Chapter 11. Installing a cluster on Azure using ARM templates
In OpenShift Container Platform version 4.15, you can install a cluster on Microsoft Azure by using infrastructure that you provide.
Several Azure Resource Manager (ARM) templates are provided to assist in completing these steps or to help model your own.
The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the cloud provider and the installation process of OpenShift Container Platform. Several ARM templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods; the templates are just an example.
11.1. Prerequisites
- You reviewed details about the OpenShift Container Platform installation and update processes.
- You read the documentation on selecting a cluster installation method and preparing it for users.
- You configured an Azure account to host the cluster.
-
You downloaded the Azure CLI and installed it on your computer. See Install the Azure CLI in the Azure documentation. The following documentation was last tested using version
2.49.0
of the Azure CLI. Azure CLI commands might perform differently based on the version you use. -
If the cloud identity and access management (IAM) APIs are not accessible in your environment, or if you do not want to store an administrator-level credential secret in the
kube-system
namespace, see Alternatives to storing administrator-level secrets in the kube-system project. If you use a firewall and plan to use the Telemetry service, you configured the firewall to allow the sites that your cluster requires access to.
NoteBe sure to also review this site list if you are configuring a proxy.
11.2. Internet access for OpenShift Container Platform
In OpenShift Container Platform 4.15, you require access to the internet to install your cluster.
You must have internet access to:
- Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.
11.3. Configuring your Azure project
Before you can install OpenShift Container Platform, you must configure an Azure project to host it.
All Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
11.3.1. Azure account limits
The OpenShift Container Platform cluster uses a number of Microsoft Azure components, and the default Azure subscription and service limits, quotas, and constraints affect your ability to install OpenShift Container Platform clusters.
Default limits vary by offer category types, such as Free Trial and Pay-As-You-Go, and by series, such as Dv2, F, and G. For example, the default for Enterprise Agreement subscriptions is 350 cores.
Check the limits for your subscription type and if necessary, increase quota limits for your account before you install a default cluster on Azure.
The following table summarizes the Azure components whose limits can impact your ability to install and run OpenShift Container Platform clusters.
Component | Number of components required by default | Default Azure limit | Description | ||||||
---|---|---|---|---|---|---|---|---|---|
vCPU | 40 | 20 per region | A default cluster requires 40 vCPUs, so you must increase the account limit. By default, each cluster creates the following instances:
Because the bootstrap machine uses To deploy more worker nodes, enable autoscaling, deploy large workloads, or use a different instance type, you must further increase the vCPU limit for your account to ensure that your cluster can deploy the machines that you require. | ||||||
OS Disk | 7 | Each cluster machine must have a minimum of 100 GB of storage and 300 IOPS. While these are the minimum supported values, faster storage is recommended for production clusters and clusters with intensive workloads. For more information about optimizing storage for performance, see the page titled "Optimizing storage" in the "Scalability and performance" section. | |||||||
VNet | 1 | 1000 per region | Each default cluster requires one Virtual Network (VNet), which contains two subnets. | ||||||
Network interfaces | 7 | 65,536 per region | Each default cluster requires seven network interfaces. If you create more machines or your deployed workloads create load balancers, your cluster uses more network interfaces. | ||||||
Network security groups | 2 | 5000 | Each cluster creates network security groups for each subnet in the VNet. The default cluster creates network security groups for the control plane and for the compute node subnets:
| ||||||
Network load balancers | 3 | 1000 per region | Each cluster creates the following load balancers:
If your applications create more Kubernetes | ||||||
Public IP addresses | 3 | Each of the two public load balancers uses a public IP address. The bootstrap machine also uses a public IP address so that you can SSH into the machine to troubleshoot issues during installation. The IP address for the bootstrap node is used only during installation. | |||||||
Private IP addresses | 7 | The internal load balancer, each of the three control plane machines, and each of the three worker machines each use a private IP address. | |||||||
Spot VM vCPUs (optional) | 0 If you configure spot VMs, your cluster must have two spot VM vCPUs for every compute node. | 20 per region | This is an optional component. To use spot VMs, you must increase the Azure default limit to at least twice the number of compute nodes in your cluster. Note Using spot VMs for control plane nodes is not recommended. |
Additional resources
11.3.2. Configuring a public DNS zone in Azure
To install OpenShift Container Platform, the Microsoft Azure account you use must have a dedicated public hosted DNS zone in your account. This zone must be authoritative for the domain. This service provides cluster DNS resolution and name lookup for external connections to the cluster.
Procedure
Identify your domain, or subdomain, and registrar. You can transfer an existing domain and registrar or obtain a new one through Azure or another source.
NoteFor more information about purchasing domains through Azure, see Buy a custom domain name for Azure App Service in the Azure documentation.
- If you are using an existing domain and registrar, migrate its DNS to Azure. See Migrate an active DNS name to Azure App Service in the Azure documentation.
Configure DNS for your domain. Follow the steps in the Tutorial: Host your domain in Azure DNS in the Azure documentation to create a public hosted zone for your domain or subdomain, extract the new authoritative name servers, and update the registrar records for the name servers that your domain uses.
Use an appropriate root domain, such as
openshiftcorp.com
, or subdomain, such asclusters.openshiftcorp.com
.- If you use a subdomain, follow your company’s procedures to add its delegation records to the parent domain.
You can view Azure’s DNS solution by visiting this example for creating DNS zones.
11.3.3. Increasing Azure account limits
To increase an account limit, file a support request on the Azure portal.
You can increase only one type of quota per support request.
Procedure
- From the Azure portal, click Help + support in the lower left corner.
Click New support request and then select the required values:
- From the Issue type list, select Service and subscription limits (quotas).
- From the Subscription list, select the subscription to modify.
- From the Quota type list, select the quota to increase. For example, select Compute-VM (cores-vCPUs) subscription limit increases to increase the number of vCPUs, which is required to install a cluster.
- Click Next: Solutions.
On the Problem Details page, provide the required information for your quota increase:
- Click Provide details and provide the required details in the Quota details window.
- In the SUPPORT METHOD and CONTACT INFO sections, provide the issue severity and your contact details.
- Click Next: Review + create and then click Create.
11.3.4. Certificate signing requests management
Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager
only approves the kubelet client CSRs. The machine-approver
cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.
11.3.5. Recording the subscription and tenant IDs
The installation program requires the subscription and tenant IDs that are associated with your Azure account. You can use the Azure CLI to gather this information.
Prerequisites
- You have installed or updated the Azure CLI.
Procedure
Log in to the Azure CLI by running the following command:
$ az login
Ensure that you are using the right subscription:
View a list of available subscriptions by running the following command:
$ az account list --refresh
Example output
[ { "cloudName": "AzureCloud", "id": "8xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx", "isDefault": true, "name": "Subscription Name 1", "state": "Enabled", "tenantId": "6xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx", "user": { "name": "you@example.com", "type": "user" } }, { "cloudName": "AzureCloud", "id": "9xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx", "isDefault": false, "name": "Subscription Name 2", "state": "Enabled", "tenantId": "7xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx", "user": { "name": "you2@example.com", "type": "user" } } ]
View the details of the active account, and confirm that this is the subscription you want to use, by running the following command:
$ az account show
Example output
{ "environmentName": "AzureCloud", "id": "8xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx", "isDefault": true, "name": "Subscription Name 1", "state": "Enabled", "tenantId": "6xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx", "user": { "name": "you@example.com", "type": "user" } }
If you are not using the right subscription:
Change the active subscription by running the following command:
$ az account set -s <subscription_id>
Verify that you are using the subscription you need by running the following command:
$ az account show
Example output
{ "environmentName": "AzureCloud", "id": "9xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx", "isDefault": true, "name": "Subscription Name 2", "state": "Enabled", "tenantId": "7xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx", "user": { "name": "you2@example.com", "type": "user" } }
-
Record the
id
andtenantId
parameter values from the output. You require these values to install an OpenShift Container Platform cluster.
11.3.6. Supported identities to access Azure resources
An OpenShift Container Platform cluster requires an Azure identity to create and manage Azure resources. As such, you need one of the following types of identities to complete the installation:
- A service principal
- A system-assigned managed identity
- A user-assigned managed identity
11.3.7. Required Azure permissions for user-provisioned infrastructure
The installation program requires access to an Azure service principal or managed identity with the necessary permissions to deploy the cluster and to maintain its daily operation. These permissions must be granted to the Azure subscription that is associated with the identity.
The following options are available to you:
You can assign the identity the
Contributor
andUser Access Administrator
roles. Assigning these roles is the quickest way to grant all of the required permissions.For more information about assigning roles, see the Azure documentation for managing access to Azure resources using the Azure portal.
- If your organization’s security policies require a more restrictive set of permissions, you can create a custom role with the necessary permissions.
The following permissions are required for creating an OpenShift Container Platform cluster on Microsoft Azure.
Example 11.1. Required permissions for creating authorization resources
-
Microsoft.Authorization/policies/audit/action
-
Microsoft.Authorization/policies/auditIfNotExists/action
-
Microsoft.Authorization/roleAssignments/read
-
Microsoft.Authorization/roleAssignments/write
Example 11.2. Required permissions for creating compute resources
-
Microsoft.Compute/images/read
-
Microsoft.Compute/images/write
-
Microsoft.Compute/images/delete
-
Microsoft.Compute/availabilitySets/read
-
Microsoft.Compute/disks/beginGetAccess/action
-
Microsoft.Compute/disks/delete
-
Microsoft.Compute/disks/read
-
Microsoft.Compute/disks/write
-
Microsoft.Compute/galleries/images/read
-
Microsoft.Compute/galleries/images/versions/read
-
Microsoft.Compute/galleries/images/versions/write
-
Microsoft.Compute/galleries/images/write
-
Microsoft.Compute/galleries/read
-
Microsoft.Compute/galleries/write
-
Microsoft.Compute/snapshots/read
-
Microsoft.Compute/snapshots/write
-
Microsoft.Compute/snapshots/delete
-
Microsoft.Compute/virtualMachines/delete
-
Microsoft.Compute/virtualMachines/powerOff/action
-
Microsoft.Compute/virtualMachines/read
-
Microsoft.Compute/virtualMachines/write
-
Microsoft.Compute/virtualMachines/deallocate/action
Example 11.3. Required permissions for creating identity management resources
-
Microsoft.ManagedIdentity/userAssignedIdentities/assign/action
-
Microsoft.ManagedIdentity/userAssignedIdentities/read
-
Microsoft.ManagedIdentity/userAssignedIdentities/write
Example 11.4. Required permissions for creating network resources
-
Microsoft.Network/dnsZones/A/write
-
Microsoft.Network/dnsZones/CNAME/write
-
Microsoft.Network/dnszones/CNAME/read
-
Microsoft.Network/dnszones/read
-
Microsoft.Network/loadBalancers/backendAddressPools/join/action
-
Microsoft.Network/loadBalancers/backendAddressPools/read
-
Microsoft.Network/loadBalancers/backendAddressPools/write
-
Microsoft.Network/loadBalancers/read
-
Microsoft.Network/loadBalancers/write
-
Microsoft.Network/networkInterfaces/delete
-
Microsoft.Network/networkInterfaces/join/action
-
Microsoft.Network/networkInterfaces/read
-
Microsoft.Network/networkInterfaces/write
-
Microsoft.Network/networkSecurityGroups/join/action
-
Microsoft.Network/networkSecurityGroups/read
-
Microsoft.Network/networkSecurityGroups/securityRules/delete
-
Microsoft.Network/networkSecurityGroups/securityRules/read
-
Microsoft.Network/networkSecurityGroups/securityRules/write
-
Microsoft.Network/networkSecurityGroups/write
-
Microsoft.Network/privateDnsZones/A/read
-
Microsoft.Network/privateDnsZones/A/write
-
Microsoft.Network/privateDnsZones/A/delete
-
Microsoft.Network/privateDnsZones/SOA/read
-
Microsoft.Network/privateDnsZones/read
-
Microsoft.Network/privateDnsZones/virtualNetworkLinks/read
-
Microsoft.Network/privateDnsZones/virtualNetworkLinks/write
-
Microsoft.Network/privateDnsZones/write
-
Microsoft.Network/publicIPAddresses/delete
-
Microsoft.Network/publicIPAddresses/join/action
-
Microsoft.Network/publicIPAddresses/read
-
Microsoft.Network/publicIPAddresses/write
-
Microsoft.Network/virtualNetworks/join/action
-
Microsoft.Network/virtualNetworks/read
-
Microsoft.Network/virtualNetworks/subnets/join/action
-
Microsoft.Network/virtualNetworks/subnets/read
-
Microsoft.Network/virtualNetworks/subnets/write
-
Microsoft.Network/virtualNetworks/write
Example 11.5. Required permissions for checking the health of resources
-
Microsoft.Resourcehealth/healthevent/Activated/action
-
Microsoft.Resourcehealth/healthevent/InProgress/action
-
Microsoft.Resourcehealth/healthevent/Pending/action
-
Microsoft.Resourcehealth/healthevent/Resolved/action
-
Microsoft.Resourcehealth/healthevent/Updated/action
Example 11.6. Required permissions for creating a resource group
-
Microsoft.Resources/subscriptions/resourceGroups/read
-
Microsoft.Resources/subscriptions/resourcegroups/write
Example 11.7. Required permissions for creating resource tags
-
Microsoft.Resources/tags/write
Example 11.8. Required permissions for creating storage resources
-
Microsoft.Storage/storageAccounts/blobServices/read
-
Microsoft.Storage/storageAccounts/blobServices/containers/write
-
Microsoft.Storage/storageAccounts/fileServices/read
-
Microsoft.Storage/storageAccounts/fileServices/shares/read
-
Microsoft.Storage/storageAccounts/fileServices/shares/write
-
Microsoft.Storage/storageAccounts/fileServices/shares/delete
-
Microsoft.Storage/storageAccounts/listKeys/action
-
Microsoft.Storage/storageAccounts/read
-
Microsoft.Storage/storageAccounts/write
Example 11.9. Required permissions for creating deployments
-
Microsoft.Resources/deployments/read
-
Microsoft.Resources/deployments/write
-
Microsoft.Resources/deployments/validate/action
-
Microsoft.Resources/deployments/operationstatuses/read
Example 11.10. Optional permissions for creating compute resources
-
Microsoft.Compute/availabilitySets/delete
-
Microsoft.Compute/availabilitySets/write
Example 11.11. Optional permissions for creating marketplace virtual machine resources
-
Microsoft.MarketplaceOrdering/offertypes/publishers/offers/plans/agreements/read
-
Microsoft.MarketplaceOrdering/offertypes/publishers/offers/plans/agreements/write
Example 11.12. Optional permissions for enabling user-managed encryption
-
Microsoft.Compute/diskEncryptionSets/read
-
Microsoft.Compute/diskEncryptionSets/write
-
Microsoft.Compute/diskEncryptionSets/delete
-
Microsoft.KeyVault/vaults/read
-
Microsoft.KeyVault/vaults/write
-
Microsoft.KeyVault/vaults/delete
-
Microsoft.KeyVault/vaults/deploy/action
-
Microsoft.KeyVault/vaults/keys/read
-
Microsoft.KeyVault/vaults/keys/write
-
Microsoft.Features/providers/features/register/action
The following permissions are required for deleting an OpenShift Container Platform cluster on Microsoft Azure.
Example 11.13. Required permissions for deleting authorization resources
-
Microsoft.Authorization/roleAssignments/delete
Example 11.14. Required permissions for deleting compute resources
-
Microsoft.Compute/disks/delete
-
Microsoft.Compute/galleries/delete
-
Microsoft.Compute/galleries/images/delete
-
Microsoft.Compute/galleries/images/versions/delete
-
Microsoft.Compute/virtualMachines/delete
-
Microsoft.Compute/images/delete
Example 11.15. Required permissions for deleting identity management resources
-
Microsoft.ManagedIdentity/userAssignedIdentities/delete
Example 11.16. Required permissions for deleting network resources
-
Microsoft.Network/dnszones/read
-
Microsoft.Network/dnsZones/A/read
-
Microsoft.Network/dnsZones/A/delete
-
Microsoft.Network/dnsZones/CNAME/read
-
Microsoft.Network/dnsZones/CNAME/delete
-
Microsoft.Network/loadBalancers/delete
-
Microsoft.Network/networkInterfaces/delete
-
Microsoft.Network/networkSecurityGroups/delete
-
Microsoft.Network/privateDnsZones/read
-
Microsoft.Network/privateDnsZones/A/read
-
Microsoft.Network/privateDnsZones/delete
-
Microsoft.Network/privateDnsZones/virtualNetworkLinks/delete
-
Microsoft.Network/publicIPAddresses/delete
-
Microsoft.Network/virtualNetworks/delete
Example 11.17. Required permissions for checking the health of resources
-
Microsoft.Resourcehealth/healthevent/Activated/action
-
Microsoft.Resourcehealth/healthevent/Resolved/action
-
Microsoft.Resourcehealth/healthevent/Updated/action
Example 11.18. Required permissions for deleting a resource group
-
Microsoft.Resources/subscriptions/resourcegroups/delete
Example 11.19. Required permissions for deleting storage resources
-
Microsoft.Storage/storageAccounts/delete
-
Microsoft.Storage/storageAccounts/listKeys/action
To install OpenShift Container Platform on Azure, you must scope the permissions related to resource group creation to your subscription. After the resource group is created, you can scope the rest of the permissions to the created resource group. If the public DNS zone is present in a different resource group, then the network DNS zone related permissions must always be applied to your subscription.
You can scope all the permissions to your subscription when deleting an OpenShift Container Platform cluster.
11.3.8. Using Azure managed identities
The installation program requires an Azure identity to complete the installation. You can use either a system-assigned or user-assigned managed identity.
If you are unable to use a managed identity, you can use a service principal.
Procedure
- If you are using a system-assigned managed identity, enable it on the virtual machine that you will run the installation program from.
If you are using a user-assigned managed identity:
- Assign it to the virtual machine that you will run the installation program from.
Record its client ID. You require this value when installing the cluster.
For more information about viewing the details of a user-assigned managed identity, see the Microsoft Azure documentation for listing user-assigned managed identities.
- Verify that the required permissions are assigned to the managed identity.
11.3.9. Creating a service principal
The installation program requires an Azure identity to complete the installation. You can use a service principal.
If you are unable to use a service principal, you can use a managed identity.
Prerequisites
- You have installed or updated the Azure CLI.
- You have an Azure subscription ID.
-
If you are not going to assign the
Contributor
andUser Administrator Access
roles to the service principal, you have created a custom role with the required Azure permissions.
Procedure
Create the service principal for your account by running the following command:
$ az ad sp create-for-rbac --role <role_name> \1 --name <service_principal> \2 --scopes /subscriptions/<subscription_id> 3
Example output
Creating 'Contributor' role assignment under scope '/subscriptions/<subscription_id>' The output includes credentials that you must protect. Be sure that you do not include these credentials in your code or check the credentials into your source control. For more information, see https://aka.ms/azadsp-cli { "appId": "axxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx", "displayName": <service_principal>", "password": "00000000-0000-0000-0000-000000000000", "tenantId": "8xxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx" }
-
Record the values of the
appId
andpassword
parameters from the output. You require these values when installing the cluster. If you applied the
Contributor
role to your service principal, assign theUser Administrator Access
role by running the following command:$ az role assignment create --role "User Access Administrator" \ --assignee-object-id $(az ad sp show --id <appId> --query id -o tsv) 1 --scope /subscriptions/<subscription_id> 2
Additional resources
- For more information about CCO modes, see About the Cloud Credential Operator.
11.3.10. Supported Azure regions
The installation program dynamically generates the list of available Microsoft Azure regions based on your subscription.
Supported Azure public regions
-
australiacentral
(Australia Central) -
australiaeast
(Australia East) -
australiasoutheast
(Australia South East) -
brazilsouth
(Brazil South) -
canadacentral
(Canada Central) -
canadaeast
(Canada East) -
centralindia
(Central India) -
centralus
(Central US) -
eastasia
(East Asia) -
eastus
(East US) -
eastus2
(East US 2) -
francecentral
(France Central) -
germanywestcentral
(Germany West Central) -
israelcentral
(Israel Central) -
italynorth
(Italy North) -
japaneast
(Japan East) -
japanwest
(Japan West) -
koreacentral
(Korea Central) -
koreasouth
(Korea South) -
mexicocentral
(Mexico Central) -
northcentralus
(North Central US) -
northeurope
(North Europe) -
norwayeast
(Norway East) -
polandcentral
(Poland Central) -
qatarcentral
(Qatar Central) -
southafricanorth
(South Africa North) -
southcentralus
(South Central US) -
southeastasia
(Southeast Asia) -
southindia
(South India) -
spaincentral
(Spain Central) -
swedencentral
(Sweden Central) -
switzerlandnorth
(Switzerland North) -
uaenorth
(UAE North) -
uksouth
(UK South) -
ukwest
(UK West) -
westcentralus
(West Central US) -
westeurope
(West Europe) -
westindia
(West India) -
westus
(West US) -
westus2
(West US 2) -
westus3
(West US 3)
Supported Azure Government regions
Support for the following Microsoft Azure Government (MAG) regions was added in OpenShift Container Platform version 4.6:
-
usgovtexas
(US Gov Texas) -
usgovvirginia
(US Gov Virginia)
You can reference all available MAG regions in the Azure documentation. Other provided MAG regions are expected to work with OpenShift Container Platform, but have not been tested.
11.4. Requirements for a cluster with user-provisioned infrastructure
For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.
This section describes the requirements for deploying OpenShift Container Platform on user-provisioned infrastructure.
11.4.1. Required machines for cluster installation
The smallest OpenShift Container Platform clusters require the following hosts:
Hosts | Description |
---|---|
One temporary bootstrap machine | The cluster requires the bootstrap machine to deploy the OpenShift Container Platform cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster. |
Three control plane machines | The control plane machines run the Kubernetes and OpenShift Container Platform services that form the control plane. |
At least two compute machines, which are also known as worker machines. | The workloads requested by OpenShift Container Platform users run on the compute machines. |
To maintain high availability of your cluster, use separate physical hosts for these cluster machines.
The bootstrap and control plane machines must use Red Hat Enterprise Linux CoreOS (RHCOS) as the operating system. However, the compute machines can choose between Red Hat Enterprise Linux CoreOS (RHCOS), Red Hat Enterprise Linux (RHEL) 8.6 and later.
Note that RHCOS is based on Red Hat Enterprise Linux (RHEL) 9.2 and inherits all of its hardware certifications and requirements. See Red Hat Enterprise Linux technology capabilities and limits.
11.4.2. Minimum resource requirements for cluster installation
Each cluster machine must meet the following minimum requirements:
Machine | Operating System | vCPU [1] | Virtual RAM | Storage | Input/Output Per Second (IOPS)[2] |
---|---|---|---|---|---|
Bootstrap | RHCOS | 4 | 16 GB | 100 GB | 300 |
Control plane | RHCOS | 4 | 16 GB | 100 GB | 300 |
Compute | RHCOS, RHEL 8.6 and later [3] | 2 | 8 GB | 100 GB | 300 |
- One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
- OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
- As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:
- x86-64 architecture requires x86-64-v2 ISA
- ARM64 architecture requires ARMv8.0-A ISA
- IBM Power architecture requires Power 9 ISA
- s390x architecture requires z14 ISA
For more information, see RHEL Architectures.
You are required to use Azure virtual machines that have the premiumIO
parameter set to true
.
If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.
Additional resources
11.4.3. Tested instance types for Azure
The following Microsoft Azure instance types have been tested with OpenShift Container Platform.
Example 11.20. Machine types based on 64-bit x86 architecture
-
standardBSFamily
-
standardBsv2Family
-
standardDADSv5Family
-
standardDASv4Family
-
standardDASv5Family
-
standardDCACCV5Family
-
standardDCADCCV5Family
-
standardDCADSv5Family
-
standardDCASv5Family
-
standardDCSv3Family
-
standardDCSv2Family
-
standardDDCSv3Family
-
standardDDSv4Family
-
standardDDSv5Family
-
standardDLDSv5Family
-
standardDLSv5Family
-
standardDSFamily
-
standardDSv2Family
-
standardDSv2PromoFamily
-
standardDSv3Family
-
standardDSv4Family
-
standardDSv5Family
-
standardEADSv5Family
-
standardEASv4Family
-
standardEASv5Family
-
standardEBDSv5Family
-
standardEBSv5Family
-
standardECACCV5Family
-
standardECADCCV5Family
-
standardECADSv5Family
-
standardECASv5Family
-
standardEDSv4Family
-
standardEDSv5Family
-
standardEIADSv5Family
-
standardEIASv4Family
-
standardEIASv5Family
-
standardEIBDSv5Family
-
standardEIBSv5Family
-
standardEIDSv5Family
-
standardEISv3Family
-
standardEISv5Family
-
standardESv3Family
-
standardESv4Family
-
standardESv5Family
-
standardFXMDVSFamily
-
standardFSFamily
-
standardFSv2Family
-
standardGSFamily
-
standardHBrsv2Family
-
standardHBSFamily
-
standardHCSFamily
-
standardHXFamily
-
standardLASv3Family
-
standardLSFamily
-
standardLSv2Family
-
standardLSv3Family
-
standardMDSMediumMemoryv2Family
-
standardMIDSMediumMemoryv2Family
-
standardMISMediumMemoryv2Family
-
standardMSFamily
-
standardMSMediumMemoryv2Family
-
StandardNCADSA100v4Family
-
Standard NCASv3_T4 Family
-
standardNCSv3Family
-
standardNDSv2Family
-
standardNPSFamily
-
StandardNVADSA10v5Family
-
standardNVSv3Family
-
standardXEISv4Family
11.4.4. Tested instance types for Azure on 64-bit ARM infrastructures
The following Microsoft Azure ARM64 instance types have been tested with OpenShift Container Platform.
Example 11.21. Machine types based on 64-bit ARM architecture
-
standardBpsv2Family
-
standardDPSv5Family
-
standardDPDSv5Family
-
standardDPLDSv5Family
-
standardDPLSv5Family
-
standardEPSv5Family
-
standardEPDSv5Family
11.5. Using the Azure Marketplace offering
Using the Azure Marketplace offering lets you deploy an OpenShift Container Platform cluster, which is billed on pay-per-use basis (hourly, per core) through Azure, while still being supported directly by Red Hat.
To deploy an OpenShift Container Platform cluster using the Azure Marketplace offering, you must first obtain the Azure Marketplace image. The installation program uses this image to deploy worker nodes. When obtaining your image, consider the following:
-
While the images are the same, the Azure Marketplace publisher is different depending on your region. If you are located in North America, specify
redhat
as the publisher. If you are located in EMEA, specifyredhat-limited
as the publisher. -
The offer includes a
rh-ocp-worker
SKU and arh-ocp-worker-gen1
SKU. Therh-ocp-worker
SKU represents a Hyper-V generation version 2 VM image. The default instance types used in OpenShift Container Platform are version 2 compatible. If you plan to use an instance type that is only version 1 compatible, use the image associated with therh-ocp-worker-gen1
SKU. Therh-ocp-worker-gen1
SKU represents a Hyper-V version 1 VM image.
Installing images with the Azure marketplace is not supported on clusters with 64-bit ARM instances.
Prerequisites
-
You have installed the Azure CLI client
(az)
. - Your Azure account is entitled for the offer and you have logged into this account with the Azure CLI client.
Procedure
Display all of the available OpenShift Container Platform images by running one of the following commands:
North America:
$ az vm image list --all --offer rh-ocp-worker --publisher redhat -o table
Example output
Offer Publisher Sku Urn Version ------------- -------------- ------------------ -------------------------------------------------------------- ----------------- rh-ocp-worker RedHat rh-ocp-worker RedHat:rh-ocp-worker:rh-ocp-worker:4.15.2024072409 4.15.2024072409 rh-ocp-worker RedHat rh-ocp-worker-gen1 RedHat:rh-ocp-worker:rh-ocp-worker-gen1:4.15.2024072409 4.15.2024072409
EMEA:
$ az vm image list --all --offer rh-ocp-worker --publisher redhat-limited -o table
Example output
Offer Publisher Sku Urn Version ------------- -------------- ------------------ -------------------------------------------------------------- ----------------- rh-ocp-worker redhat-limited rh-ocp-worker redhat-limited:rh-ocp-worker:rh-ocp-worker:4.15.2024072409 4.15.2024072409 rh-ocp-worker redhat-limited rh-ocp-worker-gen1 redhat-limited:rh-ocp-worker:rh-ocp-worker-gen1:4.15.2024072409 4.15.2024072409
NoteRegardless of the version of OpenShift Container Platform that you install, the correct version of the Azure Marketplace image to use is 4.13. If required, your VMs are automatically upgraded as part of the installation process.
Inspect the image for your offer by running one of the following commands:
North America:
$ az vm image show --urn redhat:rh-ocp-worker:rh-ocp-worker:<version>
EMEA:
$ az vm image show --urn redhat-limited:rh-ocp-worker:rh-ocp-worker:<version>
Review the terms of the offer by running one of the following commands:
North America:
$ az vm image terms show --urn redhat:rh-ocp-worker:rh-ocp-worker:<version>
EMEA:
$ az vm image terms show --urn redhat-limited:rh-ocp-worker:rh-ocp-worker:<version>
Accept the terms of the offering by running one of the following commands:
North America:
$ az vm image terms accept --urn redhat:rh-ocp-worker:rh-ocp-worker:<version>
EMEA:
$ az vm image terms accept --urn redhat-limited:rh-ocp-worker:rh-ocp-worker:<version>
Record the image details of your offer. If you use the Azure Resource Manager (ARM) template to deploy your worker nodes:
-
Update
storageProfile.imageReference
by deleting theid
parameter and adding theoffer
,publisher
,sku
, andversion
parameters by using the values from your offer. Specify a
plan
for the virtual machines (VMs).Example
06_workers.json
ARM template with an updatedstorageProfile.imageReference
object and a specifiedplan
... "plan" : { "name": "rh-ocp-worker", "product": "rh-ocp-worker", "publisher": "redhat" }, "dependsOn" : [ "[concat('Microsoft.Network/networkInterfaces/', concat(variables('vmNames')[copyIndex()], '-nic'))]" ], "properties" : { ... "storageProfile": { "imageReference": { "offer": "rh-ocp-worker", "publisher": "redhat", "sku": "rh-ocp-worker", "version": "413.92.2023101700" } ... } ... }
-
Update
11.6. Obtaining the installation program
Before you install OpenShift Container Platform, download the installation file on the host you are using for installation.
Prerequisites
- You have a computer that runs Linux or macOS, with at least 1.2 GB of local disk space.
Procedure
- Go to the Cluster Type page on the Red Hat Hybrid Cloud Console. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- Select your infrastructure provider from the Run it yourself section of the page.
- Select your host operating system and architecture from the dropdown menus under OpenShift Installer and click Download Installer.
Place the downloaded file in the directory where you want to store the installation configuration files.
Important- The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both of the files are required to delete the cluster.
- Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar -xvf openshift-install-linux.tar.gz
- Download your installation pull secret from Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
Alternatively, you can retrieve the installation program from the Red Hat Customer Portal, where you can specify a version of the installation program to download. However, you must have an active subscription to access this page.
11.7. Generating a key pair for cluster node SSH access
During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys
list for the core
user on each node, which enables password-less authentication.
After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core
. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.
If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.
Do not skip this procedure in production environments, where disaster recovery and debugging is required.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
- 1
- Specify the path and file name, such as
~/.ssh/id_ed25519
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.
NoteIf you plan to install an OpenShift Container Platform cluster that uses the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the
x86_64
,ppc64le
, ands390x
architectures, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.View the public SSH key:
$ cat <path>/<file_name>.pub
For example, run the following to view the
~/.ssh/id_ed25519.pub
public key:$ cat ~/.ssh/id_ed25519.pub
Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the
./openshift-install gather
command.NoteOn some distributions, default SSH private key identities such as
~/.ssh/id_rsa
and~/.ssh/id_dsa
are managed automatically.If the
ssh-agent
process is not already running for your local user, start it as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> 1
- 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_ed25519
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide the key to the installation program.
11.8. Creating the installation files for Azure
To install OpenShift Container Platform on Microsoft Azure using user-provisioned infrastructure, you must generate the files that the installation program needs to deploy your cluster and modify them so that the cluster creates only the machines that it will use. You generate and customize the install-config.yaml
file, Kubernetes manifests, and Ignition config files. You also have the option to first set up a separate var
partition during the preparation phases of installation.
11.8.1. Optional: Creating a separate /var
partition
It is recommended that disk partitioning for OpenShift Container Platform be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.
OpenShift Container Platform supports the addition of a single partition to attach storage to either the /var
partition or a subdirectory of /var
. For example:
-
/var/lib/containers
: Holds container-related content that can grow as more images and containers are added to a system. -
/var/lib/etcd
: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage. -
/var
: Holds data that you might want to keep separate for purposes such as auditing.
Storing the contents of a /var
directory separately makes it easier to grow storage for those areas as needed and reinstall OpenShift Container Platform at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.
Because /var
must be in place before a fresh installation of Red Hat Enterprise Linux CoreOS (RHCOS), the following procedure sets up the separate /var
partition by creating a machine config manifest that is inserted during the openshift-install
preparation phases of an OpenShift Container Platform installation.
If you follow the steps to create a separate /var
partition in this procedure, it is not necessary to create the Kubernetes manifest and Ignition config files again as described later in this section.
Procedure
Create a directory to hold the OpenShift Container Platform installation files:
$ mkdir $HOME/clusterconfig
Run
openshift-install
to create a set of files in themanifest
andopenshift
subdirectories. Answer the system questions as you are prompted:$ openshift-install create manifests --dir $HOME/clusterconfig
Example output
? SSH Public Key ... INFO Credentials loaded from the "myprofile" profile in file "/home/myuser/.aws/credentials" INFO Consuming Install Config from target directory INFO Manifests created in: $HOME/clusterconfig/manifests and $HOME/clusterconfig/openshift
Optional: Confirm that the installation program created manifests in the
clusterconfig/openshift
directory:$ ls $HOME/clusterconfig/openshift/
Example output
99_kubeadmin-password-secret.yaml 99_openshift-cluster-api_master-machines-0.yaml 99_openshift-cluster-api_master-machines-1.yaml 99_openshift-cluster-api_master-machines-2.yaml ...
Create a Butane config that configures the additional partition. For example, name the file
$HOME/clusterconfig/98-var-partition.bu
, change the disk device name to the name of the storage device on theworker
systems, and set the storage size as appropriate. This example places the/var
directory on a separate partition:variant: openshift version: 4.15.0 metadata: labels: machineconfiguration.openshift.io/role: worker name: 98-var-partition storage: disks: - device: /dev/disk/by-id/<device_name> 1 partitions: - label: var start_mib: <partition_start_offset> 2 size_mib: <partition_size> 3 number: 5 filesystems: - device: /dev/disk/by-partlabel/var path: /var format: xfs mount_options: [defaults, prjquota] 4 with_mount_unit: true
- 1
- The storage device name of the disk that you want to partition.
- 2
- When adding a data partition to the boot disk, a minimum value of 25000 MiB (Mebibytes) is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of RHCOS might overwrite the beginning of the data partition.
- 3
- The size of the data partition in mebibytes.
- 4
- The
prjquota
mount option must be enabled for filesystems used for container storage.
NoteWhen creating a separate
/var
partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.Create a manifest from the Butane config and save it to the
clusterconfig/openshift
directory. For example, run the following command:$ butane $HOME/clusterconfig/98-var-partition.bu -o $HOME/clusterconfig/openshift/98-var-partition.yaml
Run
openshift-install
again to create Ignition configs from a set of files in themanifest
andopenshift
subdirectories:$ openshift-install create ignition-configs --dir $HOME/clusterconfig $ ls $HOME/clusterconfig/ auth bootstrap.ign master.ign metadata.json worker.ign
Now you can use the Ignition config files as input to the installation procedures to install Red Hat Enterprise Linux CoreOS (RHCOS) systems.
11.8.2. Creating the installation configuration file
You can customize the OpenShift Container Platform cluster you install on Microsoft Azure.
Prerequisites
- You have the OpenShift Container Platform installation program and the pull secret for your cluster.
- You have an Azure subscription ID and tenant ID.
- If you are installing the cluster using a service principal, you have its application ID and password.
- If you are installing the cluster using a system-assigned managed identity, you have enabled it on the virtual machine that you will run the installation program from.
If you are installing the cluster using a user-assigned managed identity, you have met these prerequisites:
- You have its client ID.
- You have assigned it to the virtual machine that you will run the installation program from.
Procedure
Optional: If you have run the installation program on this computer before, and want to use an alternative service principal or managed identity, go to the
~/.azure/
directory and delete theosServicePrincipal.json
configuration file.Deleting this file prevents the installation program from automatically reusing subscription and authentication values from a previous installation.
Create the
install-config.yaml
file.Change to the directory that contains the installation program and run the following command:
$ ./openshift-install create install-config --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the directory name to store the files that the installation program creates.
When specifying the directory:
-
Verify that the directory has the
execute
permission. This permission is required to run Terraform binaries under the installation directory. - Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.Select azure as the platform to target.
If the installation program cannot locate the
osServicePrincipal.json
configuration file from a previous installation, you are prompted for Azure subscription and authentication values.Enter the following Azure parameter values for your subscription:
- azure subscription id: Enter the subscription ID to use for the cluster.
- azure tenant id: Enter the tenant ID.
Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client id:
- If you are using a service principal, enter its application ID.
- If you are using a system-assigned managed identity, leave this value blank.
- If you are using a user-assigned managed identity, specify its client ID.
Depending on the Azure identity you are using to deploy the cluster, do one of the following when prompted for the azure service principal client secret:
- If you are using a service principal, enter its password.
- If you are using a system-assigned managed identity, leave this value blank.
- If you are using a user-assigned managed identity, leave this value blank.
- Select the region to deploy the cluster to.
- Select the base domain to deploy the cluster to. The base domain corresponds to the Azure DNS Zone that you created for your cluster.
Enter a descriptive name for your cluster.
ImportantAll Azure resources that are available through public endpoints are subject to resource name restrictions, and you cannot create resources that use certain terms. For a list of terms that Azure restricts, see Resolve reserved resource name errors in the Azure documentation.
Modify the
install-config.yaml
file. You can find more information about the available parameters in the "Installation configuration parameters" section.NoteIf you are installing a three-node cluster, be sure to set the
compute.replicas
parameter to0
. This ensures that the cluster’s control planes are schedulable. For more information, see "Installing a three-node cluster on Azure".Back up the
install-config.yaml
file so that you can use it to install multiple clusters.ImportantThe
install-config.yaml
file is consumed during the installation process. If you want to reuse the file, you must back it up now.
If previously not detected, the installation program creates an osServicePrincipal.json
configuration file and stores this file in the ~/.azure/
directory on your computer. This ensures that the installation program can load the profile when it is creating an OpenShift Container Platform cluster on the target platform.
11.8.3. Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Prerequisites
-
You have an existing
install-config.yaml
file. You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.NoteThe
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1 baseDomain: my.domain.com proxy: httpProxy: http://<username>:<pswd>@<ip>:<port> 1 httpsProxy: https://<username>:<pswd>@<ip>:<port> 2 noProxy: example.com 3 additionalTrustBundle: | 4 -----BEGIN CERTIFICATE----- <MY_TRUSTED_CA_CERT> -----END CERTIFICATE----- additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
- 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http
. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster.
- 3
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with
.
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundle
in theopenshift-config
namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in thetrustedCA
field of theProxy
object. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle. - 5
- Optional: The policy to determine the configuration of the
Proxy
object to reference theuser-ca-bundle
config map in thetrustedCA
field. The allowed values areProxyonly
andAlways
. UseProxyonly
to reference theuser-ca-bundle
config map only whenhttp/https
proxy is configured. UseAlways
to always reference theuser-ca-bundle
config map. The default value isProxyonly
.
NoteThe installation program does not support the proxy
readinessEndpoints
field.NoteIf the installer times out, restart and then complete the deployment by using the
wait-for
command of the installer. For example:$ ./openshift-install wait-for install-complete --log-level debug
- Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the Proxy
object named cluster
is supported, and no additional proxies can be created.
11.8.4. Exporting common variables for ARM templates
You must export a common set of variables that are used with the provided Azure Resource Manager (ARM) templates used to assist in completing a user-provided infrastructure install on Microsoft Azure.
Specific ARM templates can also require additional exported variables, which are detailed in their related procedures.
Prerequisites
- Obtain the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Export common variables found in the
install-config.yaml
to be used by the provided ARM templates:$ export CLUSTER_NAME=<cluster_name>1 $ export AZURE_REGION=<azure_region>2 $ export SSH_KEY=<ssh_key>3 $ export BASE_DOMAIN=<base_domain>4 $ export BASE_DOMAIN_RESOURCE_GROUP=<base_domain_resource_group>5
- 1
- The value of the
.metadata.name
attribute from theinstall-config.yaml
file. - 2
- The region to deploy the cluster into, for example
centralus
. This is the value of the.platform.azure.region
attribute from theinstall-config.yaml
file. - 3
- The SSH RSA public key file as a string. You must enclose the SSH key in quotes since it contains spaces. This is the value of the
.sshKey
attribute from theinstall-config.yaml
file. - 4
- The base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster. This is the value of the
.baseDomain
attribute from theinstall-config.yaml
file. - 5
- The resource group where the public DNS zone exists. This is the value of the
.platform.azure.baseDomainResourceGroupName
attribute from theinstall-config.yaml
file.
For example:
$ export CLUSTER_NAME=test-cluster $ export AZURE_REGION=centralus $ export SSH_KEY="ssh-rsa xxx/xxx/xxx= user@email.com" $ export BASE_DOMAIN=example.com $ export BASE_DOMAIN_RESOURCE_GROUP=ocp-cluster
Export the kubeadmin credentials:
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
11.8.5. Creating the Kubernetes manifest and Ignition config files
Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the machines.
The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to configure the cluster machines.
-
The Ignition config files that the OpenShift Container Platform installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
Prerequisites
- You obtained the OpenShift Container Platform installation program.
-
You created the
install-config.yaml
installation configuration file.
Procedure
Change to the directory that contains the OpenShift Container Platform installation program and generate the Kubernetes manifests for the cluster:
$ ./openshift-install create manifests --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the installation directory that contains theinstall-config.yaml
file you created.
Remove the Kubernetes manifest files that define the control plane machines:
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml
By removing these files, you prevent the cluster from automatically generating control plane machines.
Remove the Kubernetes manifest files that define the control plane machine set:
$ rm -f <installation_directory>/openshift/99_openshift-machine-api_master-control-plane-machine-set.yaml
Remove the Kubernetes manifest files that define the worker machines:
$ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml
ImportantIf you disabled the
MachineAPI
capability when installing a cluster on user-provisioned infrastructure, you must remove the Kubernetes manifest files that define the worker machines. Otherwise, your cluster fails to install.Because you create and manage the worker machines yourself, you do not need to initialize these machines.
WarningIf you are installing a three-node cluster, skip the following step to allow the control plane nodes to be schedulable.
ImportantWhen you configure control plane nodes from the default unschedulable to schedulable, additional subscriptions are required. This is because control plane nodes then become compute nodes.
Check that the
mastersSchedulable
parameter in the<installation_directory>/manifests/cluster-scheduler-02-config.yml
Kubernetes manifest file is set tofalse
. This setting prevents pods from being scheduled on the control plane machines:-
Open the
<installation_directory>/manifests/cluster-scheduler-02-config.yml
file. -
Locate the
mastersSchedulable
parameter and ensure that it is set tofalse
. - Save and exit the file.
-
Open the
Optional: If you do not want the Ingress Operator to create DNS records on your behalf, remove the
privateZone
andpublicZone
sections from the<installation_directory>/manifests/cluster-dns-02-config.yml
DNS configuration file:apiVersion: config.openshift.io/v1 kind: DNS metadata: creationTimestamp: null name: cluster spec: baseDomain: example.openshift.com privateZone: 1 id: mycluster-100419-private-zone publicZone: 2 id: example.openshift.com status: {}
If you do so, you must add ingress DNS records manually in a later step.
When configuring Azure on user-provisioned infrastructure, you must export some common variables defined in the manifest files to use later in the Azure Resource Manager (ARM) templates:
Export the infrastructure ID by using the following command:
$ export INFRA_ID=<infra_id> 1
- 1
- The OpenShift Container Platform cluster has been assigned an identifier (
INFRA_ID
) in the form of<cluster_name>-<random_string>
. This will be used as the base name for most resources created using the provided ARM templates. This is the value of the.status.infrastructureName
attribute from themanifests/cluster-infrastructure-02-config.yml
file.
Export the resource group by using the following command:
$ export RESOURCE_GROUP=<resource_group> 1
- 1
- All resources created in this Azure deployment exists as part of a resource group. The resource group name is also based on the
INFRA_ID
, in the form of<cluster_name>-<random_string>-rg
. This is the value of the.status.platformStatus.azure.resourceGroupName
attribute from themanifests/cluster-infrastructure-02-config.yml
file.
To create the Ignition configuration files, run the following command from the directory that contains the installation program:
$ ./openshift-install create ignition-configs --dir <installation_directory> 1
- 1
- For
<installation_directory>
, specify the same installation directory.
Ignition config files are created for the bootstrap, control plane, and compute nodes in the installation directory. The
kubeadmin-password
andkubeconfig
files are created in the./<installation_directory>/auth
directory:. ├── auth │ ├── kubeadmin-password │ └── kubeconfig ├── bootstrap.ign ├── master.ign ├── metadata.json └── worker.ign
11.9. Creating the Azure resource group
You must create a Microsoft Azure resource group and an identity for that resource group. These are both used during the installation of your OpenShift Container Platform cluster on Azure.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
Procedure
Create the resource group in a supported Azure region:
$ az group create --name ${RESOURCE_GROUP} --location ${AZURE_REGION}
Create an Azure identity for the resource group:
$ az identity create -g ${RESOURCE_GROUP} -n ${INFRA_ID}-identity
This is used to grant the required access to Operators in your cluster. For example, this allows the Ingress Operator to create a public IP and its load balancer. You must assign the Azure identity to a role.
Grant the Contributor role to the Azure identity:
Export the following variables required by the Azure role assignment:
$ export PRINCIPAL_ID=`az identity show -g ${RESOURCE_GROUP} -n ${INFRA_ID}-identity --query principalId --out tsv`
$ export RESOURCE_GROUP_ID=`az group show -g ${RESOURCE_GROUP} --query id --out tsv`
Assign the Contributor role to the identity:
$ az role assignment create --assignee "${PRINCIPAL_ID}" --role 'Contributor' --scope "${RESOURCE_GROUP_ID}"
NoteIf you want to assign a custom role with all the required permissions to the identity, run the following command:
$ az role assignment create --assignee "${PRINCIPAL_ID}" --role <custom_role> \ 1 --scope "${RESOURCE_GROUP_ID}"
- 1
- Specifies the custom role name.
11.10. Uploading the RHCOS cluster image and bootstrap Ignition config file
The Azure client does not support deployments based on files existing locally. You must copy and store the RHCOS virtual hard disk (VHD) cluster image and bootstrap Ignition config file in a storage container so they are accessible during deployment.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
Procedure
Create an Azure storage account to store the VHD cluster image:
$ az storage account create -g ${RESOURCE_GROUP} --location ${AZURE_REGION} --name ${CLUSTER_NAME}sa --kind Storage --sku Standard_LRS
WarningThe Azure storage account name must be between 3 and 24 characters in length and use numbers and lower-case letters only. If your
CLUSTER_NAME
variable does not follow these restrictions, you must manually define the Azure storage account name. For more information on Azure storage account name restrictions, see Resolve errors for storage account names in the Azure documentation.Export the storage account key as an environment variable:
$ export ACCOUNT_KEY=`az storage account keys list -g ${RESOURCE_GROUP} --account-name ${CLUSTER_NAME}sa --query "[0].value" -o tsv`
Export the URL of the RHCOS VHD to an environment variable:
$ export VHD_URL=`openshift-install coreos print-stream-json | jq -r '.architectures.<architecture>."rhel-coreos-extensions"."azure-disk".url'`
where:
<architecture>
Specifies the architecture, valid values include
x86_64
oraarch64
.ImportantThe RHCOS images might not change with every release of OpenShift Container Platform. You must specify an image with the highest version that is less than or equal to the OpenShift Container Platform version that you install. Use the image version that matches your OpenShift Container Platform version if it is available.
Create the storage container for the VHD:
$ az storage container create --name vhd --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY}
Copy the local VHD to a blob:
$ az storage blob copy start --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} --destination-blob "rhcos.vhd" --destination-container vhd --source-uri "${VHD_URL}"
Create a blob storage container and upload the generated
bootstrap.ign
file:$ az storage container create --name files --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY}
$ az storage blob upload --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} -c "files" -f "<installation_directory>/bootstrap.ign" -n "bootstrap.ign"
11.11. Example for creating DNS zones
DNS records are required for clusters that use user-provisioned infrastructure. You should choose the DNS strategy that fits your scenario.
For this example, Azure’s DNS solution is used, so you will create a new public DNS zone for external (internet) visibility and a private DNS zone for internal cluster resolution.
The public DNS zone is not required to exist in the same resource group as the cluster deployment and might already exist in your organization for the desired base domain. If that is the case, you can skip creating the public DNS zone; be sure the installation config you generated earlier reflects that scenario.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
Procedure
Create the new public DNS zone in the resource group exported in the
BASE_DOMAIN_RESOURCE_GROUP
environment variable:$ az network dns zone create -g ${BASE_DOMAIN_RESOURCE_GROUP} -n ${CLUSTER_NAME}.${BASE_DOMAIN}
You can skip this step if you are using a public DNS zone that already exists.
Create the private DNS zone in the same resource group as the rest of this deployment:
$ az network private-dns zone create -g ${RESOURCE_GROUP} -n ${CLUSTER_NAME}.${BASE_DOMAIN}
You can learn more about configuring a public DNS zone in Azure by visiting that section.
11.12. Creating a VNet in Azure
You must create a virtual network (VNet) in Microsoft Azure for your OpenShift Container Platform cluster to use. You can customize the VNet to meet your requirements. One way to create the VNet is to modify the provided Azure Resource Manager (ARM) template.
If you do not use the provided ARM template to create your Azure infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
Procedure
-
Copy the template from the ARM template for the VNet section of this topic and save it as
01_vnet.json
in your cluster’s installation directory. This template describes the VNet that your cluster requires. Create the deployment by using the
az
CLI:$ az deployment group create -g ${RESOURCE_GROUP} \ --template-file "<installation_directory>/01_vnet.json" \ --parameters baseName="${INFRA_ID}"1
- 1
- The base name to be used in resource names; this is usually the cluster’s infrastructure ID.
Link the VNet template to the private DNS zone:
$ az network private-dns link vnet create -g ${RESOURCE_GROUP} -z ${CLUSTER_NAME}.${BASE_DOMAIN} -n ${INFRA_ID}-network-link -v "${INFRA_ID}-vnet" -e false
11.12.1. ARM template for the VNet
You can use the following Azure Resource Manager (ARM) template to deploy the VNet that you need for your OpenShift Container Platform cluster:
Example 11.22. 01_vnet.json
ARM template
{ "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#", "contentVersion" : "1.0.0.0", "parameters" : { "baseName" : { "type" : "string", "minLength" : 1, "metadata" : { "description" : "Base name to be used in resource names (usually the cluster's Infra ID)" } } }, "variables" : { "location" : "[resourceGroup().location]", "virtualNetworkName" : "[concat(parameters('baseName'), '-vnet')]", "addressPrefix" : "10.0.0.0/16", "masterSubnetName" : "[concat(parameters('baseName'), '-master-subnet')]", "masterSubnetPrefix" : "10.0.0.0/24", "nodeSubnetName" : "[concat(parameters('baseName'), '-worker-subnet')]", "nodeSubnetPrefix" : "10.0.1.0/24", "clusterNsgName" : "[concat(parameters('baseName'), '-nsg')]" }, "resources" : [ { "apiVersion" : "2018-12-01", "type" : "Microsoft.Network/virtualNetworks", "name" : "[variables('virtualNetworkName')]", "location" : "[variables('location')]", "dependsOn" : [ "[concat('Microsoft.Network/networkSecurityGroups/', variables('clusterNsgName'))]" ], "properties" : { "addressSpace" : { "addressPrefixes" : [ "[variables('addressPrefix')]" ] }, "subnets" : [ { "name" : "[variables('masterSubnetName')]", "properties" : { "addressPrefix" : "[variables('masterSubnetPrefix')]", "serviceEndpoints": [], "networkSecurityGroup" : { "id" : "[resourceId('Microsoft.Network/networkSecurityGroups', variables('clusterNsgName'))]" } } }, { "name" : "[variables('nodeSubnetName')]", "properties" : { "addressPrefix" : "[variables('nodeSubnetPrefix')]", "serviceEndpoints": [], "networkSecurityGroup" : { "id" : "[resourceId('Microsoft.Network/networkSecurityGroups', variables('clusterNsgName'))]" } } } ] } }, { "type" : "Microsoft.Network/networkSecurityGroups", "name" : "[variables('clusterNsgName')]", "apiVersion" : "2018-10-01", "location" : "[variables('location')]", "properties" : { "securityRules" : [ { "name" : "apiserver_in", "properties" : { "protocol" : "Tcp", "sourcePortRange" : "*", "destinationPortRange" : "6443", "sourceAddressPrefix" : "*", "destinationAddressPrefix" : "*", "access" : "Allow", "priority" : 101, "direction" : "Inbound" } } ] } } ] }
11.13. Deploying the RHCOS cluster image for the Azure infrastructure
You must use a valid Red Hat Enterprise Linux CoreOS (RHCOS) image for Microsoft Azure for your OpenShift Container Platform nodes.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
- Store the RHCOS virtual hard disk (VHD) cluster image in an Azure storage container.
- Store the bootstrap Ignition config file in an Azure storage container.
Procedure
-
Copy the template from the ARM template for image storage section of this topic and save it as
02_storage.json
in your cluster’s installation directory. This template describes the image storage that your cluster requires. Export the RHCOS VHD blob URL as a variable:
$ export VHD_BLOB_URL=`az storage blob url --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} -c vhd -n "rhcos.vhd" -o tsv`
Deploy the cluster image:
$ az deployment group create -g ${RESOURCE_GROUP} \ --template-file "<installation_directory>/02_storage.json" \ --parameters vhdBlobURL="${VHD_BLOB_URL}" \ 1 --parameters baseName="${INFRA_ID}" \ 2 --parameters storageAccount="${CLUSTER_NAME}sa" \ 3 --parameters architecture="<architecture>" 4
11.13.1. ARM template for image storage
You can use the following Azure Resource Manager (ARM) template to deploy the stored Red Hat Enterprise Linux CoreOS (RHCOS) image that you need for your OpenShift Container Platform cluster:
Example 11.23. 02_storage.json
ARM template
{ "$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#", "contentVersion": "1.0.0.0", "parameters": { "architecture": { "type": "string", "metadata": { "description": "The architecture of the Virtual Machines" }, "defaultValue": "x64", "allowedValues": [ "Arm64", "x64" ] }, "baseName": { "type": "string", "minLength": 1, "metadata": { "description": "Base name to be used in resource names (usually the cluster's Infra ID)" } }, "storageAccount": { "type": "string", "metadata": { "description": "The Storage Account name" } }, "vhdBlobURL": { "type": "string", "metadata": { "description": "URL pointing to the blob where the VHD to be used to create master and worker machines is located" } } }, "variables": { "location": "[resourceGroup().location]", "galleryName": "[concat('gallery_', replace(parameters('baseName'), '-', '_'))]", "imageName": "[parameters('baseName')]", "imageNameGen2": "[concat(parameters('baseName'), '-gen2')]", "imageRelease": "1.0.0" }, "resources": [ { "apiVersion": "2021-10-01", "type": "Microsoft.Compute/galleries", "name": "[variables('galleryName')]", "location": "[variables('location')]", "resources": [ { "apiVersion": "2021-10-01", "type": "images", "name": "[variables('imageName')]", "location": "[variables('location')]", "dependsOn": [ "[variables('galleryName')]" ], "properties": { "architecture": "[parameters('architecture')]", "hyperVGeneration": "V1", "identifier": { "offer": "rhcos", "publisher": "RedHat", "sku": "basic" }, "osState": "Generalized", "osType": "Linux" }, "resources": [ { "apiVersion": "2021-10-01", "type": "versions", "name": "[variables('imageRelease')]", "location": "[variables('location')]", "dependsOn": [ "[variables('imageName')]" ], "properties": { "publishingProfile": { "storageAccountType": "Standard_LRS", "targetRegions": [ { "name": "[variables('location')]", "regionalReplicaCount": "1" } ] }, "storageProfile": { "osDiskImage": { "source": { "id": "[resourceId('Microsoft.Storage/storageAccounts', parameters('storageAccount'))]", "uri": "[parameters('vhdBlobURL')]" } } } } } ] }, { "apiVersion": "2021-10-01", "type": "images", "name": "[variables('imageNameGen2')]", "location": "[variables('location')]", "dependsOn": [ "[variables('galleryName')]" ], "properties": { "architecture": "[parameters('architecture')]", "hyperVGeneration": "V2", "identifier": { "offer": "rhcos-gen2", "publisher": "RedHat-gen2", "sku": "gen2" }, "osState": "Generalized", "osType": "Linux" }, "resources": [ { "apiVersion": "2021-10-01", "type": "versions", "name": "[variables('imageRelease')]", "location": "[variables('location')]", "dependsOn": [ "[variables('imageNameGen2')]" ], "properties": { "publishingProfile": { "storageAccountType": "Standard_LRS", "targetRegions": [ { "name": "[variables('location')]", "regionalReplicaCount": "1" } ] }, "storageProfile": { "osDiskImage": { "source": { "id": "[resourceId('Microsoft.Storage/storageAccounts', parameters('storageAccount'))]", "uri": "[parameters('vhdBlobURL')]" } } } } } ] } ] } ] }
11.14. Networking requirements for user-provisioned infrastructure
All the Red Hat Enterprise Linux CoreOS (RHCOS) machines require networking to be configured in initramfs
during boot to fetch their Ignition config files.
11.14.1. Network connectivity requirements
You must configure the network connectivity between machines to allow OpenShift Container Platform cluster components to communicate. Each machine must be able to resolve the hostnames of all other machines in the cluster.
This section provides details about the ports that are required.
In connected OpenShift Container Platform environments, all nodes are required to have internet access to pull images for platform containers and provide telemetry data to Red Hat.
Protocol | Port | Description |
---|---|---|
ICMP | N/A | Network reachability tests |
TCP |
| Metrics |
|
Host level services, including the node exporter on ports | |
| The default ports that Kubernetes reserves | |
UDP |
| VXLAN |
| Geneve | |
|
Host level services, including the node exporter on ports | |
| IPsec IKE packets | |
| IPsec NAT-T packets | |
|
Network Time Protocol (NTP) on UDP port
If an external NTP time server is configured, you must open UDP port | |
TCP/UDP |
| Kubernetes node port |
ESP | N/A | IPsec Encapsulating Security Payload (ESP) |
Protocol | Port | Description |
---|---|---|
TCP |
| Kubernetes API |
Protocol | Port | Description |
---|---|---|
TCP |
| etcd server and peer ports |
11.15. Creating networking and load balancing components in Azure
You must configure networking and load balancing in Microsoft Azure for your OpenShift Container Platform cluster to use. One way to create these components is to modify the provided Azure Resource Manager (ARM) template.
If you do not use the provided ARM template to create your Azure infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
- Create and configure a VNet and associated subnets in Azure.
Procedure
-
Copy the template from the ARM template for the network and load balancers section of this topic and save it as
03_infra.json
in your cluster’s installation directory. This template describes the networking and load balancing objects that your cluster requires. Create the deployment by using the
az
CLI:$ az deployment group create -g ${RESOURCE_GROUP} \ --template-file "<installation_directory>/03_infra.json" \ --parameters privateDNSZoneName="${CLUSTER_NAME}.${BASE_DOMAIN}" \ 1 --parameters baseName="${INFRA_ID}"2
Create an
api
DNS record in the public zone for the API public load balancer. The${BASE_DOMAIN_RESOURCE_GROUP}
variable must point to the resource group where the public DNS zone exists.Export the following variable:
$ export PUBLIC_IP=`az network public-ip list -g ${RESOURCE_GROUP} --query "[?name=='${INFRA_ID}-master-pip'] | [0].ipAddress" -o tsv`
Create the
api
DNS record in a new public zone:$ az network dns record-set a add-record -g ${BASE_DOMAIN_RESOURCE_GROUP} -z ${CLUSTER_NAME}.${BASE_DOMAIN} -n api -a ${PUBLIC_IP} --ttl 60
If you are adding the cluster to an existing public zone, you can create the
api
DNS record in it instead:$ az network dns record-set a add-record -g ${BASE_DOMAIN_RESOURCE_GROUP} -z ${BASE_DOMAIN} -n api.${CLUSTER_NAME} -a ${PUBLIC_IP} --ttl 60
11.15.1. ARM template for the network and load balancers
You can use the following Azure Resource Manager (ARM) template to deploy the networking objects and load balancers that you need for your OpenShift Container Platform cluster:
Example 11.24. 03_infra.json
ARM template
{ "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#", "contentVersion" : "1.0.0.0", "parameters" : { "baseName" : { "type" : "string", "minLength" : 1, "metadata" : { "description" : "Base name to be used in resource names (usually the cluster's Infra ID)" } }, "vnetBaseName": { "type": "string", "defaultValue": "", "metadata" : { "description" : "The specific customer vnet's base name (optional)" } }, "privateDNSZoneName" : { "type" : "string", "metadata" : { "description" : "Name of the private DNS zone" } } }, "variables" : { "location" : "[resourceGroup().location]", "virtualNetworkName" : "[concat(if(not(empty(parameters('vnetBaseName'))), parameters('vnetBaseName'), parameters('baseName')), '-vnet')]", "virtualNetworkID" : "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]", "masterSubnetName" : "[concat(if(not(empty(parameters('vnetBaseName'))), parameters('vnetBaseName'), parameters('baseName')), '-master-subnet')]", "masterSubnetRef" : "[concat(variables('virtualNetworkID'), '/subnets/', variables('masterSubnetName'))]", "masterPublicIpAddressName" : "[concat(parameters('baseName'), '-master-pip')]", "masterPublicIpAddressID" : "[resourceId('Microsoft.Network/publicIPAddresses', variables('masterPublicIpAddressName'))]", "masterLoadBalancerName" : "[parameters('baseName')]", "masterLoadBalancerID" : "[resourceId('Microsoft.Network/loadBalancers', variables('masterLoadBalancerName'))]", "internalLoadBalancerName" : "[concat(parameters('baseName'), '-internal-lb')]", "internalLoadBalancerID" : "[resourceId('Microsoft.Network/loadBalancers', variables('internalLoadBalancerName'))]", "skuName": "Standard" }, "resources" : [ { "apiVersion" : "2018-12-01", "type" : "Microsoft.Network/publicIPAddresses", "name" : "[variables('masterPublicIpAddressName')]", "location" : "[variables('location')]", "sku": { "name": "[variables('skuName')]" }, "properties" : { "publicIPAllocationMethod" : "Static", "dnsSettings" : { "domainNameLabel" : "[variables('masterPublicIpAddressName')]" } } }, { "apiVersion" : "2018-12-01", "type" : "Microsoft.Network/loadBalancers", "name" : "[variables('masterLoadBalancerName')]", "location" : "[variables('location')]", "sku": { "name": "[variables('skuName')]" }, "dependsOn" : [ "[concat('Microsoft.Network/publicIPAddresses/', variables('masterPublicIpAddressName'))]" ], "properties" : { "frontendIPConfigurations" : [ { "name" : "public-lb-ip-v4", "properties" : { "publicIPAddress" : { "id" : "[variables('masterPublicIpAddressID')]" } } } ], "backendAddressPools" : [ { "name" : "[variables('masterLoadBalancerName')]" } ], "loadBalancingRules" : [ { "name" : "api-internal", "properties" : { "frontendIPConfiguration" : { "id" :"[concat(variables('masterLoadBalancerID'), '/frontendIPConfigurations/public-lb-ip-v4')]" }, "backendAddressPool" : { "id" : "[concat(variables('masterLoadBalancerID'), '/backendAddressPools/', variables('masterLoadBalancerName'))]" }, "protocol" : "Tcp", "loadDistribution" : "Default", "idleTimeoutInMinutes" : 30, "frontendPort" : 6443, "backendPort" : 6443, "probe" : { "id" : "[concat(variables('masterLoadBalancerID'), '/probes/api-internal-probe')]" } } } ], "probes" : [ { "name" : "api-internal-probe", "properties" : { "protocol" : "Https", "port" : 6443, "requestPath": "/readyz", "intervalInSeconds" : 10, "numberOfProbes" : 3 } } ] } }, { "apiVersion" : "2018-12-01", "type" : "Microsoft.Network/loadBalancers", "name" : "[variables('internalLoadBalancerName')]", "location" : "[variables('location')]", "sku": { "name": "[variables('skuName')]" }, "properties" : { "frontendIPConfigurations" : [ { "name" : "internal-lb-ip", "properties" : { "privateIPAllocationMethod" : "Dynamic", "subnet" : { "id" : "[variables('masterSubnetRef')]" }, "privateIPAddressVersion" : "IPv4" } } ], "backendAddressPools" : [ { "name" : "internal-lb-backend" } ], "loadBalancingRules" : [ { "name" : "api-internal", "properties" : { "frontendIPConfiguration" : { "id" : "[concat(variables('internalLoadBalancerID'), '/frontendIPConfigurations/internal-lb-ip')]" }, "frontendPort" : 6443, "backendPort" : 6443, "enableFloatingIP" : false, "idleTimeoutInMinutes" : 30, "protocol" : "Tcp", "enableTcpReset" : false, "loadDistribution" : "Default", "backendAddressPool" : { "id" : "[concat(variables('internalLoadBalancerID'), '/backendAddressPools/internal-lb-backend')]" }, "probe" : { "id" : "[concat(variables('internalLoadBalancerID'), '/probes/api-internal-probe')]" } } }, { "name" : "sint", "properties" : { "frontendIPConfiguration" : { "id" : "[concat(variables('internalLoadBalancerID'), '/frontendIPConfigurations/internal-lb-ip')]" }, "frontendPort" : 22623, "backendPort" : 22623, "enableFloatingIP" : false, "idleTimeoutInMinutes" : 30, "protocol" : "Tcp", "enableTcpReset" : false, "loadDistribution" : "Default", "backendAddressPool" : { "id" : "[concat(variables('internalLoadBalancerID'), '/backendAddressPools/internal-lb-backend')]" }, "probe" : { "id" : "[concat(variables('internalLoadBalancerID'), '/probes/sint-probe')]" } } } ], "probes" : [ { "name" : "api-internal-probe", "properties" : { "protocol" : "Https", "port" : 6443, "requestPath": "/readyz", "intervalInSeconds" : 10, "numberOfProbes" : 3 } }, { "name" : "sint-probe", "properties" : { "protocol" : "Https", "port" : 22623, "requestPath": "/healthz", "intervalInSeconds" : 10, "numberOfProbes" : 3 } } ] } }, { "apiVersion": "2018-09-01", "type": "Microsoft.Network/privateDnsZones/A", "name": "[concat(parameters('privateDNSZoneName'), '/api')]", "location" : "[variables('location')]", "dependsOn" : [ "[concat('Microsoft.Network/loadBalancers/', variables('internalLoadBalancerName'))]" ], "properties": { "ttl": 60, "aRecords": [ { "ipv4Address": "[reference(variables('internalLoadBalancerName')).frontendIPConfigurations[0].properties.privateIPAddress]" } ] } }, { "apiVersion": "2018-09-01", "type": "Microsoft.Network/privateDnsZones/A", "name": "[concat(parameters('privateDNSZoneName'), '/api-int')]", "location" : "[variables('location')]", "dependsOn" : [ "[concat('Microsoft.Network/loadBalancers/', variables('internalLoadBalancerName'))]" ], "properties": { "ttl": 60, "aRecords": [ { "ipv4Address": "[reference(variables('internalLoadBalancerName')).frontendIPConfigurations[0].properties.privateIPAddress]" } ] } } ] }
11.16. Creating the bootstrap machine in Azure
You must create the bootstrap machine in Microsoft Azure to use during OpenShift Container Platform cluster initialization. One way to create this machine is to modify the provided Azure Resource Manager (ARM) template.
If you do not use the provided ARM template to create your bootstrap machine, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
- Create and configure a VNet and associated subnets in Azure.
- Create and configure networking and load balancers in Azure.
- Create control plane and compute roles.
Procedure
-
Copy the template from the ARM template for the bootstrap machine section of this topic and save it as
04_bootstrap.json
in your cluster’s installation directory. This template describes the bootstrap machine that your cluster requires. Export the bootstrap URL variable:
$ bootstrap_url_expiry=`date -u -d "10 hours" '+%Y-%m-%dT%H:%MZ'`
$ export BOOTSTRAP_URL=`az storage blob generate-sas -c 'files' -n 'bootstrap.ign' --https-only --full-uri --permissions r --expiry $bootstrap_url_expiry --account-name ${CLUSTER_NAME}sa --account-key ${ACCOUNT_KEY} -o tsv`
Export the bootstrap ignition variable:
$ export BOOTSTRAP_IGNITION=`jq -rcnM --arg v "3.2.0" --arg url ${BOOTSTRAP_URL} '{ignition:{version:$v,config:{replace:{source:$url}}}}' | base64 | tr -d '\n'`
Create the deployment by using the
az
CLI:$ az deployment group create -g ${RESOURCE_GROUP} \ --template-file "<installation_directory>/04_bootstrap.json" \ --parameters bootstrapIgnition="${BOOTSTRAP_IGNITION}" \ 1 --parameters baseName="${INFRA_ID}" \ 2 --parameter bootstrapVMSize="Standard_D4s_v3" 3
- 1
- The bootstrap Ignition content for the bootstrap cluster.
- 2
- The base name to be used in resource names; this is usually the cluster’s infrastructure ID.
- 3
- Optional: Specify the size of the bootstrap VM. Use a VM size compatible with your specified architecture. If this value is not defined, the default value from the template is set.
11.16.1. ARM template for the bootstrap machine
You can use the following Azure Resource Manager (ARM) template to deploy the bootstrap machine that you need for your OpenShift Container Platform cluster:
Example 11.25. 04_bootstrap.json
ARM template
{ "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#", "contentVersion" : "1.0.0.0", "parameters" : { "baseName" : { "type" : "string", "minLength" : 1, "metadata" : { "description" : "Base name to be used in resource names (usually the cluster's Infra ID)" } }, "vnetBaseName": { "type": "string", "defaultValue": "", "metadata" : { "description" : "The specific customer vnet's base name (optional)" } }, "bootstrapIgnition" : { "type" : "string", "minLength" : 1, "metadata" : { "description" : "Bootstrap ignition content for the bootstrap cluster" } }, "sshKeyData" : { "type" : "securestring", "defaultValue" : "Unused", "metadata" : { "description" : "Unused" } }, "bootstrapVMSize" : { "type" : "string", "defaultValue" : "Standard_D4s_v3", "metadata" : { "description" : "The size of the Bootstrap Virtual Machine" } }, "hyperVGen": { "type": "string", "metadata": { "description": "VM generation image to use" }, "defaultValue": "V2", "allowedValues": [ "V1", "V2" ] } }, "variables" : { "location" : "[resourceGroup().location]", "virtualNetworkName" : "[concat(if(not(empty(parameters('vnetBaseName'))), parameters('vnetBaseName'), parameters('baseName')), '-vnet')]", "virtualNetworkID" : "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]", "masterSubnetName" : "[concat(if(not(empty(parameters('vnetBaseName'))), parameters('vnetBaseName'), parameters('baseName')), '-master-subnet')]", "masterSubnetRef" : "[concat(variables('virtualNetworkID'), '/subnets/', variables('masterSubnetName'))]", "masterLoadBalancerName" : "[parameters('baseName')]", "internalLoadBalancerName" : "[concat(parameters('baseName'), '-internal-lb')]", "sshKeyPath" : "/home/core/.ssh/authorized_keys", "identityName" : "[concat(parameters('baseName'), '-identity')]", "vmName" : "[concat(parameters('baseName'), '-bootstrap')]", "nicName" : "[concat(variables('vmName'), '-nic')]", "galleryName": "[concat('gallery_', replace(parameters('baseName'), '-', '_'))]", "imageName" : "[concat(parameters('baseName'), if(equals(parameters('hyperVGen'), 'V2'), '-gen2', ''))]", "clusterNsgName" : "[concat(if(not(empty(parameters('vnetBaseName'))), parameters('vnetBaseName'), parameters('baseName')), '-nsg')]", "sshPublicIpAddressName" : "[concat(variables('vmName'), '-ssh-pip')]" }, "resources" : [ { "apiVersion" : "2018-12-01", "type" : "Microsoft.Network/publicIPAddresses", "name" : "[variables('sshPublicIpAddressName')]", "location" : "[variables('location')]", "sku": { "name": "Standard" }, "properties" : { "publicIPAllocationMethod" : "Static", "dnsSettings" : { "domainNameLabel" : "[variables('sshPublicIpAddressName')]" } } }, { "apiVersion" : "2018-06-01", "type" : "Microsoft.Network/networkInterfaces", "name" : "[variables('nicName')]", "location" : "[variables('location')]", "dependsOn" : [ "[resourceId('Microsoft.Network/publicIPAddresses', variables('sshPublicIpAddressName'))]" ], "properties" : { "ipConfigurations" : [ { "name" : "pipConfig", "properties" : { "privateIPAllocationMethod" : "Dynamic", "publicIPAddress": { "id": "[resourceId('Microsoft.Network/publicIPAddresses', variables('sshPublicIpAddressName'))]" }, "subnet" : { "id" : "[variables('masterSubnetRef')]" }, "loadBalancerBackendAddressPools" : [ { "id" : "[concat('/subscriptions/', subscription().subscriptionId, '/resourceGroups/', resourceGroup().name, '/providers/Microsoft.Network/loadBalancers/', variables('masterLoadBalancerName'), '/backendAddressPools/', variables('masterLoadBalancerName'))]" }, { "id" : "[concat('/subscriptions/', subscription().subscriptionId, '/resourceGroups/', resourceGroup().name, '/providers/Microsoft.Network/loadBalancers/', variables('internalLoadBalancerName'), '/backendAddressPools/internal-lb-backend')]" } ] } } ] } }, { "apiVersion" : "2018-06-01", "type" : "Microsoft.Compute/virtualMachines", "name" : "[variables('vmName')]", "location" : "[variables('location')]", "identity" : { "type" : "userAssigned", "userAssignedIdentities" : { "[resourceID('Microsoft.ManagedIdentity/userAssignedIdentities/', variables('identityName'))]" : {} } }, "dependsOn" : [ "[concat('Microsoft.Network/networkInterfaces/', variables('nicName'))]" ], "properties" : { "hardwareProfile" : { "vmSize" : "[parameters('bootstrapVMSize')]" }, "osProfile" : { "computerName" : "[variables('vmName')]", "adminUsername" : "core", "adminPassword" : "NotActuallyApplied!", "customData" : "[parameters('bootstrapIgnition')]", "linuxConfiguration" : { "disablePasswordAuthentication" : false } }, "storageProfile" : { "imageReference": { "id": "[resourceId('Microsoft.Compute/galleries/images', variables('galleryName'), variables('imageName'))]" }, "osDisk" : { "name": "[concat(variables('vmName'),'_OSDisk')]", "osType" : "Linux", "createOption" : "FromImage", "managedDisk": { "storageAccountType": "Premium_LRS" }, "diskSizeGB" : 100 } }, "networkProfile" : { "networkInterfaces" : [ { "id" : "[resourceId('Microsoft.Network/networkInterfaces', variables('nicName'))]" } ] } } }, { "apiVersion" : "2018-06-01", "type": "Microsoft.Network/networkSecurityGroups/securityRules", "name" : "[concat(variables('clusterNsgName'), '/bootstrap_ssh_in')]", "location" : "[variables('location')]", "dependsOn" : [ "[resourceId('Microsoft.Compute/virtualMachines', variables('vmName'))]" ], "properties": { "protocol" : "Tcp", "sourcePortRange" : "*", "destinationPortRange" : "22", "sourceAddressPrefix" : "*", "destinationAddressPrefix" : "*", "access" : "Allow", "priority" : 100, "direction" : "Inbound" } } ] }
11.17. Creating the control plane machines in Azure
You must create the control plane machines in Microsoft Azure for your cluster to use. One way to create these machines is to modify the provided Azure Resource Manager (ARM) template.
By default, Microsoft Azure places control plane machines and compute machines in a pre-set availability zone. You can manually set an availability zone for a compute node or control plane node. To do this, modify a vendor’s Azure Resource Manager (ARM) template by specifying each of your availability zones in the zones
parameter of the virtual machine resource.
If you do not use the provided ARM template to create your control plane machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, consider contacting Red Hat support with your installation logs.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
- Create and configure a VNet and associated subnets in Azure.
- Create and configure networking and load balancers in Azure.
- Create control plane and compute roles.
- Create the bootstrap machine.
Procedure
-
Copy the template from the ARM template for control plane machines section of this topic and save it as
05_masters.json
in your cluster’s installation directory. This template describes the control plane machines that your cluster requires. Export the following variable needed by the control plane machine deployment:
$ export MASTER_IGNITION=`cat <installation_directory>/master.ign | base64 | tr -d '\n'`
Create the deployment by using the
az
CLI:$ az deployment group create -g ${RESOURCE_GROUP} \ --template-file "<installation_directory>/05_masters.json" \ --parameters masterIgnition="${MASTER_IGNITION}" \ 1 --parameters baseName="${INFRA_ID}" \ 2 --parameters masterVMSize="Standard_D8s_v3" 3
- 1
- The Ignition content for the control plane nodes.
- 2
- The base name to be used in resource names; this is usually the cluster’s infrastructure ID.
- 3
- Optional: Specify the size of the Control Plane VM. Use a VM size compatible with your specified architecture. If this value is not defined, the default value from the template is set.
11.17.1. ARM template for control plane machines
You can use the following Azure Resource Manager (ARM) template to deploy the control plane machines that you need for your OpenShift Container Platform cluster:
Example 11.26. 05_masters.json
ARM template
{ "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#", "contentVersion" : "1.0.0.0", "parameters" : { "baseName" : { "type" : "string", "minLength" : 1, "metadata" : { "description" : "Base name to be used in resource names (usually the cluster's Infra ID)" } }, "vnetBaseName": { "type": "string", "defaultValue": "", "metadata" : { "description" : "The specific customer vnet's base name (optional)" } }, "masterIgnition" : { "type" : "string", "metadata" : { "description" : "Ignition content for the master nodes" } }, "numberOfMasters" : { "type" : "int", "defaultValue" : 3, "minValue" : 2, "maxValue" : 30, "metadata" : { "description" : "Number of OpenShift masters to deploy" } }, "sshKeyData" : { "type" : "securestring", "defaultValue" : "Unused", "metadata" : { "description" : "Unused" } }, "privateDNSZoneName" : { "type" : "string", "defaultValue" : "", "metadata" : { "description" : "unused" } }, "masterVMSize" : { "type" : "string", "defaultValue" : "Standard_D8s_v3", "metadata" : { "description" : "The size of the Master Virtual Machines" } }, "diskSizeGB" : { "type" : "int", "defaultValue" : 1024, "metadata" : { "description" : "Size of the Master VM OS disk, in GB" } }, "hyperVGen": { "type": "string", "metadata": { "description": "VM generation image to use" }, "defaultValue": "V2", "allowedValues": [ "V1", "V2" ] } }, "variables" : { "location" : "[resourceGroup().location]", "virtualNetworkName" : "[concat(if(not(empty(parameters('vnetBaseName'))), parameters('vnetBaseName'), parameters('baseName')), '-vnet')]", "virtualNetworkID" : "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]", "masterSubnetName" : "[concat(if(not(empty(parameters('vnetBaseName'))), parameters('vnetBaseName'), parameters('baseName')), '-master-subnet')]", "masterSubnetRef" : "[concat(variables('virtualNetworkID'), '/subnets/', variables('masterSubnetName'))]", "masterLoadBalancerName" : "[parameters('baseName')]", "internalLoadBalancerName" : "[concat(parameters('baseName'), '-internal-lb')]", "sshKeyPath" : "/home/core/.ssh/authorized_keys", "identityName" : "[concat(parameters('baseName'), '-identity')]", "galleryName": "[concat('gallery_', replace(parameters('baseName'), '-', '_'))]", "imageName" : "[concat(parameters('baseName'), if(equals(parameters('hyperVGen'), 'V2'), '-gen2', ''))]", "copy" : [ { "name" : "vmNames", "count" : "[parameters('numberOfMasters')]", "input" : "[concat(parameters('baseName'), '-master-', copyIndex('vmNames'))]" } ] }, "resources" : [ { "apiVersion" : "2018-06-01", "type" : "Microsoft.Network/networkInterfaces", "copy" : { "name" : "nicCopy", "count" : "[length(variables('vmNames'))]" }, "name" : "[concat(variables('vmNames')[copyIndex()], '-nic')]", "location" : "[variables('location')]", "properties" : { "ipConfigurations" : [ { "name" : "pipConfig", "properties" : { "privateIPAllocationMethod" : "Dynamic", "subnet" : { "id" : "[variables('masterSubnetRef')]" }, "loadBalancerBackendAddressPools" : [ { "id" : "[concat('/subscriptions/', subscription().subscriptionId, '/resourceGroups/', resourceGroup().name, '/providers/Microsoft.Network/loadBalancers/', variables('masterLoadBalancerName'), '/backendAddressPools/', variables('masterLoadBalancerName'))]" }, { "id" : "[concat('/subscriptions/', subscription().subscriptionId, '/resourceGroups/', resourceGroup().name, '/providers/Microsoft.Network/loadBalancers/', variables('internalLoadBalancerName'), '/backendAddressPools/internal-lb-backend')]" } ] } } ] } }, { "apiVersion" : "2018-06-01", "type" : "Microsoft.Compute/virtualMachines", "copy" : { "name" : "vmCopy", "count" : "[length(variables('vmNames'))]" }, "name" : "[variables('vmNames')[copyIndex()]]", "location" : "[variables('location')]", "identity" : { "type" : "userAssigned", "userAssignedIdentities" : { "[resourceID('Microsoft.ManagedIdentity/userAssignedIdentities/', variables('identityName'))]" : {} } }, "dependsOn" : [ "[concat('Microsoft.Network/networkInterfaces/', concat(variables('vmNames')[copyIndex()], '-nic'))]" ], "properties" : { "hardwareProfile" : { "vmSize" : "[parameters('masterVMSize')]" }, "osProfile" : { "computerName" : "[variables('vmNames')[copyIndex()]]", "adminUsername" : "core", "adminPassword" : "NotActuallyApplied!", "customData" : "[parameters('masterIgnition')]", "linuxConfiguration" : { "disablePasswordAuthentication" : false } }, "storageProfile" : { "imageReference": { "id": "[resourceId('Microsoft.Compute/galleries/images', variables('galleryName'), variables('imageName'))]" }, "osDisk" : { "name": "[concat(variables('vmNames')[copyIndex()], '_OSDisk')]", "osType" : "Linux", "createOption" : "FromImage", "caching": "ReadOnly", "writeAcceleratorEnabled": false, "managedDisk": { "storageAccountType": "Premium_LRS" }, "diskSizeGB" : "[parameters('diskSizeGB')]" } }, "networkProfile" : { "networkInterfaces" : [ { "id" : "[resourceId('Microsoft.Network/networkInterfaces', concat(variables('vmNames')[copyIndex()], '-nic'))]", "properties": { "primary": false } } ] } } } ] }
11.18. Wait for bootstrap completion and remove bootstrap resources in Azure
After you create all of the required infrastructure in Microsoft Azure, wait for the bootstrap process to complete on the machines that you provisioned by using the Ignition config files that you generated with the installation program.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
- Create and configure a VNet and associated subnets in Azure.
- Create and configure networking and load balancers in Azure.
- Create control plane and compute roles.
- Create the bootstrap machine.
- Create the control plane machines.
Procedure
Change to the directory that contains the installation program and run the following command:
$ ./openshift-install wait-for bootstrap-complete --dir <installation_directory> \ 1 --log-level info 2
If the command exits without a
FATAL
warning, your production control plane has initialized.Delete the bootstrap resources:
$ az network nsg rule delete -g ${RESOURCE_GROUP} --nsg-name ${INFRA_ID}-nsg --name bootstrap_ssh_in $ az vm stop -g ${RESOURCE_GROUP} --name ${INFRA_ID}-bootstrap $ az vm deallocate -g ${RESOURCE_GROUP} --name ${INFRA_ID}-bootstrap $ az vm delete -g ${RESOURCE_GROUP} --name ${INFRA_ID}-bootstrap --yes $ az disk delete -g ${RESOURCE_GROUP} --name ${INFRA_ID}-bootstrap_OSDisk --no-wait --yes $ az network nic delete -g ${RESOURCE_GROUP} --name ${INFRA_ID}-bootstrap-nic --no-wait $ az storage blob delete --account-key ${ACCOUNT_KEY} --account-name ${CLUSTER_NAME}sa --container-name files --name bootstrap.ign $ az network public-ip delete -g ${RESOURCE_GROUP} --name ${INFRA_ID}-bootstrap-ssh-pip
If you do not delete the bootstrap server, installation may not succeed due to API traffic being routed to the bootstrap server.
11.19. Creating additional worker machines in Azure
You can create worker machines in Microsoft Azure for your cluster to use by launching individual instances discretely or by automated processes outside the cluster, such as auto scaling groups. You can also take advantage of the built-in cluster scaling mechanisms and the machine API in OpenShift Container Platform.
If you are installing a three-node cluster, skip this step. A three-node cluster consists of three control plane machines, which also act as compute machines.
In this example, you manually launch one instance by using the Azure Resource Manager (ARM) template. Additional instances can be launched by including additional resources of type 06_workers.json
in the file.
By default, Microsoft Azure places control plane machines and compute machines in a pre-set availability zone. You can manually set an availability zone for a compute node or control plane node. To do this, modify a vendor’s ARM template by specifying each of your availability zones in the zones
parameter of the virtual machine resource.
If you do not use the provided ARM template to create your control plane machines, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, consider contacting Red Hat support with your installation logs.
Prerequisites
- Configure an Azure account.
- Generate the Ignition config files for your cluster.
- Create and configure a VNet and associated subnets in Azure.
- Create and configure networking and load balancers in Azure.
- Create control plane and compute roles.
- Create the bootstrap machine.
- Create the control plane machines.
Procedure
-
Copy the template from the ARM template for worker machines section of this topic and save it as
06_workers.json
in your cluster’s installation directory. This template describes the worker machines that your cluster requires. Export the following variable needed by the worker machine deployment:
$ export WORKER_IGNITION=`cat <installation_directory>/worker.ign | base64 | tr -d '\n'`
Create the deployment by using the
az
CLI:$ az deployment group create -g ${RESOURCE_GROUP} \ --template-file "<installation_directory>/06_workers.json" \ --parameters workerIgnition="${WORKER_IGNITION}" \ 1 --parameters baseName="${INFRA_ID}" \ 2 --parameters nodeVMSize="Standard_D4s_v3" 3
- 1
- The Ignition content for the worker nodes.
- 2
- The base name to be used in resource names; this is usually the cluster’s infrastructure ID.
- 3
- Optional: Specify the size of the compute node VM. Use a VM size compatible with your specified architecture. If this value is not defined, the default value from the template is set.
11.19.1. ARM template for worker machines
You can use the following Azure Resource Manager (ARM) template to deploy the worker machines that you need for your OpenShift Container Platform cluster:
Example 11.27. 06_workers.json
ARM template
{ "$schema" : "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#", "contentVersion" : "1.0.0.0", "parameters" : { "baseName" : { "type" : "string", "minLength" : 1, "metadata" : { "description" : "Base name to be used in resource names (usually the cluster's Infra ID)" } }, "vnetBaseName": { "type": "string", "defaultValue": "", "metadata" : { "description" : "The specific customer vnet's base name (optional)" } }, "workerIgnition" : { "type" : "string", "metadata" : { "description" : "Ignition content for the worker nodes" } }, "numberOfNodes" : { "type" : "int", "defaultValue" : 3, "minValue" : 2, "maxValue" : 30, "metadata" : { "description" : "Number of OpenShift compute nodes to deploy" } }, "sshKeyData" : { "type" : "securestring", "defaultValue" : "Unused", "metadata" : { "description" : "Unused" } }, "nodeVMSize" : { "type" : "string", "defaultValue" : "Standard_D4s_v3", "metadata" : { "description" : "The size of the each Node Virtual Machine" } }, "hyperVGen": { "type": "string", "metadata": { "description": "VM generation image to use" }, "defaultValue": "V2", "allowedValues": [ "V1", "V2" ] } }, "variables" : { "location" : "[resourceGroup().location]", "virtualNetworkName" : "[concat(if(not(empty(parameters('vnetBaseName'))), parameters('vnetBaseName'), parameters('baseName')), '-vnet')]", "virtualNetworkID" : "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]", "nodeSubnetName" : "[concat(if(not(empty(parameters('vnetBaseName'))), parameters('vnetBaseName'), parameters('baseName')), '-worker-subnet')]", "nodeSubnetRef" : "[concat(variables('virtualNetworkID'), '/subnets/', variables('nodeSubnetName'))]", "infraLoadBalancerName" : "[parameters('baseName')]", "sshKeyPath" : "/home/capi/.ssh/authorized_keys", "identityName" : "[concat(parameters('baseName'), '-identity')]", "galleryName": "[concat('gallery_', replace(parameters('baseName'), '-', '_'))]", "imageName" : "[concat(parameters('baseName'), if(equals(parameters('hyperVGen'), 'V2'), '-gen2', ''))]", "copy" : [ { "name" : "vmNames", "count" : "[parameters('numberOfNodes')]", "input" : "[concat(parameters('baseName'), '-worker-', variables('location'), '-', copyIndex('vmNames', 1))]" } ] }, "resources" : [ { "apiVersion" : "2019-05-01", "name" : "[concat('node', copyIndex())]", "type" : "Microsoft.Resources/deployments", "copy" : { "name" : "nodeCopy", "count" : "[length(variables('vmNames'))]" }, "properties" : { "mode" : "Incremental", "template" : { "$schema" : "http://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#", "contentVersion" : "1.0.0.0", "resources" : [ { "apiVersion" : "2018-06-01", "type" : "Microsoft.Network/networkInterfaces", "name" : "[concat(variables('vmNames')[copyIndex()], '-nic')]", "location" : "[variables('location')]", "properties" : { "ipConfigurations" : [ { "name" : "pipConfig", "properties" : { "privateIPAllocationMethod" : "Dynamic", "subnet" : { "id" : "[variables('nodeSubnetRef')]" } } } ] } }, { "apiVersion" : "2018-06-01", "type" : "Microsoft.Compute/virtualMachines", "name" : "[variables('vmNames')[copyIndex()]]", "location" : "[variables('location')]", "tags" : { "kubernetes.io-cluster-ffranzupi": "owned" }, "identity" : { "type" : "userAssigned", "userAssignedIdentities" : { "[resourceID('Microsoft.ManagedIdentity/userAssignedIdentities/', variables('identityName'))]" : {} } }, "dependsOn" : [ "[concat('Microsoft.Network/networkInterfaces/', concat(variables('vmNames')[copyIndex()], '-nic'))]" ], "properties" : { "hardwareProfile" : { "vmSize" : "[parameters('nodeVMSize')]" }, "osProfile" : { "computerName" : "[variables('vmNames')[copyIndex()]]", "adminUsername" : "capi", "adminPassword" : "NotActuallyApplied!", "customData" : "[parameters('workerIgnition')]", "linuxConfiguration" : { "disablePasswordAuthentication" : false } }, "storageProfile" : { "imageReference": { "id": "[resourceId('Microsoft.Compute/galleries/images', variables('galleryName'), variables('imageName'))]" }, "osDisk" : { "name": "[concat(variables('vmNames')[copyIndex()],'_OSDisk')]", "osType" : "Linux", "createOption" : "FromImage", "managedDisk": { "storageAccountType": "Premium_LRS" }, "diskSizeGB": 128 } }, "networkProfile" : { "networkInterfaces" : [ { "id" : "[resourceId('Microsoft.Network/networkInterfaces', concat(variables('vmNames')[copyIndex()], '-nic'))]", "properties": { "primary": true } } ] } } } ] } } } ] }
11.20. Installing the OpenShift CLI by downloading the binary
You can install the OpenShift CLI (oc
) to interact with OpenShift Container Platform from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of oc
, you cannot use it to complete all of the commands in OpenShift Container Platform 4.15. Download and install the new version of oc
.
Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the architecture from the Product Variant drop-down list.
- Select the appropriate version from the Version drop-down list.
- Click Download Now next to the OpenShift v4.15 Linux Client entry and save the file.
Unpack the archive:
$ tar xvf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
Verification
After you install the OpenShift CLI, it is available using the
oc
command:$ oc <command>
Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version from the Version drop-down list.
- Click Download Now next to the OpenShift v4.15 Windows Client entry and save the file.
- Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
Verification
After you install the OpenShift CLI, it is available using the
oc
command:C:\> oc <command>
Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version from the Version drop-down list.
Click Download Now next to the OpenShift v4.15 macOS Client entry and save the file.
NoteFor macOS arm64, choose the OpenShift v4.15 macOS arm64 Client entry.
- Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
Verification
Verify your installation by using an
oc
command:$ oc <command>
11.21. Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- You deployed an OpenShift Container Platform cluster.
-
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
11.22. Approving the certificate signing requests for your machines
When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.
Prerequisites
- You added machines to your cluster.
Procedure
Confirm that the cluster recognizes the machines:
$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 63m v1.28.5 master-1 Ready master 63m v1.28.5 master-2 Ready master 64m v1.28.5
The output lists all of the machines that you created.
NoteThe preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.
Review the pending CSRs and ensure that you see the client requests with the
Pending
orApproved
status for each machine that you added to the cluster:$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending ...
In this example, two machines are joining the cluster. You might see more approved CSRs in the list.
If the CSRs were not approved, after all of the pending CSRs for the machines you added are in
Pending
status, approve the CSRs for your cluster machines:NoteBecause the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the
machine-approver
if the Kubelet requests a new certificate with identical parameters.NoteFor clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the
oc exec
,oc rsh
, andoc logs
commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by thenode-bootstrapper
service account in thesystem:node
orsystem:admin
groups, and confirm the identity of the node.To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
NoteSome Operators might not become available until some CSRs are approved.
Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:
$ oc get csr
Example output
NAME AGE REQUESTOR CONDITION csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending ...
If the remaining CSRs are not approved, and are in the
Pending
status, approve the CSRs for your cluster machines:To approve them individually, run the following command for each valid CSR:
$ oc adm certificate approve <csr_name> 1
- 1
<csr_name>
is the name of a CSR from the list of current CSRs.
To approve all pending CSRs, run the following command:
$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
After all client and server CSRs have been approved, the machines have the
Ready
status. Verify this by running the following command:$ oc get nodes
Example output
NAME STATUS ROLES AGE VERSION master-0 Ready master 73m v1.28.5 master-1 Ready master 73m v1.28.5 master-2 Ready master 74m v1.28.5 worker-0 Ready worker 11m v1.28.5 worker-1 Ready worker 11m v1.28.5
NoteIt can take a few minutes after approval of the server CSRs for the machines to transition to the
Ready
status.
Additional information
- For more information on CSRs, see Certificate Signing Requests.
11.23. Adding the Ingress DNS records
If you removed the DNS Zone configuration when creating Kubernetes manifests and generating Ignition configs, you must manually create DNS records that point at the Ingress load balancer. You can create either a wildcard *.apps.{baseDomain}.
or specific records. You can use A, CNAME, and other records per your requirements.
Prerequisites
- You deployed an OpenShift Container Platform cluster on Microsoft Azure by using infrastructure that you provisioned.
-
Install the OpenShift CLI (
oc
). - Install or update the Azure CLI.
Procedure
Confirm the Ingress router has created a load balancer and populated the
EXTERNAL-IP
field:$ oc -n openshift-ingress get service router-default
Example output
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE router-default LoadBalancer 172.30.20.10 35.130.120.110 80:32288/TCP,443:31215/TCP 20
Export the Ingress router IP as a variable:
$ export PUBLIC_IP_ROUTER=`oc -n openshift-ingress get service router-default --no-headers | awk '{print $4}'`
Add a
*.apps
record to the public DNS zone.If you are adding this cluster to a new public zone, run:
$ az network dns record-set a add-record -g ${BASE_DOMAIN_RESOURCE_GROUP} -z ${CLUSTER_NAME}.${BASE_DOMAIN} -n *.apps -a ${PUBLIC_IP_ROUTER} --ttl 300
If you are adding this cluster to an already existing public zone, run:
$ az network dns record-set a add-record -g ${BASE_DOMAIN_RESOURCE_GROUP} -z ${BASE_DOMAIN} -n *.apps.${CLUSTER_NAME} -a ${PUBLIC_IP_ROUTER} --ttl 300
Add a
*.apps
record to the private DNS zone:Create a
*.apps
record by using the following command:$ az network private-dns record-set a create -g ${RESOURCE_GROUP} -z ${CLUSTER_NAME}.${BASE_DOMAIN} -n *.apps --ttl 300
Add the
*.apps
record to the private DNS zone by using the following command:$ az network private-dns record-set a add-record -g ${RESOURCE_GROUP} -z ${CLUSTER_NAME}.${BASE_DOMAIN} -n *.apps -a ${PUBLIC_IP_ROUTER}
If you prefer to add explicit domains instead of using a wildcard, you can create entries for each of the cluster’s current routes:
$ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}{"\n"}{end}{end}' routes
Example output
oauth-openshift.apps.cluster.basedomain.com console-openshift-console.apps.cluster.basedomain.com downloads-openshift-console.apps.cluster.basedomain.com alertmanager-main-openshift-monitoring.apps.cluster.basedomain.com prometheus-k8s-openshift-monitoring.apps.cluster.basedomain.com
11.24. Completing an Azure installation on user-provisioned infrastructure
After you start the OpenShift Container Platform installation on Microsoft Azure user-provisioned infrastructure, you can monitor the cluster events until the cluster is ready.
Prerequisites
- Deploy the bootstrap machine for an OpenShift Container Platform cluster on user-provisioned Azure infrastructure.
-
Install the
oc
CLI and log in.
Procedure
Complete the cluster installation:
$ ./openshift-install --dir <installation_directory> wait-for install-complete 1
Example output
INFO Waiting up to 30m0s for the cluster to initialize...
- 1
- For
<installation_directory>
, specify the path to the directory that you stored the installation files in.
Important-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
11.25. Telemetry access for OpenShift Container Platform
In OpenShift Container Platform 4.15, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.
Additional resources
- See About remote health monitoring for more information about the Telemetry service