalent pod just moments later.
2.4.4.1. Scaling policies
The autoscaling/v2
API allows you to add scaling policies to a horizontal pod autoscaler. A scaling policy controls how the OpenShift Container Platform horizontal pod autoscaler (HPA) scales pods. Scaling policies allow you to restrict the rate that HPAs scale pods up or down by setting a specific number or specific percentage to scale in a specified period of time. You can also define a stabilization window, which uses previously computed desired states to control scaling if the metrics are fluctuating. You can create multiple policies for the same scaling direction, and determine which policy is used, based on the amount of change. You can also restrict the scaling by timed iterations. The HPA scales pods during an iteration, then performs scaling, as needed, in further iterations.
Sample HPA object with a scaling policy
apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: hpa-resource-metrics-memory namespace: default spec: behavior: scaleDown: 1 policies: 2 - type: Pods 3 value: 4 4 periodSeconds: 60 5 - type: Percent value: 10 6 periodSeconds: 60 selectPolicy: Min 7 stabilizationWindowSeconds: 300 8 scaleUp: 9 policies: - type: Pods value: 5 10 periodSeconds: 70 - type: Percent value: 12 11 periodSeconds: 80 selectPolicy: Max stabilizationWindowSeconds: 0 ...
- 1
- Specifies the direction for the scaling policy, either
scaleDown
orscaleUp
. This example creates a policy for scaling down. - 2
- Defines the scaling policy.
- 3
- Determines if the policy scales by a specific number of pods or a percentage of pods during each iteration. The default value is
pods
. - 4
- Limits the amount of scaling, either the number of pods or percentage of pods, during each iteration. There is no default value for scaling down by number of pods.
- 5
- Determines the length of a scaling iteration. The default value is
15
seconds. - 6
- The default value for scaling down by percentage is 100%.
- 7
- Determines which policy to use first, if multiple policies are defined. Specify
Max
to use the policy that allows the highest amount of change,Min
to use the policy that allows the lowest amount of change, orDisabled
to prevent the HPA from scaling in that policy direction. The default value isMax
. - 8
- Determines the time period the HPA should look back at desired states. The default value is
0
. - 9
- This example creates a policy for scaling up.
- 10
- Limits the amount of scaling up by the number of pods. The default value for scaling up the number of pods is 4%.
- 11
- Limits the amount of scaling up by the percentage of pods. The default value for scaling up by percentage is 100%.
Example policy for scaling down
apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: hpa-resource-metrics-memory namespace: default spec: ... minReplicas: 20 ... behavior: scaleDown: stabilizationWindowSeconds: 300 policies: - type: Pods value: 4 periodSeconds: 30 - type: Percent value: 10 periodSeconds: 60 selectPolicy: Max scaleUp: selectPolicy: Disabled
In this example, when the number of pods is greater than 40, the percent-based policy is used for scaling down, as that policy results in a larger change, as required by the selectPolicy
.
If there are 80 pod replicas, in the first iteration the HPA reduces the pods by 8, which is 10% of the 80 pods (based on the type: Percent
and value: 10
parameters), over one minute (periodSeconds: 60
). For the next iteration, the number of pods is 72. The HPA calculates that 10% of the remaining pods is 7.2, which it rounds up to 8 and scales down 8 pods. On each subsequent iteration, the number of pods to be scaled is re-calculated based on the number of remaining pods. When the number of pods falls below 40, the pods-based policy is applied, because the pod-based number is greater than the percent-based number. The HPA reduces 4 pods at a time (type: Pods
and value: 4
), over 30 seconds (periodSeconds: 30
), until there are 20 replicas remaining (minReplicas
).
The selectPolicy: Disabled
parameter prevents the HPA from scaling up the pods. You can manually scale up by adjusting the number of replicas in the replica set or deployment set, if needed.
If set, you can view the scaling policy by using the oc edit
command:
$ oc edit hpa hpa-resource-metrics-memory
Example output
apiVersion: autoscaling/v1 kind: HorizontalPodAutoscaler metadata: annotations: autoscaling.alpha.kubernetes.io/behavior:\ '{"ScaleUp":{"StabilizationWindowSeconds":0,"SelectPolicy":"Max","Policies":[{"Type":"Pods","Value":4,"PeriodSeconds":15},{"Type":"Percent","Value":100,"PeriodSeconds":15}]},\ "ScaleDown":{"StabilizationWindowSeconds":300,"SelectPolicy":"Min","Policies":[{"Type":"Pods","Value":4,"PeriodSeconds":60},{"Type":"Percent","Value":10,"PeriodSeconds":60}]}}' ...
2.4.5. Creating a horizontal pod autoscaler by using the web console
From the web console, you can create a horizontal pod autoscaler (HPA) that specifies the minimum and maximum number of pods you want to run on a Deployment
or DeploymentConfig
object. You can also define the amount of CPU or memory usage that your pods should target.
An HPA cannot be added to deployments that are part of an Operator-backed service, Knative service, or Helm chart.
Procedure
To create an HPA in the web console:
- In the Topology view, click the node to reveal the side pane.
From the Actions drop-down list, select Add HorizontalPodAutoscaler to open the Add HorizontalPodAutoscaler form.
Figure 2.2. Add HorizontalPodAutoscaler
From the Add HorizontalPodAutoscaler form, define the name, minimum and maximum pod limits, the CPU and memory usage, and click Save.
NoteIf any of the values for CPU and memory usage are missing, a warning is displayed.
To edit an HPA in the web console:
- In the Topology view, click the node to reveal the side pane.
- From the Actions drop-down list, select Edit HorizontalPodAutoscaler to open the Edit Horizontal Pod Autoscaler form.
- From the Edit Horizontal Pod Autoscaler form, edit the minimum and maximum pod limits and the CPU and memory usage, and click Save.
While creating or editing the horizontal pod autoscaler in the web console, you can switch from Form view to YAML view.
To remove an HPA in the web console:
- In the Topology view, click the node to reveal the side panel.
- From the Actions drop-down list, select Remove HorizontalPodAutoscaler.
- In the confirmation pop-up window, click Remove to remove the HPA.
2.4.6. Creating a horizontal pod autoscaler for CPU utilization by using the CLI
Using the OpenShift Container Platform CLI, you can create a horizontal pod autoscaler (HPA) to automatically scale an existing Deployment
, DeploymentConfig
, ReplicaSet
, ReplicationController
, or StatefulSet
object. The HPA scales the pods associated with that object to maintain the CPU usage you specify.
It is recommended to use a Deployment
object or ReplicaSet
object unless you need a specific feature or behavior provided by other objects.
The HPA increases and decreases the number of replicas between the minimum and maximum numbers to maintain the specified CPU utilization across all pods.
When autoscaling for CPU utilization, you can use the oc autoscale
command and specify the minimum and maximum number of pods you want to run at any given time and the average CPU utilization your pods should target. If you do not specify a minimum, the pods are given default values from the OpenShift Container Platform server.
To autoscale for a specific CPU value, create a HorizontalPodAutoscaler
object with the target CPU and pod limits.
Prerequisites
To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics. You can use the oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory
displayed under Usage
.
$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Example output
Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Namespace: openshift-kube-scheduler Labels: <none> Annotations: <none> API Version: metrics.k8s.io/v1beta1 Containers: Name: wait-for-host-port Usage: Memory: 0 Name: scheduler Usage: Cpu: 8m Memory: 45440Ki Kind: PodMetrics Metadata: Creation Timestamp: 2019-05-23T18:47:56Z Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Timestamp: 2019-05-23T18:47:56Z Window: 1m0s Events: <none>
Procedure
To create a horizontal pod autoscaler for CPU utilization:
Perform one of the following:
To scale based on the percent of CPU utilization, create a
HorizontalPodAutoscaler
object for an existing object:$ oc autoscale <object_type>/<name> \1 --min <number> \2 --max <number> \3 --cpu-percent=<percent> 4
- 1
- Specify the type and name of the object to autoscale. The object must exist and be a
Deployment
,DeploymentConfig
/dc
,ReplicaSet
/rs
,ReplicationController
/rc
, orStatefulSet
. - 2
- Optionally, specify the minimum number of replicas when scaling down.
- 3
- Specify the maximum number of replicas when scaling up.
- 4
- Specify the target average CPU utilization over all the pods, represented as a percent of requested CPU. If not specified or negative, a default autoscaling policy is used.
For example, the following command shows autoscaling for the
image-registry
Deployment
object. The initial deployment requires 3 pods. The HPA object increases the minimum to 5. If CPU usage on the pods reaches 75%, the pods will increase to 7:$ oc autoscale deployment/image-registry --min=5 --max=7 --cpu-percent=75
To scale for a specific CPU value, create a YAML file similar to the following for an existing object:
Create a YAML file similar to the following:
apiVersion: autoscaling/v2 1 kind: HorizontalPodAutoscaler metadata: name: cpu-autoscale 2 namespace: default spec: scaleTargetRef: apiVersion: apps/v1 3 kind: Deployment 4 name: example 5 minReplicas: 1 6 maxReplicas: 10 7 metrics: 8 - type: Resource resource: name: cpu 9 target: type: AverageValue 10 averageValue: 500m 11
- 1
- Use the
autoscaling/v2
API. - 2
- Specify a name for this horizontal pod autoscaler object.
- 3
- Specify the API version of the object to scale:
-
For a
Deployment
,ReplicaSet
,Statefulset
object, useapps/v1
. -
For a
ReplicationController
, usev1
. -
For a
DeploymentConfig
, useapps.openshift.io/v1
.
-
For a
- 4
- Specify the type of object. The object must be a
Deployment
,DeploymentConfig
/dc
,ReplicaSet
/rs
,ReplicationController
/rc
, orStatefulSet
. - 5
- Specify the name of the object to scale. The object must exist.
- 6
- Specify the minimum number of replicas when scaling down.
- 7
- Specify the maximum number of replicas when scaling up.
- 8
- Use the
metrics
parameter for memory utilization. - 9
- Specify
cpu
for CPU utilization. - 10
- Set to
AverageValue
. - 11
- Set to
averageValue
with the targeted CPU value.
Create the horizontal pod autoscaler:
$ oc create -f <file-name>.yaml
Verify that the horizontal pod autoscaler was created:
$ oc get hpa cpu-autoscale
Example output
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE cpu-autoscale Deployment/example 173m/500m 1 10 1 20m
2.4.7. Creating a horizontal pod autoscaler object for memory utilization by using the CLI
Using the OpenShift Container Platform CLI, you can create a horizontal pod autoscaler (HPA) to automatically scale an existing Deployment
, DeploymentConfig
, ReplicaSet
, ReplicationController
, or StatefulSet
object. The HPA scales the pods associated with that object to maintain the average memory utilization you specify, either a direct value or a percentage of requested memory.
It is recommended to use a Deployment
object or ReplicaSet
object unless you need a specific feature or behavior provided by other objects.
The HPA increases and decreases the number of replicas between the minimum and maximum numbers to maintain the specified memory utilization across all pods.
For memory utilization, you can specify the minimum and maximum number of pods and the average memory utilization your pods should target. If you do not specify a minimum, the pods are given default values from the OpenShift Container Platform server.
Prerequisites
To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics. You can use the oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory
displayed under Usage
.
$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-129-223.compute.internal -n openshift-kube-scheduler
Example output
Name: openshift-kube-scheduler-ip-10-0-129-223.compute.internal Namespace: openshift-kube-scheduler Labels: <none> Annotations: <none> API Version: metrics.k8s.io/v1beta1 Containers: Name: wait-for-host-port Usage: Cpu: 0 Memory: 0 Name: scheduler Usage: Cpu: 8m Memory: 45440Ki Kind: PodMetrics Metadata: Creation Timestamp: 2020-02-14T22:21:14Z Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-129-223.compute.internal Timestamp: 2020-02-14T22:21:14Z Window: 5m0s Events: <none>
Procedure
To create a horizontal pod autoscaler for memory utilization:
Create a YAML file for one of the following:
To scale for a specific memory value, create a
HorizontalPodAutoscaler
object similar to the following for an existing object:apiVersion: autoscaling/v2 1 kind: HorizontalPodAutoscaler metadata: name: hpa-resource-metrics-memory 2 namespace: default spec: scaleTargetRef: apiVersion: apps/v1 3 kind: Deployment 4 name: example 5 minReplicas: 1 6 maxReplicas: 10 7 metrics: 8 - type: Resource resource: name: memory 9 target: type: AverageValue 10 averageValue: 500Mi 11 behavior: 12 scaleDown: stabilizationWindowSeconds: 300 policies: - type: Pods value: 4 periodSeconds: 60 - type: Percent value: 10 periodSeconds: 60 selectPolicy: Max
- 1
- Use the
autoscaling/v2
API. - 2
- Specify a name for this horizontal pod autoscaler object.
- 3
- Specify the API version of the object to scale:
-
For a
Deployment
,ReplicaSet
, orStatefulset
object, useapps/v1
. -
For a
ReplicationController
, usev1
. -
For a
DeploymentConfig
, useapps.openshift.io/v1
.
-
For a
- 4
- Specify the type of object. The object must be a
Deployment
,DeploymentConfig
,ReplicaSet
,ReplicationController
, orStatefulSet
. - 5
- Specify the name of the object to scale. The object must exist.
- 6
- Specify the minimum number of replicas when scaling down.
- 7
- Specify the maximum number of replicas when scaling up.
- 8
- Use the
metrics
parameter for memory utilization. - 9
- Specify
memory
for memory utilization. - 10
- Set the type to
AverageValue
. - 11
- Specify
averageValue
and a specific memory value. - 12
- Optional: Specify a scaling policy to control the rate of scaling up or down.
To scale for a percentage, create a
HorizontalPodAutoscaler
object similar to the following for an existing object:apiVersion: autoscaling/v2 1 kind: HorizontalPodAutoscaler metadata: name: memory-autoscale 2 namespace: default spec: scaleTargetRef: apiVersion: apps/v1 3 kind: Deployment 4 name: example 5 minReplicas: 1 6 maxReplicas: 10 7 metrics: 8 - type: Resource resource: name: memory 9 target: type: Utilization 10 averageUtilization: 50 11 behavior: 12 scaleUp: stabilizationWindowSeconds: 180 policies: - type: Pods value: 6 periodSeconds: 120 - type: Percent value: 10 periodSeconds: 120 selectPolicy: Max
- 1
- Use the
autoscaling/v2
API. - 2
- Specify a name for this horizontal pod autoscaler object.
- 3
- Specify the API version of the object to scale:
-
For a ReplicationController, use
v1
. -
For a DeploymentConfig, use
apps.openshift.io/v1
. -
For a Deployment, ReplicaSet, Statefulset object, use
apps/v1
.
-
For a ReplicationController, use
- 4
- Specify the type of object. The object must be a
Deployment
,DeploymentConfig
,ReplicaSet
,ReplicationController
, orStatefulSet
. - 5
- Specify the name of the object to scale. The object must exist.
- 6
- Specify the minimum number of replicas when scaling down.
- 7
- Specify the maximum number of replicas when scaling up.
- 8
- Use the
metrics
parameter for memory utilization. - 9
- Specify
memory
for memory utilization. - 10
- Set to
Utilization
. - 11
- Specify
averageUtilization
and a target average memory utilization over all the pods, represented as a percent of requested memory. The target pods must have memory requests configured. - 12
- Optional: Specify a scaling policy to control the rate of scaling up or down.
Create the horizontal pod autoscaler:
$ oc create -f <file-name>.yaml
For example:
$ oc create -f hpa.yaml
Example output
horizontalpodautoscaler.autoscaling/hpa-resource-metrics-memory created
Verify that the horizontal pod autoscaler was created:
$ oc get hpa hpa-resource-metrics-memory
Example output
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE hpa-resource-metrics-memory Deployment/example 2441216/500Mi 1 10 1 20m
$ oc describe hpa hpa-resource-metrics-memory
Example output
Name: hpa-resource-metrics-memory Namespace: default Labels: <none> Annotations: <none> CreationTimestamp: Wed, 04 Mar 2020 16:31:37 +0530 Reference: Deployment/example Metrics: ( current / target ) resource memory on pods: 2441216 / 500Mi Min replicas: 1 Max replicas: 10 ReplicationController pods: 1 current / 1 desired Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale True ReadyForNewScale recommended size matches current size ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from memory resource ScalingLimited False DesiredWithinRange the desired count is within the acceptable range Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulRescale 6m34s horizontal-pod-autoscaler New size: 1; reason: All metrics below target
2.4.8. Understanding horizontal pod autoscaler status conditions by using the CLI
You can use the status conditions set to determine whether or not the horizontal pod autoscaler (HPA) is able to scale and whether or not it is currently restricted in any way.
The HPA status conditions are available with the v2
version of the autoscaling API.
The HPA responds with the following status conditions:
The
AbleToScale
condition indicates whether HPA is able to fetch and update metrics, as well as whether any backoff-related conditions could prevent scaling.-
A
True
condition indicates scaling is allowed. -
A
False
condition indicates scaling is not allowed for the reason specified.
-
A
The
ScalingActive
condition indicates whether the HPA is enabled (for example, the replica count of the target is not zero) and is able to calculate desired metrics.-
A
True
condition indicates metrics is working properly. -
A
False
condition generally indicates a problem with fetching metrics.
-
A
The
ScalingLimited
condition indicates that the desired scale was capped by the maximum or minimum of the horizontal pod autoscaler.-
A
True
condition indicates that you need to raise or lower the minimum or maximum replica count in order to scale. A
False
condition indicates that the requested scaling is allowed.$ oc describe hpa cm-test
Example output
Name: cm-test Namespace: prom Labels: <none> Annotations: <none> CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000 Reference: ReplicationController/cm-test Metrics: ( current / target ) "http_requests" on pods: 66m / 500m Min replicas: 1 Max replicas: 4 ReplicationController pods: 1 current / 1 desired Conditions: 1 Type Status Reason Message ---- ------ ------ ------- AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant a new scale ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_request ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range Events:
- 1
- The horizontal pod autoscaler status messages.
-
A
The following is an example of a pod that is unable to scale:
Example output
Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale False FailedGetScale the HPA controller was unable to get the target's current scale: no matches for kind "ReplicationController" in group "apps" Events: Type Reason Age From Message ---- ------ ---- ---- ------- Warning FailedGetScale 6s (x3 over 36s) horizontal-pod-autoscaler no matches for kind "ReplicationController" in group "apps"
The following is an example of a pod that could not obtain the needed metrics for scaling:
Example output
Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale True SucceededGetScale the HPA controller was able to get the target's current scale ScalingActive False FailedGetResourceMetric the HPA was unable to compute the replica count: failed to get cpu utilization: unable to get metrics for resource cpu: no metrics returned from resource metrics API
The following is an example of a pod where the requested autoscaling was less than the required minimums:
Example output
Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant a new scale ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_request ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range
2.4.8.1. Viewing horizontal pod autoscaler status conditions by using the CLI
You can view the status conditions set on a pod by the horizontal pod autoscaler (HPA).
The horizontal pod autoscaler status conditions are available with the v2
version of the autoscaling API.
Prerequisites
To use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics. You can use the oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory
displayed under Usage
.
$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Example output
Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Namespace: openshift-kube-scheduler Labels: <none> Annotations: <none> API Version: metrics.k8s.io/v1beta1 Containers: Name: wait-for-host-port Usage: Memory: 0 Name: scheduler Usage: Cpu: 8m Memory: 45440Ki Kind: PodMetrics Metadata: Creation Timestamp: 2019-05-23T18:47:56Z Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Timestamp: 2019-05-23T18:47:56Z Window: 1m0s Events: <none>
Procedure
To view the status conditions on a pod, use the following command with the name of the pod:
$ oc describe hpa <pod-name>
For example:
$ oc describe hpa cm-test
The conditions appear in the Conditions
field in the output.
Example output
Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: ( current / target )
"http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: 1
Type Status Reason Message
---- ------ ------ -------
AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant a new scale
ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_request
ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range
2.4.9. Additional resources
- For more information on replication controllers and deployment controllers, see Understanding deployments and deployment configs.
- For an example on the usage of HPA, see Horizontal Pod Autoscaling of Quarkus Application Based on Memory Utilization.
2.5. Automatically adjust pod resource levels with the vertical pod autoscaler
The OpenShift Container Platform Vertical Pod Autoscaler Operator (VPA) automatically reviews the historic and current CPU and memory resources for containers in pods and can update the resource limits and requests based on the usage values it learns. The VPA uses individual custom resources (CR) to update all of the pods associated with a workload object, such as a Deployment
, DeploymentConfig
, StatefulSet
, Job
, DaemonSet
, ReplicaSet
, or ReplicationController
, in a project.
The VPA helps you to understand the optimal CPU and memory usage for your pods and can automatically maintain pod resources through the pod lifecycle.
2.5.1. About the Vertical Pod Autoscaler Operator
The Vertical Pod Autoscaler Operator (VPA) is implemented as an API resource and a custom resource (CR). The CR determines the actions the Vertical Pod Autoscaler Operator should take with the pods associated with a specific workload object, such as a daemon set, replication controller, and so forth, in a project.
The VPA automatically computes historic and current CPU and memory usage for the containers in those pods and uses this data to determine optimized resource limits and requests to ensure that these pods are operating efficiently at all times. For example, the VPA reduces resources for pods that are requesting more resources than they are using and increases resources for pods that are not requesting enough.
The VPA automatically deletes any pods that are out of alignment with its recommendations one at a time, so that your applications can continue to serve requests with no downtime. The workload objects then re-deploy the pods with the original resource limits and requests. The VPA uses a mutating admission webhook to update the pods with optimized resource limits and requests before the pods are admitted to a node. If you do not want the VPA to delete pods, you can view the VPA resource limits and requests and manually update the pods as needed.
By default, workload objects must specify a minimum of two replicas in order for the VPA to automatically delete their pods. Workload objects that specify fewer replicas than this minimum are not deleted. If you manually delete these pods, when the workload object redeploys the pods, the VPA does update the new pods with its recommendations. You can change this minimum by modifying the VerticalPodAutoscalerController
object as shown shown in Changing the VPA minimum value.
For example, if you have a pod that uses 50% of the CPU but only requests 10%, the VPA determines that the pod is consuming more CPU than requested and deletes the pod. The workload object, such as replica set, restarts the pods and the VPA updates the new pod with its recommended resources.
For developers, you can use the VPA to help ensure your pods stay up during periods of high demand by scheduling pods onto nodes that have appropriate resources for each pod.
Administrators can use the VPA to better utilize cluster resources, such as preventing pods from reserving more CPU resources than needed. The VPA monitors the resources that workloads are actually using and adjusts the resource requirements so capacity is available to other workloads. The VPA also maintains the ratios between limits and requests that are specified in initial container configuration.
If you stop running the VPA or delete a specific VPA CR in your cluster, the resource requests for the pods already modified by the VPA do not change. Any new pods get the resources defined in the workload object, not the previous recommendations made by the VPA.
2.5.2. Installing the Vertical Pod Autoscaler Operator
You can use the OpenShift Container Platform web console to install the Vertical Pod Autoscaler Operator (VPA).
Procedure
-
In the OpenShift Container Platform web console, click Operators
OperatorHub. - Choose VerticalPodAutoscaler from the list of available Operators, and click Install.
-
On the Install Operator page, ensure that the Operator recommended namespace option is selected. This installs the Operator in the mandatory
openshift-vertical-pod-autoscaler
namespace, which is automatically created if it does not exist. - Click Install.
Verify the installation by listing the VPA Operator components:
-
Navigate to Workloads
Pods. -
Select the
openshift-vertical-pod-autoscaler
project from the drop-down menu and verify that there are four pods running. -
Navigate to Workloads
Deployments to verify that there are four deployments running.
-
Navigate to Workloads
Optional. Verify the installation in the OpenShift Container Platform CLI using the following command:
$ oc get all -n openshift-vertical-pod-autoscaler
The output shows four pods and four deplyoments:
Example output
NAME READY STATUS RESTARTS AGE pod/vertical-pod-autoscaler-operator-85b4569c47-2gmhc 1/1 Running 0 3m13s pod/vpa-admission-plugin-default-67644fc87f-xq7k9 1/1 Running 0 2m56s pod/vpa-recommender-default-7c54764b59-8gckt 1/1 Running 0 2m56s pod/vpa-updater-default-7f6cc87858-47vw9 1/1 Running 0 2m56s NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE service/vpa-webhook ClusterIP 172.30.53.206 <none> 443/TCP 2m56s NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/vertical-pod-autoscaler-operator 1/1 1 1 3m13s deployment.apps/vpa-admission-plugin-default 1/1 1 1 2m56s deployment.apps/vpa-recommender-default 1/1 1 1 2m56s deployment.apps/vpa-updater-default 1/1 1 1 2m56s NAME DESIRED CURRENT READY AGE replicaset.apps/vertical-pod-autoscaler-operator-85b4569c47 1 1 1 3m13s replicaset.apps/vpa-admission-plugin-default-67644fc87f 1 1 1 2m56s replicaset.apps/vpa-recommender-default-7c54764b59 1 1 1 2m56s replicaset.apps/vpa-updater-default-7f6cc87858 1 1 1 2m56s
2.5.3. About Using the Vertical Pod Autoscaler Operator
To use the Vertical Pod Autoscaler Operator (VPA), you create a VPA custom resource (CR) for a workload object in your cluster. The VPA learns and applies the optimal CPU and memory resources for the pods associated with that workload object. You can use a VPA with a deployment, stateful set, job, daemon set, replica set, or replication controller workload object. The VPA CR must be in the same project as the pods you want to monitor.
You use the VPA CR to associate a workload object and specify which mode the VPA operates in:
-
The
Auto
andRecreate
modes automatically apply the VPA CPU and memory recommendations throughout the pod lifetime. The VPA deletes any pods in the project that are out of alignment with its recommendations. When redeployed by the workload object, the VPA updates the new pods with its recommendations. -
The
Initial
mode automatically applies VPA recommendations only at pod creation. -
The
Off
mode only provides recommended resource limits and requests, allowing you to manually apply the recommendations. Theoff
mode does not update pods.
You can also use the CR to opt-out certain containers from VPA evaluation and updates.
For example, a pod has the following limits and requests:
resources: limits: cpu: 1 memory: 500Mi requests: cpu: 500m memory: 100Mi
After creating a VPA that is set to auto
, the VPA learns the resource usage and deletes the pod. When redeployed, the pod uses the new resource limits and requests:
resources: limits: cpu: 50m memory: 1250Mi requests: cpu: 25m memory: 262144k
You can view the VPA recommendations using the following command:
$ oc get vpa <vpa-name> --output yaml
After a few minutes, the output shows the recommendations for CPU and memory requests, similar to the following:
Example output
... status: ... recommendation: containerRecommendations: - containerName: frontend lowerBound: cpu: 25m memory: 262144k target: cpu: 25m memory: 262144k uncappedTarget: cpu: 25m memory: 262144k upperBound: cpu: 262m memory: "274357142" - containerName: backend lowerBound: cpu: 12m memory: 131072k target: cpu: 12m memory: 131072k uncappedTarget: cpu: 12m memory: 131072k upperBound: cpu: 476m memory: "498558823" ...
The output shows the recommended resources, target
, the minimum recommended resources, lowerBound
, the highest recommended resources, upperBound
, and the most recent resource recommendations, uncappedTarget
.
The VPA uses the lowerBound
and upperBound
values to determine if a pod needs to be updated. If a pod has resource requests below the lowerBound
values or above the upperBound
values, the VPA terminates and recreates the pod with the target
values.
2.5.3.1. Changing the VPA minimum value
By default, workload objects must specify a minimum of two replicas in order for the VPA to automatically delete and update their pods. As a result, workload objects that specify fewer than two replicas are not automatically acted upon by the VPA. The VPA does update new pods from these workload objects if the pods are restarted by some process external to the VPA. You can change this cluster-wide minimum value by modifying the minReplicas
parameter in the VerticalPodAutoscalerController
custom resource (CR).
For example, if you set minReplicas
to 3
, the VPA does not delete and update pods for workload objects that specify fewer than three replicas.
If you set minReplicas
to 1
, the VPA can delete the only pod for a workload object that specifies only one replica. You should use this setting with one-replica objects only if your workload can tolerate downtime whenever the VPA deletes a pod to adjust its resources. To avoid unwanted downtime with one-replica objects, configure the VPA CRs with the podUpdatePolicy
set to Initial
, which automatically updates the pod only when it is restarted by some process external to the VPA, or Off
, which allows you to update the pod manually at an appropriate time for your application.
Example VerticalPodAutoscalerController
object
apiVersion: autoscaling.openshift.io/v1
kind: VerticalPodAutoscalerController
metadata:
creationTimestamp: "2021-04-21T19:29:49Z"
generation: 2
name: default
namespace: openshift-vertical-pod-autoscaler
resourceVersion: "142172"
uid: 180e17e9-03cc-427f-9955-3b4d7aeb2d59
spec:
minReplicas: 3 1
podMinCPUMillicores: 25
podMinMemoryMb: 250
recommendationOnly: false
safetyMarginFraction: 0.15
2.5.3.2. Automatically applying VPA recommendations
To use the VPA to automatically update pods, create a VPA CR for a specific workload object with updateMode
set to Auto
or Recreate
.
When the pods are created for the workload object, the VPA constantly monitors the containers to analyze their CPU and memory needs. The VPA deletes any pods that do not meet the VPA recommendations for CPU and memory. When redeployed, the pods use the new resource limits and requests based on the VPA recommendations, honoring any pod disruption budget set for your applications. The recommendations are added to the status
field of the VPA CR for reference.
By default, workload objects must specify a minimum of two replicas in order for the VPA to automatically delete their pods. Workload objects that specify fewer replicas than this minimum are not deleted. If you manually delete these pods, when the workload object redeploys the pods, the VPA does update the new pods with its recommendations. You can change this minimum by modifying the VerticalPodAutoscalerController
object as shown shown in Changing the VPA minimum value.
Example VPA CR for the Auto
mode
apiVersion: autoscaling.k8s.io/v1 kind: VerticalPodAutoscaler metadata: name: vpa-recommender spec: targetRef: apiVersion: "apps/v1" kind: Deployment 1 name: frontend 2 updatePolicy: updateMode: "Auto" 3
- 1
- The type of workload object you want this VPA CR to manage.
- 2
- The name of the workload object you want this VPA CR to manage.
- 3
- Set the mode to
Auto
orRecreate
:-
Auto
. The VPA assigns resource requests on pod creation and updates the existing pods by terminating them when the requested resources differ significantly from the new recommendation. -
Recreate
. The VPA assigns resource requests on pod creation and updates the existing pods by terminating them when the requested resources differ significantly from the new recommendation. This mode should be used rarely, only if you need to ensure that the pods are restarted whenever the resource request changes.
-
There must be operating pods in the project before the VPA can determine recommended resources and apply the recommendations to new pods.
2.5.3.3. Automatically applying VPA recommendations on pod creation
To use the VPA to apply the recommended resources only when a pod is first deployed, create a VPA CR for a specific workload object with updateMode
set to Initial
.
Then, manually delete any pods associated with the workload object that you want to use the VPA recommendations. In the Initial
mode, the VPA does not delete pods and does not update the pods as it learns new resource recommendations.
Example VPA CR for the Initial
mode
apiVersion: autoscaling.k8s.io/v1 kind: VerticalPodAutoscaler metadata: name: vpa-recommender spec: targetRef: apiVersion: "apps/v1" kind: Deployment 1 name: frontend 2 updatePolicy: updateMode: "Initial" 3
There must be operating pods in the project before a VPA can determine recommended resources and apply the recommendations to new pods.
2.5.3.4. Manually applying VPA recommendations
To use the VPA to only determine the recommended CPU and memory values, create a VPA CR for a specific workload object with updateMode
set to off
.
When the pods are created for that workload object, the VPA analyzes the CPU and memory needs of the containers and records those recommendations in the status
field of the VPA CR. The VPA does not update the pods as it determines new resource recommendations.
Example VPA CR for the Off
mode
apiVersion: autoscaling.k8s.io/v1 kind: VerticalPodAutoscaler metadata: name: vpa-recommender spec: targetRef: apiVersion: "apps/v1" kind: Deployment 1 name: frontend 2 updatePolicy: updateMode: "Off" 3
You can view the recommendations using the following command.
$ oc get vpa <vpa-name> --output yaml
With the recommendations, you can edit the workload object to add CPU and memory requests, then delete and redeploy the pods using the recommended resources.
There must be operating pods in the project before a VPA can determine recommended resources.
2.5.3.5. Exempting containers from applying VPA recommendations
If your workload object has multiple containers and you do not want the VPA to evaluate and act on all of the containers, create a VPA CR for a specific workload object and add a resourcePolicy
to opt-out specific containers.
When the VPA updates the pods with recommended resources, any containers with a resourcePolicy
are not updated and the VPA does not present recommendations for those containers in the pod.
apiVersion: autoscaling.k8s.io/v1 kind: VerticalPodAutoscaler metadata: name: vpa-recommender spec: targetRef: apiVersion: "apps/v1" kind: Deployment 1 name: frontend 2 updatePolicy: updateMode: "Auto" 3 resourcePolicy: 4 containerPolicies: - containerName: my-opt-sidecar mode: "Off"
- 1
- The type of workload object you want this VPA CR to manage.
- 2
- The name of the workload object you want this VPA CR to manage.
- 3
- Set the mode to
Auto
,Recreate
, orOff
. TheRecreate
mode should be used rarely, only if you need to ensure that the pods are restarted whenever the resource request changes. - 4
- Specify the containers you want to opt-out and set
mode
toOff
.
For example, a pod has two containers, the same resource requests and limits:
# ... spec: containers: - name: frontend resources: limits: cpu: 1 memory: 500Mi requests: cpu: 500m memory: 100Mi - name: backend resources: limits: cpu: "1" memory: 500Mi requests: cpu: 500m memory: 100Mi # ...
After launching a VPA CR with the backend
container set to opt-out, the VPA terminates and recreates the pod with the recommended resources applied only to the frontend
container:
... spec: containers: name: frontend resources: limits: cpu: 50m memory: 1250Mi requests: cpu: 25m memory: 262144k ... name: backend resources: limits: cpu: "1" memory: 500Mi requests: cpu: 500m memory: 100Mi ...
2.5.4. Using the Vertical Pod Autoscaler Operator
You can use the Vertical Pod Autoscaler Operator (VPA) by creating a VPA custom resource (CR). The CR indicates which pods it should analyze and determines the actions the VPA should take with those pods.
Procedure
To create a VPA CR for a specific workload object:
Change to the project where the workload object you want to scale is located.
Create a VPA CR YAML file:
apiVersion: autoscaling.k8s.io/v1 kind: VerticalPodAutoscaler metadata: name: vpa-recommender spec: targetRef: apiVersion: "apps/v1" kind: Deployment 1 name: frontend 2 updatePolicy: updateMode: "Auto" 3 resourcePolicy: 4 containerPolicies: - containerName: my-opt-sidecar mode: "Off"
- 1
- Specify the type of workload object you want this VPA to manage:
Deployment
,StatefulSet
,Job
,DaemonSet
,ReplicaSet
, orReplicationController
. - 2
- Specify the name of an existing workload object you want this VPA to manage.
- 3
- Specify the VPA mode:
-
auto
to automatically apply the recommended resources on pods associated with the controller. The VPA terminates existing pods and creates new pods with the recommended resource limits and requests. -
recreate
to automatically apply the recommended resources on pods associated with the workload object. The VPA terminates existing pods and creates new pods with the recommended resource limits and requests. Therecreate
mode should be used rarely, only if you need to ensure that the pods are restarted whenever the resource request changes. -
initial
to automatically apply the recommended resources when pods associated with the workload object are created. The VPA does not update the pods as it learns new resource recommendations. -
off
to only generate resource recommendations for the pods associated with the workload object. The VPA does not update the pods as it learns new resource recommendations and does not apply the recommendations to new pods.
-
- 4
- Optional. Specify the containers you want to opt-out and set the mode to
Off
.
Create the VPA CR:
$ oc create -f <file-name>.yaml
After a few moments, the VPA learns the resource usage of the containers in the pods associated with the workload object.
You can view the VPA recommendations using the following command:
$ oc get vpa <vpa-name> --output yaml
The output shows the recommendations for CPU and memory requests, similar to the following:
Example output
... status: ... recommendation: containerRecommendations: - containerName: frontend lowerBound: 1 cpu: 25m memory: 262144k target: 2 cpu: 25m memory: 262144k uncappedTarget: 3 cpu: 25m memory: 262144k upperBound: 4 cpu: 262m memory: "274357142" - containerName: backend lowerBound: cpu: 12m memory: 131072k target: cpu: 12m memory: 131072k uncappedTarget: cpu: 12m memory: 131072k upperBound: cpu: 476m memory: "498558823" ...
2.5.5. Uninstalling the Vertical Pod Autoscaler Operator
You can remove the Vertical Pod Autoscaler Operator (VPA) from your OpenShift Container Platform cluster. After uninstalling, the resource requests for the pods already modified by an existing VPA CR do not change. Any new pods get the resources defined in the workload object, not the previous recommendations made by the Vertical Pod Autoscaler Operator.
You can remove a specific VPA CR by using the oc delete vpa <vpa-name>
command. The same actions apply for resource requests as uninstalling the vertical pod autoscaler.
After removing the VPA Operator, it is recommended that you remove the other components associated with the Operator to avoid potential issues.
Prerequisites
- The Vertical Pod Autoscaler Operator must be installed.
Procedure
-
In the OpenShift Container Platform web console, click Operators
Installed Operators. - Switch to the openshift-vertical-pod-autoscaler project.
- For the VerticalPodAutoscaler Operator, click the Options menu and select Uninstall Operator.
- Optional: To remove all operands associated with the Operator, in the dialog box, select Delete all operand instances for this operator checkbox.
- Click Uninstall.
Optional: Use the OpenShift CLI to remove the VPA components:
Delete the VPA namespace:
$ oc delete namespace openshift-vertical-pod-autoscaler
Delete the VPA custom resource definition (CRD) objects:
$ oc delete crd verticalpodautoscalercheckpoints.autoscaling.k8s.io
$ oc delete crd verticalpodautoscalercontrollers.autoscaling.openshift.io
$ oc delete crd verticalpodautoscalers.autoscaling.k8s.io
Deleting the CRDs removes the associated roles, cluster roles, and role bindings.
NoteThis action removes from the cluster all user-created VPA CRs. If you re-install the VPA, you must create these objects again.
Delete the VPA Operator:
$ oc delete operator/vertical-pod-autoscaler.openshift-vertical-pod-autoscaler
2.6. Providing sensitive data to pods
Some applications need sensitive information, such as passwords and user names, that you do not want developers to have.
As an administrator, you can use Secret
objects to provide this information without exposing that information in clear text.
2.6.1. Understanding secrets
The Secret
object type provides a mechanism to hold sensitive information such as passwords, OpenShift Container Platform client configuration files, private source repository credentials, and so on. Secrets decouple sensitive content from the pods. You can mount secrets into containers using a volume plugin or the system can use secrets to perform actions on behalf of a pod.
Key properties include:
- Secret data can be referenced independently from its definition.
- Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to rest on a node.
- Secret data can be shared within a namespace.
YAML Secret
object definition
apiVersion: v1 kind: Secret metadata: name: test-secret namespace: my-namespace type: Opaque 1 data: 2 username: <username> 3 password: <password> stringData: 4 hostname: myapp.mydomain.com 5
- 1
- Indicates the structure of the secret’s key names and values.
- 2
- The allowable format for the keys in the
data
field must meet the guidelines in the DNS_SUBDOMAIN value in the Kubernetes identifiers glossary. - 3
- The value associated with keys in the
data
map must be base64 encoded. - 4
- Entries in the
stringData
map are converted to base64 and the entry will then be moved to thedata
map automatically. This field is write-only; the value will only be returned via thedata
field. - 5
- The value associated with keys in the
stringData
map is made up of plain text strings.
You must create a secret before creating the pods that depend on that secret.
When creating secrets:
- Create a secret object with secret data.
- Update the pod’s service account to allow the reference to the secret.
-
Create a pod, which consumes the secret as an environment variable or as a file (using a
secret
volume).
2.6.1.1. Types of secrets
The value in the type
field indicates the structure of the secret’s key names and values. The type can be used to enforce the presence of user names and keys in the secret object. If you do not want validation, use the opaque
type, which is the default.
Specify one of the following types to trigger minimal server-side validation to ensure the presence of specific key names in the secret data:
-
kubernetes.io/service-account-token
. Uses a service account token. -
kubernetes.io/basic-auth
. Use with Basic Authentication. -
kubernetes.io/ssh-auth
. Use with SSH Key Authentication. -
kubernetes.io/tls
. Use with TLS certificate authorities.
Specify type: Opaque
if you do not want validation, which means the secret does not claim to conform to any convention for key names or values. An opaque secret, allows for unstructured key:value
pairs that can contain arbitrary values.
You can specify other arbitrary types, such as example.com/my-secret-type
. These types are not enforced server-side, but indicate that the creator of the secret intended to conform to the key/value requirements of that type.
For examples of different secret types, see the code samples in Using Secrets.
2.6.1.2. Secret data keys
Secret keys must be in a DNS subdomain.
2.6.2. Understanding how to create secrets
As an administrator you must create a secret before developers can create the pods that depend on that secret.
When creating secrets:
Create a secret object that contains the data you want to keep secret. The specific data required for each secret type is descibed in the following sections.
Example YAML object that creates an opaque secret
apiVersion: v1 kind: Secret metadata: name: test-secret type: Opaque 1 data: 2 username: <username> password: <password> stringData: 3 hostname: myapp.mydomain.com secret.properties: | property1=valueA property2=valueB
Use either the
data
orstringdata
fields, not both.Update the pod’s service account to reference the secret:
YAML of a service account that uses a secret
apiVersion: v1 kind: ServiceAccount ... secrets: - name: test-secret
Create a pod, which consumes the secret as an environment variable or as a file (using a
secret
volume):YAML of a pod populating files in a volume with secret data
apiVersion: v1 kind: Pod metadata: name: secret-example-pod spec: containers: - name: secret-test-container image: busybox command: [ "/bin/sh", "-c", "cat /etc/secret-volume/*" ] volumeMounts: 1 - name: secret-volume mountPath: /etc/secret-volume 2 readOnly: true 3 volumes: - name: secret-volume secret: secretName: test-secret 4 restartPolicy: Never
- 1
- Add a
volumeMounts
field to each container that needs the secret. - 2
- Specifies an unused directory name where you would like the secret to appear. Each key in the secret data map becomes the filename under
mountPath
. - 3
- Set to
true
. If true, this instructs the driver to provide a read-only volume. - 4
- Specifies the name of the secret.
YAML of a pod populating environment variables with secret data
apiVersion: v1 kind: Pod metadata: name: secret-example-pod spec: containers: - name: secret-test-container image: busybox command: [ "/bin/sh", "-c", "export" ] env: - name: TEST_SECRET_USERNAME_ENV_VAR valueFrom: secretKeyRef: 1 name: test-secret key: username restartPolicy: Never
- 1
- Specifies the environment variable that consumes the secret key.
YAML of a build config populating environment variables with secret data
apiVersion: build.openshift.io/v1 kind: BuildConfig metadata: name: secret-example-bc spec: strategy: sourceStrategy: env: - name: TEST_SECRET_USERNAME_ENV_VAR valueFrom: secretKeyRef: 1 name: test-secret key: username from: kind: ImageStreamTag namespace: openshift name: 'cli:latest'
- 1
- Specifies the environment variable that consumes the secret key.
2.6.2.1. Secret creation restrictions
To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:
- To populate environment variables for containers.
- As files in a volume mounted on one or more of its containers.
- By kubelet when pulling images for the pod.
Volume type secrets write data into the container as a file using the volume mechanism. Image pull secrets use service accounts for the automatic injection of the secret into all pods in a namespace.
When a template contains a secret definition, the only way for the template to use the provided secret is to ensure that the secret volume sources are validated and that the specified object reference actually points to a Secret
object. Therefore, a secret needs to be created before any pods that depend on it. The most effective way to ensure this is to have it get injected automatically through the use of a service account.
Secret API objects reside in a namespace. They can only be referenced by pods in that same namespace.
Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that could exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also exhaust memory.
2.6.2.2. Creating an opaque secret
As an administrator, you can create an opaque secret, which allows you to store unstructured key:value
pairs that can contain arbitrary values.
Procedure
Create a
Secret
object in a YAML file on a control plane node.For example:
apiVersion: v1 kind: Secret metadata: name: mysecret type: Opaque 1 data: username: <username> password: <password>
- 1
- Specifies an opaque secret.
Use the following command to create a
Secret
object:$ oc create -f <filename>.yaml
To use the secret in a pod:
- Update the pod’s service account to reference the secret, as shown in the "Understanding how to create secrets" section.
-
Create the pod, which consumes the secret as an environment variable or as a file (using a
secret
volume), as shown in the "Understanding how to create secrets" section.
Additional resources
- For more information on using secrets in pods, see Understanding how to create secrets.
2.6.2.3. Creating a service account token secret
As an administrator, you can create a service account token secret, which allows you to distribute a service account token to applications that must authenticate to the API.
It is recommended to obtain bound service account tokens using the TokenRequest API instead of using service account token secrets. The tokens obtained from the TokenRequest API are more secure than the tokens stored in secrets, because they have a bounded lifetime and are not readable by other API clients.
You should create a service account token secret only if you cannot use the TokenRequest API and if the security exposure of a non-expiring token in a readable API object is acceptable to you.
See the Additional resources section that follows for information on creating bound service account tokens.
Procedure
Create a
Secret
object in a YAML file on a control plane node:Example
secret
object:apiVersion: v1 kind: Secret metadata: name: secret-sa-sample annotations: kubernetes.io/service-account.name: "sa-name" 1 type: kubernetes.io/service-account-token 2
Use the following command to create the
Secret
object:$ oc create -f <filename>.yaml
To use the secret in a pod:
- Update the pod’s service account to reference the secret, as shown in the "Understanding how to create secrets" section.
-
Create the pod, which consumes the secret as an environment variable or as a file (using a
secret
volume), as shown in the "Understanding how to create secrets" section.
Additional resources
- For more information on using secrets in pods, see Understanding how to create secrets.
- For information on requesting bound service account tokens, see Using bound service account tokens
- For information on creating service accounts, see Understanding and creating service accounts.
2.6.2.4. Creating a basic authentication secret
As an administrator, you can create a basic authentication secret, which allows you to store the credentials needed for basic authentication. When using this secret type, the data
parameter of the Secret
object must contain the following keys encoded in the base64 format:
-
username
: the user name for authentication -
password
: the password or token for authentication
You can use the stringData
parameter to use clear text content.
Procedure
Create a
Secret
object in a YAML file on a control plane node:Example
secret
objectapiVersion: v1 kind: Secret metadata: name: secret-basic-auth type: kubernetes.io/basic-auth 1 data: stringData: 2 username: admin password: <password>
Use the following command to create the
Secret
object:$ oc create -f <filename>.yaml
To use the secret in a pod:
- Update the pod’s service account to reference the secret, as shown in the "Understanding how to create secrets" section.
-
Create the pod, which consumes the secret as an environment variable or as a file (using a
secret
volume), as shown in the "Understanding how to create secrets" section.
Additional resources
- For more information on using secrets in pods, see Understanding how to create secrets.
2.6.2.5. Creating an SSH authentication secret
As an administrator, you can create an SSH authentication secret, which allows you to store data used for SSH authentication. When using this secret type, the data
parameter of the Secret
object must contain the SSH credential to use.
Procedure
Create a
Secret
object in a YAML file on a control plane node:Example
secret
object:apiVersion: v1 kind: Secret metadata: name: secret-ssh-auth type: kubernetes.io/ssh-auth 1 data: ssh-privatekey: | 2 MIIEpQIBAAKCAQEAulqb/Y ...
Use the following command to create the
Secret
object:$ oc create -f <filename>.yaml
To use the secret in a pod:
- Update the pod’s service account to reference the secret, as shown in the "Understanding how to create secrets" section.
-
Create the pod, which consumes the secret as an environment variable or as a file (using a
secret
volume), as shown in the "Understanding how to create secrets" section.
Additional resources
2.6.2.6. Creating a Docker configuration secret
As an administrator, you can create a Docker configuration secret, which allows you to store the credentials for accessing a container image registry.
-
kubernetes.io/dockercfg
. Use this secret type to store your local Docker configuration file. Thedata
parameter of thesecret
object must contain the contents of a.dockercfg
file encoded in the base64 format. -
kubernetes.io/dockerconfigjson
. Use this secret type to store your local Docker configuration JSON file. Thedata
parameter of thesecret
object must contain the contents of a.docker/config.json
file encoded in the base64 format.
Procedure
Create a
Secret
object in a YAML file on a control plane node.Example Docker configuration
secret
objectapiVersion: v1 kind: Secret metadata: name: secret-docker-cfg namespace: my-project type: kubernetes.io/dockerconfig 1 data: .dockerconfig:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV0aCBrZXlzCg== 2
Example Docker configuration JSON
secret
objectapiVersion: v1 kind: Secret metadata: name: secret-docker-json namespace: my-project type: kubernetes.io/dockerconfig 1 data: .dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV0aCBrZXlzCg== 2
Use the following command to create the
Secret
object$ oc create -f <filename>.yaml
To use the secret in a pod:
- Update the pod’s service account to reference the secret, as shown in the "Understanding how to create secrets" section.
-
Create the pod, which consumes the secret as an environment variable or as a file (using a
secret
volume), as shown in the "Understanding how to create secrets" section.
Additional resources
- For more information on using secrets in pods, see Understanding how to create secrets.
2.6.3. Understanding how to update secrets
When you modify the value of a secret, the value (used by an already running pod) will not dynamically change. To change a secret, you must delete the original pod and create a new pod (perhaps with an identical PodSpec).
Updating a secret follows the same workflow as deploying a new Container image. You can use the kubectl rolling-update
command.
The resourceVersion
value in a secret is not specified when it is referenced. Therefore, if a secret is updated at the same time as pods are starting, the version of the secret that is used for the pod is not defined.
Currently, it is not possible to check the resource version of a secret object that was used when a pod was created. It is planned that pods will report this information, so that a controller could restart ones using an old resourceVersion
. In the interim, do not update the data of existing secrets, but create new ones with distinct names.
2.6.4. Creating and using secrets
As an administrator, you can create a service account token secret. This allows you to distribute a service account token to applications that must authenticate to the API.
Procedure
Create a service account in your namespace by running the following command:
$ oc create sa <service_account_name> -n <your_namespace>
Save the following YAML example to a file named
service-account-token-secret.yaml
. The example includes aSecret
object configuration that you can use to generate a service account token:apiVersion: v1 kind: Secret metadata: name: <secret_name> 1 annotations: kubernetes.io/service-account.name: "sa-name" 2 type: kubernetes.io/service-account-token 3
Generate the service account token by applying the file:
$ oc apply -f service-account-token-secret.yaml
Get the service account token from the secret by running the following command:
$ oc get secret <sa_token_secret> -o jsonpath='{.data.token}' | base64 --decode) 1
Example output
ayJhbGciOiJSUzI1NiIsImtpZCI6IklOb2dtck1qZ3hCSWpoNnh5YnZhSE9QMkk3YnRZMVZoclFfQTZfRFp1YlUifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6ImJ1aWxkZXItdG9rZW4tdHZrbnIiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiYnVpbGRlciIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjNmZGU2MGZmLTA1NGYtNDkyZi04YzhjLTNlZjE0NDk3MmFmNyIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDpkZWZhdWx0OmJ1aWxkZXIifQ.OmqFTDuMHC_lYvvEUrjr1x453hlEEHYcxS9VKSzmRkP1SiVZWPNPkTWlfNRp6bIUZD3U6aN3N7dMSN0eI5hu36xPgpKTdvuckKLTCnelMx6cxOdAbrcw1mCmOClNscwjS1KO1kzMtYnnq8rXHiMJELsNlhnRyyIXRTtNBsy4t64T3283s3SLsancyx0gy0ujx-Ch3uKAKdZi5iT-I8jnnQ-ds5THDs2h65RJhgglQEmSxpHrLGZFmyHAQI-_SjvmHZPXEc482x3SkaQHNLqpmrpJorNqh1M8ZHKzlujhZgVooMvJmWPXTb2vnvi3DGn2XI-hZxl1yD2yGH1RBpYUHA
- 1
- Replace <sa_token_secret> with the name of your service token secret.
Use your service account token to authenticate with the API of your cluster:
$ curl -X GET <openshift_cluster_api> --header "Authorization: Bearer <token>" 1 2
2.6.5. About using signed certificates with secrets
To secure communication to your service, you can configure OpenShift Container Platform to generate a signed serving certificate/key pair that you can add into a secret in a project.
A service serving certificate secret is intended to support complex middleware applications that need out-of-the-box certificates. It has the same settings as the server certificates generated by the administrator tooling for nodes and masters.
Service Pod
spec configured for a service serving certificates secret.
apiVersion: v1
kind: Service
metadata:
name: registry
annotations:
service.beta.openshift.io/serving-cert-secret-name: registry-cert1
# ...
- 1
- Specify the name for the certificate
Other pods can trust cluster-created certificates (which are only signed for internal DNS names), by using the CA bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt file that is automatically mounted in their pod.
The signature algorithm for this feature is x509.SHA256WithRSA
. To manually rotate, delete the generated secret. A new certificate is created.
2.6.5.1. Generating signed certificates for use with secrets
To use a signed serving certificate/key pair with a pod, create or edit the service to add the service.beta.openshift.io/serving-cert-secret-name
annotation, then add the secret to the pod.
Procedure
To create a service serving certificate secret:
-
Edit the
Pod
spec for your service. Add the
service.beta.openshift.io/serving-cert-secret-name
annotation with the name you want to use for your secret.kind: Service apiVersion: v1 metadata: name: my-service annotations: service.beta.openshift.io/serving-cert-secret-name: my-cert 1 spec: selector: app: MyApp ports: - protocol: TCP port: 80 targetPort: 9376
The certificate and key are in PEM format, stored in
tls.crt
andtls.key
respectively.Create the service:
$ oc create -f <file-name>.yaml
View the secret to make sure it was created:
View a list of all secrets:
$ oc get secrets
Example output
NAME TYPE DATA AGE my-cert kubernetes.io/tls 2 9m
View details on your secret:
$ oc describe secret my-cert
Example output
Name: my-cert Namespace: openshift-console Labels: <none> Annotations: service.beta.openshift.io/expiry: 2023-03-08T23:22:40Z service.beta.openshift.io/originating-service-name: my-service service.beta.openshift.io/originating-service-uid: 640f0ec3-afc2-4380-bf31-a8c784846a11 service.beta.openshift.io/expiry: 2023-03-08T23:22:40Z Type: kubernetes.io/tls Data ==== tls.key: 1679 bytes tls.crt: 2595 bytes
Edit your
Pod
spec with that secret.apiVersion: v1 kind: Pod metadata: name: my-service-pod spec: containers: - name: mypod image: redis volumeMounts: - name: my-container mountPath: "/etc/my-path" volumes: - name: my-volume secret: secretName: my-cert items: - key: username path: my-group/my-username mode: 511
When it is available, your pod will run. The certificate will be good for the internal service DNS name,
<service.name>.<service.namespace>.svc
.The certificate/key pair is automatically replaced when it gets close to expiration. View the expiration date in the
service.beta.openshift.io/expiry
annotation on the secret, which is in RFC3339 format.NoteIn most cases, the service DNS name
<service.name>.<service.namespace>.svc
is not externally routable. The primary use of<service.name>.<service.namespace>.svc
is for intracluster or intraservice communication, and with re-encrypt routes.
2.6.6. Troubleshooting secrets
If a service certificate generation fails with (service’s service.beta.openshift.io/serving-cert-generation-error
annotation contains):
secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not match 77b6dd80-d716-11e6-9d6f-0e9c0057b60
The service that generated the certificate no longer exists, or has a different serviceUID
. You must force certificates regeneration by removing the old secret, and clearing the following annotations on the service service.beta.openshift.io/serving-cert-generation-error
, service.beta.openshift.io/serving-cert-generation-error-num
:
Delete the secret:
$ oc delete secret <secret_name>
Clear the annotations:
$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-
$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-num-
The command removing annotation has a -
after the annotation name to be removed.
2.7. Creating and using config maps
The following sections define config maps and how to create and use them.
2.7.1. Understanding config maps
Many applications require configuration by using some combination of configuration files, command line arguments, and environment variables. In OpenShift Container Platform, these configuration artifacts are decoupled from image content to keep containerized applications portable.
The ConfigMap
object provides mechanisms to inject containers with configuration data while keeping containers agnostic of OpenShift Container Platform. A config map can be used to store fine-grained information like individual properties or coarse-grained information like entire configuration files or JSON blobs.
The ConfigMap
object holds key-value pairs of configuration data that can be consumed in pods or used to store configuration data for system components such as controllers. For example:
ConfigMap
Object Definition
kind: ConfigMap apiVersion: v1 metadata: creationTimestamp: 2016-02-18T19:14:38Z name: example-config namespace: my-namespace data: 1 example.property.1: hello example.property.2: world example.property.file: |- property.1=value-1 property.2=value-2 property.3=value-3 binaryData: bar: L3Jvb3QvMTAw 2
You can use the binaryData
field when you create a config map from a binary file, such as an image.
Configuration data can be consumed in pods in a variety of ways. A config map can be used to:
- Populate environment variable values in containers
- Set command-line arguments in a container
- Populate configuration files in a volume
Users and system components can store configuration data in a config map.
A config map is similar to a secret, but designed to more conveniently support working with strings that do not contain sensitive information.
Config map restrictions
A config map must be created before its contents can be consumed in pods.
Controllers can be written to tolerate missing configuration data. Consult individual components configured by using config maps on a case-by-case basis.
ConfigMap
objects reside in a project.
They can only be referenced by pods in the same project.
The Kubelet only supports the use of a config map for pods it gets from the API server.
This includes any pods created by using the CLI, or indirectly from a replication controller. It does not include pods created by using the OpenShift Container Platform node’s --manifest-url
flag, its --config
flag, or its REST API because these are not common ways to create pods.
2.7.2. Creating a config map in the OpenShift Container Platform web console
You can create a config map in the OpenShift Container Platform web console.
Procedure
To create a config map as a cluster administrator:
-
In the Administrator perspective, select
Workloads
Config Maps
. - At the top right side of the page, select Create Config Map.
- Enter the contents of your config map.
- Select Create.
-
In the Administrator perspective, select
To create a config map as a developer:
-
In the Developer perspective, select
Config Maps
. - At the top right side of the page, select Create Config Map.
- Enter the contents of your config map.
- Select Create.
-
In the Developer perspective, select
2.7.3. Creating a config map by using the CLI
You can use the following command to create a config map from directories, specific files, or literal values.
Procedure
Create a config map:
$ oc create configmap <configmap_name> [options]
2.7.3.1. Creating a config map from a directory
You can create a config map from a directory by using the --from-file
flag. This method allows you to use multiple files within a directory to create a config map.
Each file in the directory is used to populate a key in the config map, where the name of the key is the file name, and the value of the key is the content of the file.
For example, the following command creates a config map with the contents of the example-files
directory:
$ oc create configmap game-config --from-file=example-files/
View the keys in the config map:
$ oc describe configmaps game-config
Example output
Name: game-config Namespace: default Labels: <none> Annotations: <none> Data game.properties: 158 bytes ui.properties: 83 bytes
You can see that the two keys in the map are created from the file names in the directory specified in the command. The content of those keys might be large, so the output of oc describe
only shows the names of the keys and their sizes.
Prerequisite
You must have a directory with files that contain the data you want to populate a config map with.
The following procedure uses these example files:
game.properties
andui.properties
:$ cat example-files/game.properties
Example output
enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30
$ cat example-files/ui.properties
Example output
color.good=purple color.bad=yellow allow.textmode=true how.nice.to.look=fairlyNice
Procedure
Create a config map holding the content of each file in this directory by entering the following command:
$ oc create configmap game-config \ --from-file=example-files/
Verification
Enter the
oc get
command for the object with the-o
option to see the values of the keys:$ oc get configmaps game-config -o yaml
Example output
apiVersion: v1 data: game.properties: |- enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30 ui.properties: | color.good=purple color.bad=yellow allow.textmode=true how.nice.to.look=fairlyNice kind: ConfigMap metadata: creationTimestamp: 2016-02-18T18:34:05Z name: game-config namespace: default resourceVersion: "407" selflink: /api/v1/namespaces/default/configmaps/game-config uid: 30944725-d66e-11e5-8cd0-68f728db1985
2.7.3.2. Creating a config map from a file
You can create a config map from a file by using the --from-file
flag. You can pass the --from-file
option multiple times to the CLI.
You can also specify the key to set in a config map for content imported from a file by passing a key=value
expression to the --from-file
option. For example:
$ oc create configmap game-config-3 --from-file=game-special-key=example-files/game.properties
If you create a config map from a file, you can include files containing non-UTF8 data that are placed in this field without corrupting the non-UTF8 data. OpenShift Container Platform detects binary files and transparently encodes the file as MIME
. On the server, the MIME
payload is decoded and stored without corrupting the data.
Prerequisite
You must have a directory with files that contain the data you want to populate a config map with.
The following procedure uses these example files:
game.properties
andui.properties
:$ cat example-files/game.properties
Example output
enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30
$ cat example-files/ui.properties
Example output
color.good=purple color.bad=yellow allow.textmode=true how.nice.to.look=fairlyNice
Procedure
Create a config map by specifying a specific file:
$ oc create configmap game-config-2 \ --from-file=example-files/game.properties \ --from-file=example-files/ui.properties
Create a config map by specifying a key-value pair:
$ oc create configmap game-config-3 \ --from-file=game-special-key=example-files/game.properties
Verification
Enter the
oc get
command for the object with the-o
option to see the values of the keys from the file:$ oc get configmaps game-config-2 -o yaml
Example output
apiVersion: v1 data: game.properties: |- enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30 ui.properties: | color.good=purple color.bad=yellow allow.textmode=true how.nice.to.look=fairlyNice kind: ConfigMap metadata: creationTimestamp: 2016-02-18T18:52:05Z name: game-config-2 namespace: default resourceVersion: "516" selflink: /api/v1/namespaces/default/configmaps/game-config-2 uid: b4952dc3-d670-11e5-8cd0-68f728db1985
Enter the
oc get
command for the object with the-o
option to see the values of the keys from the key-value pair:$ oc get configmaps game-config-3 -o yaml
Example output
apiVersion: v1 data: game-special-key: |- 1 enemies=aliens lives=3 enemies.cheat=true enemies.cheat.level=noGoodRotten secret.code.passphrase=UUDDLRLRBABAS secret.code.allowed=true secret.code.lives=30 kind: ConfigMap metadata: creationTimestamp: 2016-02-18T18:54:22Z name: game-config-3 namespace: default resourceVersion: "530" selflink: /api/v1/namespaces/default/configmaps/game-config-3 uid: 05f8da22-d671-11e5-8cd0-68f728db1985
- 1
- This is the key that you set in the preceding step.
2.7.3.3. Creating a config map from literal values
You can supply literal values for a config map.
The --from-literal
option takes a key=value
syntax, which allows literal values to be supplied directly on the command line.
Procedure
Create a config map by specifying a literal value:
$ oc create configmap special-config \ --from-literal=special.how=very \ --from-literal=special.type=charm
Verification
Enter the
oc get
command for the object with the-o
option to see the values of the keys:$ oc get configmaps special-config -o yaml
Example output
apiVersion: v1 data: special.how: very special.type: charm kind: ConfigMap metadata: creationTimestamp: 2016-02-18T19:14:38Z name: special-config namespace: default resourceVersion: "651" selflink: /api/v1/namespaces/default/configmaps/special-config uid: dadce046-d673-11e5-8cd0-68f728db1985
2.7.4. Use cases: Consuming config maps in pods
The following sections describe some uses cases when consuming ConfigMap
objects in pods.
2.7.4.1. Populating environment variables in containers by using config maps
You can use config maps to populate individual environment variables in containers or to populate environment variables in containers from all keys that form valid environment variable names.
As an example, consider the following config map:
ConfigMap
with two environment variables
apiVersion: v1 kind: ConfigMap metadata: name: special-config 1 namespace: default 2 data: special.how: very 3 special.type: charm 4
ConfigMap
with one environment variable
apiVersion: v1 kind: ConfigMap metadata: name: env-config 1 namespace: default data: log_level: INFO 2
Procedure
You can consume the keys of this
ConfigMap
in a pod usingconfigMapKeyRef
sections.Sample
Pod
specification configured to inject specific environment variablesapiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: gcr.io/google_containers/busybox command: [ "/bin/sh", "-c", "env" ] env: 1 - name: SPECIAL_LEVEL_KEY 2 valueFrom: configMapKeyRef: name: special-config 3 key: special.how 4 - name: SPECIAL_TYPE_KEY valueFrom: configMapKeyRef: name: special-config 5 key: special.type 6 optional: true 7 envFrom: 8 - configMapRef: name: env-config 9 restartPolicy: Never
- 1
- Stanza to pull the specified environment variables from a
ConfigMap
. - 2
- Name of a pod environment variable that you are injecting a key’s value into.
- 3 5
- Name of the
ConfigMap
to pull specific environment variables from. - 4 6
- Environment variable to pull from the
ConfigMap
. - 7
- Makes the environment variable optional. As optional, the pod will be started even if the specified
ConfigMap
and keys do not exist. - 8
- Stanza to pull all environment variables from a
ConfigMap
. - 9
- Name of the
ConfigMap
to pull all environment variables from.
When this pod is run, the pod logs will include the following output:
SPECIAL_LEVEL_KEY=very log_level=INFO
SPECIAL_TYPE_KEY=charm
is not listed in the example output because optional: true
is set.
2.7.4.2. Setting command-line arguments for container commands with config maps
You can use a config map to set the value of the commands or arguments in a container by using the Kubernetes substitution syntax $(VAR_NAME)
.
As an example, consider the following config map:
apiVersion: v1 kind: ConfigMap metadata: name: special-config namespace: default data: special.how: very special.type: charm
Procedure
To inject values into a command in a container, you must consume the keys you want to use as environment variables. Then you can refer to them in a container’s command using the
$(VAR_NAME)
syntax.Sample pod specification configured to inject specific environment variables
apiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: gcr.io/google_containers/busybox command: [ "/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)" ] 1 env: - name: SPECIAL_LEVEL_KEY valueFrom: configMapKeyRef: name: special-config key: special.how - name: SPECIAL_TYPE_KEY valueFrom: configMapKeyRef: name: special-config key: special.type restartPolicy: Never
- 1
- Inject the values into a command in a container using the keys you want to use as environment variables.
When this pod is run, the output from the echo command run in the test-container container is as follows:
very charm
2.7.4.3. Injecting content into a volume by using config maps
You can inject content into a volume by using config maps.
Example ConfigMap
custom resource (CR)
apiVersion: v1 kind: ConfigMap metadata: name: special-config namespace: default data: special.how: very special.type: charm
Procedure
You have a couple different options for injecting content into a volume by using config maps.
The most basic way to inject content into a volume by using a config map is to populate the volume with files where the key is the file name and the content of the file is the value of the key:
apiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: gcr.io/google_containers/busybox command: [ "/bin/sh", "-c", "cat", "/etc/config/special.how" ] volumeMounts: - name: config-volume mountPath: /etc/config volumes: - name: config-volume configMap: name: special-config 1 restartPolicy: Never
- 1
- File containing key.
When this pod is run, the output of the cat command will be:
very
You can also control the paths within the volume where config map keys are projected:
apiVersion: v1 kind: Pod metadata: name: dapi-test-pod spec: containers: - name: test-container image: gcr.io/google_containers/busybox command: [ "/bin/sh", "-c", "cat", "/etc/config/path/to/special-key" ] volumeMounts: - name: config-volume mountPath: /etc/config volumes: - name: config-volume configMap: name: special-config items: - key: special.how path: path/to/special-key 1 restartPolicy: Never
- 1
- Path to config map key.
When this pod is run, the output of the cat command will be:
very
2.8. Using device plugins to access external resources with pods
Device plugins allow you to use a particular device type (GPU, InfiniBand, or other similar computing resources that require vendor-specific initialization and setup) in your OpenShift Container Platform pod without needing to write custom code.
2.8.1. Understanding device plugins
The device plugin provides a consistent and portable solution to consume hardware devices across clusters. The device plugin provides support for these devices through an extension mechanism, which makes these devices available to Containers, provides health checks of these devices, and securely shares them.
OpenShift Container Platform supports the device plugin API, but the device plugin Containers are supported by individual vendors.
A device plugin is a gRPC service running on the nodes (external to the kubelet
) that is responsible for managing specific hardware resources. Any device plugin must support following remote procedure calls (RPCs):
service DevicePlugin { // GetDevicePluginOptions returns options to be communicated with Device // Manager rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {} // ListAndWatch returns a stream of List of Devices // Whenever a Device state change or a Device disappears, ListAndWatch // returns the new list rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {} // Allocate is called during container creation so that the Device // Plug-in can run device specific operations and instruct Kubelet // of the steps to make the Device available in the container rpc Allocate(AllocateRequest) returns (AllocateResponse) {} // PreStartcontainer is called, if indicated by Device Plug-in during // registration phase, before each container start. Device plug-in // can run device specific operations such as reseting the device // before making devices available to the container rpc PreStartcontainer(PreStartcontainerRequest) returns (PreStartcontainerResponse) {} }
Example device plugins
For easy device plugin reference implementation, there is a stub device plugin in the Device Manager code: vendor/k8s.io/kubernetes/pkg/kubelet/cm/deviceplugin/device_plugin_stub.go.
2.8.1.1. Methods for deploying a device plugin
- Daemon sets are the recommended approach for device plugin deployments.
- Upon start, the device plugin will try to create a UNIX domain socket at /var/lib/kubelet/device-plugin/ on the node to serve RPCs from Device Manager.
- Since device plugins must manage hardware resources, access to the host file system, as well as socket creation, they must be run in a privileged security context.
- More specific details regarding deployment steps can be found with each device plugin implementation.
2.8.2. Understanding the Device Manager
Device Manager provides a mechanism for advertising specialized node hardware resources with the help of plugins known as device plugins.
You can advertise specialized hardware without requiring any upstream code changes.
OpenShift Container Platform supports the device plugin API, but the device plugin Containers are supported by individual vendors.
Device Manager advertises devices as Extended Resources. User pods can consume devices, advertised by Device Manager, using the same Limit/Request mechanism, which is used for requesting any other Extended Resource.
Upon start, the device plugin registers itself with Device Manager invoking Register
on the /var/lib/kubelet/device-plugins/kubelet.sock and starts a gRPC service at /var/lib/kubelet/device-plugins/<plugin>.sock for serving Device Manager requests.
Device Manager, while processing a new registration request, invokes ListAndWatch
remote procedure call (RPC) at the device plugin service. In response, Device Manager gets a list of Device objects from the plugin over a gRPC stream. Device Manager will keep watching on the stream for new updates from the plugin. On the plugin side, the plugin will also keep the stream open and whenever there is a change in the state of any of the devices, a new device list is sent to the Device Manager over the same streaming connection.
While handling a new pod admission request, Kubelet passes requested Extended Resources
to the Device Manager for device allocation. Device Manager checks in its database to verify if a corresponding plugin exists or not. If the plugin exists and there are free allocatable devices as well as per local cache, Allocate
RPC is invoked at that particular device plugin.
Additionally, device plugins can also perform several other device-specific operations, such as driver installation, device initialization, and device resets. These functionalities vary from implementation to implementation.
2.8.3. Enabling Device Manager
Enable Device Manager to implement a device plugin to advertise specialized hardware without any upstream code changes.
Device Manager provides a mechanism for advertising specialized node hardware resources with the help of plugins known as device plugins.
Obtain the label associated with the static
MachineConfigPool
CRD for the type of node you want to configure by entering the following command. Perform one of the following steps:View the machine config:
# oc describe machineconfig <name>
For example:
# oc describe machineconfig 00-worker
Example output
Name: 00-worker Namespace: Labels: machineconfiguration.openshift.io/role=worker 1
- 1
- Label required for the Device Manager.
Procedure
Create a custom resource (CR) for your configuration change.
Sample configuration for a Device Manager CR
apiVersion: machineconfiguration.openshift.io/v1 kind: KubeletConfig metadata: name: devicemgr 1 spec: machineConfigPoolSelector: matchLabels: machineconfiguration.openshift.io: devicemgr 2 kubeletConfig: feature-gates: - DevicePlugins=true 3
Create the Device Manager:
$ oc create -f devicemgr.yaml
Example output
kubeletconfig.machineconfiguration.openshift.io/devicemgr created
- Ensure that Device Manager was actually enabled by confirming that /var/lib/kubelet/device-plugins/kubelet.sock is created on the node. This is the UNIX domain socket on which the Device Manager gRPC server listens for new plugin registrations. This sock file is created when the Kubelet is started only if Device Manager is enabled.
2.9. Including pod priority in pod scheduling decisions
You can enable pod priority and preemption in your cluster. Pod priority indicates the importance of a pod relative to other pods and queues the pods based on that priority. pod preemption allows the cluster to evict, or preempt, lower-priority pods so that higher-priority pods can be scheduled if there is no available space on a suitable node pod priority also affects the scheduling order of pods and out-of-resource eviction ordering on the node.
To use priority and preemption, you create priority classes that define the relative weight of your pods. Then, reference a priority class in the pod specification to apply that weight for scheduling.
2.9.1. Understanding pod priority
When you use the Pod Priority and Preemption feature, the scheduler orders pending pods by their priority, and a pending pod is placed ahead of other pending pods with lower priority in the scheduling queue. As a result, the higher priority pod might be scheduled sooner than pods with lower priority if its scheduling requirements are met. If a pod cannot be scheduled, scheduler continues to schedule other lower priority pods.
2.9.1.1. Pod priority classes
You can assign pods a priority class, which is a non-namespaced object that defines a mapping from a name to the integer value of the priority. The higher the value, the higher the priority.
A priority class object can take any 32-bit integer value smaller than or equal to 1000000000 (one billion). Reserve numbers larger than or equal to one billion for critical pods that must not be preempted or evicted. By default, OpenShift Container Platform has two reserved priority classes for critical system pods to have guaranteed scheduling.
$ oc get priorityclasses
Example output
NAME VALUE GLOBAL-DEFAULT AGE system-node-critical 2000001000 false 72m system-cluster-critical 2000000000 false 72m openshift-user-critical 1000000000 false 3d13h cluster-logging 1000000 false 29s
system-node-critical - This priority class has a value of 2000001000 and is used for all pods that should never be evicted from a node. Examples of pods that have this priority class are
sdn-ovs
,sdn
, and so forth. A number of critical components include thesystem-node-critical
priority class by default, for example:- master-api
- master-controller
- master-etcd
- sdn
- sdn-ovs
- sync
system-cluster-critical - This priority class has a value of 2000000000 (two billion) and is used with pods that are important for the cluster. Pods with this priority class can be evicted from a node in certain circumstances. For example, pods configured with the
system-node-critical
priority class can take priority. However, this priority class does ensure guaranteed scheduling. Examples of pods that can have this priority class are fluentd, add-on components like descheduler, and so forth. A number of critical components include thesystem-cluster-critical
priority class by default, for example:- fluentd
- metrics-server
- descheduler
-
openshift-user-critical - You can use the
priorityClassName
field with important pods that cannot bind their resource consumption and do not have predictable resource consumption behavior. Prometheus pods under theopenshift-monitoring
andopenshift-user-workload-monitoring
namespaces use theopenshift-user-critical
priorityClassName
. Monitoring workloads usesystem-critical
as their firstpriorityClass
, but this causes problems when monitoring uses excessive memory and the nodes cannot evict them. As a result, monitoring drops priority to give the scheduler flexibility, moving heavy workloads around to keep critical nodes operating. - cluster-logging - This priority is used by Fluentd to make sure Fluentd pods are scheduled to nodes over other apps.
2.9.1.2. Pod priority names
After you have one or more priority classes, you can create pods that specify a priority class name in a Pod
spec. The priority admission controller uses the priority class name field to populate the integer value of the priority. If the named priority class is not found, the pod is rejected.
2.9.2. Understanding pod preemption
When a developer creates a pod, the pod goes into a queue. If the developer configured the pod for pod priority or preemption, the scheduler picks a pod from the queue and tries to schedule the pod on a node. If the scheduler cannot find space on an appropriate node that satisfies all the specified requirements of the pod, preemption logic is triggered for the pending pod.
When the scheduler preempts one or more pods on a node, the nominatedNodeName
field of higher-priority Pod
spec is set to the name of the node, along with the nodename
field. The scheduler uses the nominatedNodeName
field to keep track of the resources reserved for pods and also provides information to the user about preemptions in the clusters.
After the scheduler preempts a lower-priority pod, the scheduler honors the graceful termination period of the pod. If another node becomes available while scheduler is waiting for the lower-priority pod to terminate, the scheduler can schedule the higher-priority pod on that node. As a result, the nominatedNodeName
field and nodeName
field of the Pod
spec might be different.
Also, if the scheduler preempts pods on a node and is waiting for termination, and a pod with a higher-priority pod than the pending pod needs to be scheduled, the scheduler can schedule the higher-priority pod instead. In such a case, the scheduler clears the nominatedNodeName
of the pending pod, making the pod eligible for another node.
Preemption does not necessarily remove all lower-priority pods from a node. The scheduler can schedule a pending pod by removing a portion of the lower-priority pods.
The scheduler considers a node for pod preemption only if the pending pod can be scheduled on the node.
2.9.2.1. Non-preempting priority classes (Technology Preview)
Pods with the preemption policy set to Never
are placed in the scheduling queue ahead of lower-priority pods, but they cannot preempt other pods. A non-preempting pod waiting to be scheduled stays in the scheduling queue until sufficient resources are free and it can be scheduled. Non-preempting pods, like other pods, are subject to scheduler back-off. This means that if the scheduler tries unsuccessfully to schedule these pods, they are retried with lower frequency, allowing other pods with lower priority to be scheduled before them.
Non-preempting pods can still be preempted by other, high-priority pods.
2.9.2.2. Pod preemption and other scheduler settings
If you enable pod priority and preemption, consider your other scheduler settings:
- Pod priority and pod disruption budget
- A pod disruption budget specifies the minimum number or percentage of replicas that must be up at a time. If you specify pod disruption budgets, OpenShift Container Platform respects them when preempting pods at a best effort level. The scheduler attempts to preempt pods without violating the pod disruption budget. If no such pods are found, lower-priority pods might be preempted despite their pod disruption budget requirements.
- Pod priority and pod affinity
- Pod affinity requires a new pod to be scheduled on the same node as other pods with the same label.
If a pending pod has inter-pod affinity with one or more of the lower-priority pods on a node, the scheduler cannot preempt the lower-priority pods without violating the affinity requirements. In this case, the scheduler looks for another node to schedule the pending pod. However, there is no guarantee that the scheduler can find an appropriate node and pending pod might not be scheduled.
To prevent this situation, carefully configure pod affinity with equal-priority pods.
2.9.2.3. Graceful termination of preempted pods
When preempting a pod, the scheduler waits for the pod graceful termination period to expire, allowing the pod to finish working and exit. If the pod does not exit after the period, the scheduler kills the pod. This graceful termination period creates a time gap between the point that the scheduler preempts the pod and the time when the pending pod can be scheduled on the node.
To minimize this gap, configure a small graceful termination period for lower-priority pods.
2.9.3. Configuring priority and preemption
You apply pod priority and preemption by creating a priority class object and associating pods to the priority by using the priorityClassName
in your pod specs.
You cannot add a priority class directly to an existing scheduled pod.
Procedure
To configure your cluster to use priority and preemption:
Create one or more priority classes:
Create a YAML file similar to the following:
apiVersion: scheduling.k8s.io/v1 kind: PriorityClass metadata: name: high-priority 1 value: 1000000 2 preemptionPolicy: PreemptLowerPriority 3 globalDefault: false 4 description: "This priority class should be used for XYZ service pods only." 5
- 1
- The name of the priority class object.
- 2
- The priority value of the object.
- 3
- Optional. Specifies whether this priority class is preempting or non-preempting. The preemption policy defaults to
PreemptLowerPriority
, which allows pods of that priority class to preempt lower-priority pods. If the preemption policy is set toNever
, pods in that priority class are non-preempting. - 4
- Optional. Specifies whether this priority class should be used for pods without a priority class name specified. This field is
false
by default. Only one priority class withglobalDefault
set totrue
can exist in the cluster. If there is no priority class withglobalDefault:true
, the priority of pods with no priority class name is zero. Adding a priority class withglobalDefault:true
affects only pods created after the priority class is added and does not change the priorities of existing pods. - 5
- Optional. Describes which pods developers should use with this priority class. Enter an arbitrary text string.
Create the priority class:
$ oc create -f <file-name>.yaml
Create a pod spec to include the name of a priority class:
Create a YAML file similar to the following:
apiVersion: v1 kind: Pod metadata: name: nginx labels: env: test spec: containers: - name: nginx image: nginx imagePullPolicy: IfNotPresent priorityClassName: high-priority 1
- 1
- Specify the priority class to use with this pod.
Create the pod:
$ oc create -f <file-name>.yaml
You can add the priority name directly to the pod configuration or to a pod template.
2.10. Placing pods on specific nodes using node selectors
A node selector specifies a map of key-value pairs. The rules are defined using custom labels on nodes and selectors specified in pods.
For the pod to be eligible to run on a node, the pod must have the indicated key-value pairs as the label on the node.
If you are using node affinity and node selectors in the same pod configuration, see the important considerations below.
2.10.1. Using node selectors to control pod placement
You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching labels.
You add labels to a node, a machine set, or a machine config. Adding the label to the machine set ensures that if the node or machine goes down, new nodes have the label. Labels added to a node or machine config do not persist if the node or machine goes down.
To add node selectors to an existing pod, add a node selector to the controlling object for that pod, such as a ReplicaSet
object, DaemonSet
object, StatefulSet
object, Deployment
object, or DeploymentConfig
object. Any existing pods under that controlling object are recreated on a node with a matching label. If you are creating a new pod, you can add the node selector directly to the pod spec. If the pod does not have a controlling object, you must delete the pod, edit the pod spec, and recreate the pod.
You cannot add a node selector directly to an existing scheduled pod.
Prerequisites
To add a node selector to existing pods, determine the controlling object for that pod. For example, the router-default-66d5cf9464-m2g75
pod is controlled by the router-default-66d5cf9464
replica set:
$ oc describe pod router-default-66d5cf9464-7pwkc
Example output
kind: Pod apiVersion: v1 metadata: #... Name: router-default-66d5cf9464-7pwkc Namespace: openshift-ingress # ... Controlled By: ReplicaSet/router-default-66d5cf9464 # ...
The web console lists the controlling object under ownerReferences
in the pod YAML:
apiVersion: v1 kind: Pod metadata: name: router-default-66d5cf9464-7pwkc # ... ownerReferences: - apiVersion: apps/v1 kind: ReplicaSet name: router-default-66d5cf9464 uid: d81dd094-da26-11e9-a48a-128e7edf0312 controller: true blockOwnerDeletion: true # ...
Procedure
Add labels to a node by using a machine set or editing the node directly:
Use a
MachineSet
object to add labels to nodes managed by the machine set when a node is created:Run the following command to add labels to a
MachineSet
object:$ oc patch MachineSet <name> --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="<value>","<key>"="<value>"}}]' -n openshift-machine-api
For example:
$ oc patch MachineSet abc612-msrtw-worker-us-east-1c --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-node","region":"east"}}]' -n openshift-machine-api
TipYou can alternatively apply the following YAML to add labels to a machine set:
apiVersion: machine.openshift.io/v1beta1 kind: MachineSet metadata: name: xf2bd-infra-us-east-2a namespace: openshift-machine-api spec: template: spec: metadata: labels: region: "east" type: "user-node" #...
Verify that the labels are added to the
MachineSet
object by using theoc edit
command:For example:
$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api
Example
MachineSet
objectapiVersion: machine.openshift.io/v1beta1 kind: MachineSet # ... spec: # ... template: metadata: # ... spec: metadata: labels: region: east type: user-node # ...
Add labels directly to a node:
Edit the
Node
object for the node:$ oc label nodes <name> <key>=<value>
For example, to label a node:
$ oc label nodes ip-10-0-142-25.ec2.internal type=user-node region=east
TipYou can alternatively apply the following YAML to add labels to a node:
kind: Node apiVersion: v1 metadata: name: hello-node-6fbccf8d9 labels: type: "user-node" region: "east" #...
Verify that the labels are added to the node:
$ oc get nodes -l type=user-node,region=east
Example output
NAME STATUS ROLES AGE VERSION ip-10-0-142-25.ec2.internal Ready worker 17m v1.23.0
Add the matching node selector to a pod:
To add a node selector to existing and future pods, add a node selector to the controlling object for the pods:
Example
ReplicaSet
object with labelskind: ReplicaSet apiVersion: apps/v1 metadata: name: hello-node-6fbccf8d9 # ... spec: # ... template: metadata: creationTimestamp: null labels: ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default pod-template-hash: 66d5cf9464 spec: nodeSelector: kubernetes.io/os: linux node-role.kubernetes.io/worker: '' type: user-node 1 #...
- 1
- Add the node selector.
To add a node selector to a specific, new pod, add the selector to the
Pod
object directly:Example
Pod
object with a node selectorapiVersion: v1 kind: Pod metadata: name: hello-node-6fbccf8d9 #... spec: nodeSelector: region: east type: user-node #...
NoteYou cannot add a node selector directly to an existing scheduled pod.