이 콘텐츠는 선택한 언어로 제공되지 않습니다.

Chapter 4. Installing a cluster on GCP with customizations


In OpenShift Container Platform version 4.14, you can install a customized cluster on infrastructure that the installation program provisions on Google Cloud Platform (GCP). To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.

4.1. Prerequisites

4.2. Internet access for OpenShift Container Platform

In OpenShift Container Platform 4.14, you require access to the internet to install your cluster.

You must have internet access to:

  • Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
  • Access Quay.io to obtain the packages that are required to install your cluster.
  • Obtain the packages that are required to perform cluster updates.
Important

If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.

4.3. Generating a key pair for cluster node SSH access

During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Important

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

Note

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

Procedure

  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.
    Note

    If you plan to install an OpenShift Container Platform cluster that uses the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    Note

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      $ eval "$(ssh-agent -s)"

      Example output

      Agent pid 31874

      Note

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    $ ssh-add <path>/<file_name> 1
    1
    Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

    Example output

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

Next steps

  • When you install OpenShift Container Platform, provide the SSH public key to the installation program.

4.4. Obtaining the installation program

Before you install OpenShift Container Platform, download the installation file on the host you are using for installation.

Prerequisites

  • You have a computer that runs Linux or macOS, with at least 1.2 GB of local disk space.

Procedure

  1. Go to the Cluster Type page on the Red Hat Hybrid Cloud Console. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
  2. Select your infrastructure provider from the Run it yourself section of the page.
  3. Select your host operating system and architecture from the dropdown menus under OpenShift Installer and click Download Installer.
  4. Place the downloaded file in the directory where you want to store the installation configuration files.

    Important
    • The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both of the files are required to delete the cluster.
    • Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
  5. Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:

    $ tar -xvf openshift-install-linux.tar.gz
  6. Download your installation pull secret from Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
Tip

Alternatively, you can retrieve the installation program from the Red Hat Customer Portal, where you can specify a version of the installation program to download. However, you must have an active subscription to access this page.

4.5. Creating the installation configuration file

You can customize the OpenShift Container Platform cluster you install on Google Cloud Platform (GCP).

Prerequisites

  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.

Procedure

  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      $ ./openshift-install create install-config --dir <installation_directory> 1
      1
      For <installation_directory>, specify the directory name to store the files that the installation program creates.

      When specifying the directory:

      • Verify that the directory has the execute permission. This permission is required to run Terraform binaries under the installation directory.
      • Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.

        Note

        Always delete the ~/.powervs directory to avoid reusing a stale configuration. Run the following command:

        $ rm -rf ~/.powervs
    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        Note

        For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select gcp as the platform to target.
      3. If you have not configured the service account key for your GCP account on your computer, you must obtain it from GCP and paste the contents of the file or enter the absolute path to the file.
      4. Select the project ID to provision the cluster in. The default value is specified by the service account that you configured.
      5. Select the region to deploy the cluster to.
      6. Select the base domain to deploy the cluster to. The base domain corresponds to the public DNS zone that you created for your cluster.
      7. Enter a descriptive name for your cluster.
  2. Modify the install-config.yaml file. You can find more information about the available parameters in the "Installation configuration parameters" section.

    Note

    If you are installing a three-node cluster, be sure to set the compute.replicas parameter to 0. This ensures that the cluster’s control planes are schedulable. For more information, see "Installing a three-node cluster on GCP".

  3. Back up the install-config.yaml file so that you can use it to install multiple clusters.

    Important

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

4.5.1. Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 4.1. Minimum resource requirements
MachineOperating SystemvCPU [1]Virtual RAMStorageInput/Output Per Second (IOPS)[2]

Bootstrap

RHCOS

4

16 GB

100 GB

300

Control plane

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS, RHEL 8.6 and later [3]

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
  2. OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
  3. As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
Note

As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:

  • x86-64 architecture requires x86-64-v2 ISA
  • ARM64 architecture requires ARMv8.0-A ISA
  • IBM Power architecture requires Power 9 ISA
  • s390x architecture requires z14 ISA

For more information, see RHEL Architectures.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.

Additional resources

4.5.2. Tested instance types for GCP

The following Google Cloud Platform instance types have been tested with OpenShift Container Platform.

Example 4.1. Machine series

  • C2
  • C2D
  • C3
  • E2
  • M1
  • N1
  • N2
  • N2D
  • Tau T2D

4.5.3. Tested instance types for GCP on 64-bit ARM infrastructures

The following Google Cloud Platform (GCP) 64-bit ARM instance types have been tested with OpenShift Container Platform.

Example 4.2. Machine series for 64-bit ARM machines

  • Tau T2A

4.5.4. Using custom machine types

Using a custom machine type to install a OpenShift Container Platform cluster is supported.

Consider the following when using a custom machine type:

  • Similar to predefined instance types, custom machine types must meet the minimum resource requirements for control plane and compute machines. For more information, see "Minimum resource requirements for cluster installation".
  • The name of the custom machine type must adhere to the following syntax:

    custom-<number_of_cpus>-<amount_of_memory_in_mb>

    For example, custom-6-20480.

As part of the installation process, you specify the custom machine type in the install-config.yaml file.

Sample install-config.yaml file with a custom machine type

compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    gcp:
      type: custom-6-20480
  replicas: 2
controlPlane:
  architecture: amd64
  hyperthreading: Enabled
  name: master
  platform:
    gcp:
      type: custom-6-20480
  replicas: 3

4.5.5. Enabling Shielded VMs

You can use Shielded VMs when installing your cluster. Shielded VMs have extra security features including secure boot, firmware and integrity monitoring, and rootkit detection. For more information, see Google’s documentation on Shielded VMs.

Note

Shielded VMs are currently not supported on clusters with 64-bit ARM infrastructures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Use a text editor to edit the install-config.yaml file prior to deploying your cluster and add one of the following stanzas:

    1. To use shielded VMs for only control plane machines:

      controlPlane:
        platform:
          gcp:
             secureBoot: Enabled
    2. To use shielded VMs for only compute machines:

      compute:
      - platform:
          gcp:
             secureBoot: Enabled
    3. To use shielded VMs for all machines:

      platform:
        gcp:
          defaultMachinePlatform:
             secureBoot: Enabled

4.5.6. Enabling Confidential VMs

You can use Confidential VMs when installing your cluster. Confidential VMs encrypt data while it is being processed. For more information, see Google’s documentation on Confidential Computing. You can enable Confidential VMs and Shielded VMs at the same time, although they are not dependent on each other.

Note

Confidential VMs are currently not supported on 64-bit ARM architectures.

Prerequisites

  • You have created an install-config.yaml file.

Procedure

  • Use a text editor to edit the install-config.yaml file prior to deploying your cluster and add one of the following stanzas:

    1. To use confidential VMs for only control plane machines:

      controlPlane:
        platform:
          gcp:
             confidentialCompute: Enabled 1
             type: n2d-standard-8 2
             onHostMaintenance: Terminate 3
      1
      Enable confidential VMs.
      2
      Specify a machine type that supports Confidential VMs. Confidential VMs require the N2D or C2D series of machine types. For more information on supported machine types, see Supported operating systems and machine types.
      3
      Specify the behavior of the VM during a host maintenance event, such as a hardware or software update. For a machine that uses Confidential VM, this value must be set to Terminate, which stops the VM. Confidential VMs do not support live VM migration.
    2. To use confidential VMs for only compute machines:

      compute:
      - platform:
          gcp:
             confidentialCompute: Enabled
             type: n2d-standard-8
             onHostMaintenance: Terminate
    3. To use confidential VMs for all machines:

      platform:
        gcp:
          defaultMachinePlatform:
             confidentialCompute: Enabled
             type: n2d-standard-8
             onHostMaintenance: Terminate

4.5.7. Sample customized install-config.yaml file for GCP

You can customize the install-config.yaml file to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.

Important

This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.

apiVersion: v1
baseDomain: example.com 1
credentialsMode: Mint 2
controlPlane: 3 4
  hyperthreading: Enabled 5
  name: master
  platform:
    gcp:
      type: n2-standard-4
      zones:
      - us-central1-a
      - us-central1-c
      osDisk:
        diskType: pd-ssd
        diskSizeGB: 1024
        encryptionKey: 6
          kmsKey:
            name: worker-key
            keyRing: test-machine-keys
            location: global
            projectID: project-id
      tags: 7
      - control-plane-tag1
      - control-plane-tag2
      osImage: 8
        project: example-project-name
        name: example-image-name
  replicas: 3
compute: 9 10
- hyperthreading: Enabled 11
  name: worker
  platform:
    gcp:
      type: n2-standard-4
      zones:
      - us-central1-a
      - us-central1-c
      osDisk:
        diskType: pd-standard
        diskSizeGB: 128
        encryptionKey: 12
          kmsKey:
            name: worker-key
            keyRing: test-machine-keys
            location: global
            projectID: project-id
        tags: 13
        - compute-tag1
        - compute-tag2
        osImage: 14
          project: example-project-name
          name: example-image-name
  replicas: 3
metadata:
  name: test-cluster 15
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23
  machineNetwork:
  - cidr: 10.0.0.0/16
  networkType: OVNKubernetes 16
  serviceNetwork:
  - 172.30.0.0/16
platform:
  gcp:
    projectID: openshift-production 17
    region: us-central1 18
    defaultMachinePlatform:
      tags: 19
      - global-tag1
      - global-tag2
      osImage: 20
        project: example-project-name
        name: example-image-name
pullSecret: '{"auths": ...}' 21
fips: false 22
sshKey: ssh-ed25519 AAAA... 23
1 15 17 18 21
Required. The installation program prompts you for this value.
2
Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode. By default, the CCO uses the root credentials in the kube-system namespace to dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the "About the Cloud Credential Operator" section in the Authentication and authorization guide.
3 9
If you do not provide these parameters and values, the installation program provides the default value.
4 10
The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, -, and the first line of the controlPlane section must not. Only one control plane pool is used.
5 11
Whether to enable or disable simultaneous multithreading, or hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value to Disabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.
Important

If you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger machine types, such as n1-standard-8, for your machines if you disable simultaneous multithreading.

6 12
Optional: The custom encryption key section to encrypt both virtual machines and persistent volumes. Your default compute service account must have the permissions granted to use your KMS key and have the correct IAM role assigned. The default service account name follows the service-<project_number>@compute-system.iam.gserviceaccount.com pattern. For more information about granting the correct permissions for your service account, see "Machine management" "Creating compute machine sets" "Creating a compute machine set on GCP".
7 13 19
Optional: A set of network tags to apply to the control plane or compute machine sets. The platform.gcp.defaultMachinePlatform.tags parameter will apply to both control plane and compute machines. If the compute.platform.gcp.tags or controlPlane.platform.gcp.tags parameters are set, they override the platform.gcp.defaultMachinePlatform.tags parameter.
8 14 20
Optional: A custom Red Hat Enterprise Linux CoreOS (RHCOS) that should be used to boot control plane and compute machines. The project and name parameters under platform.gcp.defaultMachinePlatform.osImage apply to both control plane and compute machines. If the project and name parameters under controlPlane.platform.gcp.osImage or compute.platform.gcp.osImage are set, they override the platform.gcp.defaultMachinePlatform.osImage parameters.
16
The cluster network plugin to install. The supported values are OVNKubernetes and OpenShiftSDN. The default value is OVNKubernetes.
22
Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.
Important

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.

23
You can optionally provide the sshKey value that you use to access the machines in your cluster.
Note

For production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

4.5.8. Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.
  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    Note

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> 5
    1
    A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2
    A proxy URL to use for creating HTTPS connections outside the cluster.
    3
    A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations.
    4
    If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle.
    5
    Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.
    Note

    The installation program does not support the proxy readinessEndpoints field.

    Note

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    $ ./openshift-install wait-for install-complete --log-level debug
  2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Note

Only the Proxy object named cluster is supported, and no additional proxies can be created.

4.6. Managing user-defined labels and tags for GCP

Important

Support for user-defined labels and tags for GCP is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

Google Cloud Platform (GCP) provides labels and tags that help to identify and organize the resources created for a specific OpenShift Container Platform cluster, making them easier to manage.

You can define labels and tags for each GCP resource only during OpenShift Container Platform cluster installation.

Important

User-defined labels and tags are not supported for OpenShift Container Platform clusters upgraded to OpenShift Container Platform 4.14 version.

User-defined labels

User-defined labels and OpenShift Container Platform specific labels are applied only to resources created by OpenShift Container Platform installation program and its core components such as:

  • GCP filestore CSI Driver Operator
  • GCP PD CSI Driver Operator
  • Image Registry Operator
  • Machine API provider for GCP

User-defined labels and OpenShift Container Platform specific labels are not applied on the resources created by any other operators or the Kubernetes in-tree components that create resources, for example, the Ingress load balancers.

User-defined labels and OpenShift Container Platform labels are available on the following GCP resources:

  • Compute disk
  • Compute instance
  • Compute image
  • Compute forwarding rule
  • DNS managed zone
  • Filestore instance
  • Storage bucket

Limitations to user-defined labels

  • Labels for ComputeAddress are supported in the GCP beta version. OpenShift Container Platform does not add labels to the resource.

User-defined tags

User-defined tags are attached to resources created by the OpenShift Container Platform Image Registry Operator and not on the resources created by any other Operators or the Kubernetes in-tree components.

User-defined tags are available on the following GCP resources: * Storage bucket

Limitations to the user-defined tags

  • Tags will not be attached to the following items:

    • Control plane instances and storage buckets created by the installation program
    • Compute instances created by the Machine API provider for GCP
    • Filestore instance resources created by the GCP filestore CSI driver Operator
    • Compute disk and compute image resources created by the GCP PD CSI driver Operator
  • Tags are not supported for buckets located in the following regions:

    • us-east2
    • us-east3
  • Image Registry Operator does not throw any error but skips processing tags when the buckets are created in the tags unsupported region.
  • Tags must not be restricted to particular service accounts, because Operators create and use service accounts with minimal roles.
  • OpenShift Container Platform does not create any key and value resources of the tag.
  • OpenShift Container Platform specific tags are not added to any resource.

Additional resources

  • For more information about identifying the OrganizationID, see: OrganizationID
  • For more information about identifying the ProjectID, see: ProjectID
  • For more information about labels, see Labels Overview.
  • For more information about tags, see Tags Overview.

4.6.1. Configuring user-defined labels and tags for GCP

Prerequisites

  • The installation program requires that a service account includes a TagUser role, so that the program can create the OpenShift Container Platform cluster with defined tags at both organization and project levels.

Procedure

  • Update the install-config.yaml file to define the list of desired labels and tags.

    Note

    Labels and tags are defined during the install-config.yaml creation phase, and cannot be modified or updated with new labels and tags after cluster creation.

    Sample install-config.yaml file

    apiVersion: v1
    featureSet: TechPreviewNoUpgrade
    platform:
     gcp:
       userLabels: 1
       - key: <label_key>2
         value: <label_value>3
       userTags: 4
       - parentID: <OrganizationID/ProjectID>5
         key: <tag_key_short_name>
         value: <tag_value_short_name>

    1
    Adds keys and values as labels to the resources created on GCP.
    2
    Defines the label name.
    3
    Defines the label content.
    4
    Adds keys and values as tags to the resources created on GCP.
    5
    The ID of the hierarchical resource where the tags are defined, at the organization or the project level.

The following are the requirements for user-defined labels:

  • A label key and value must have a minimum of 1 character and can have a maximum of 63 characters.
  • A label key and value must contain only lowercase letters, numeric characters, underscore (_), and dash (-).
  • A label key must start with a lowercase letter.
  • You can configure a maximum of 32 labels per resource. Each resource can have a maximum of 64 labels, and 32 labels are reserved for internal use by OpenShift Container Platform.

The following are the requirements for user-defined tags:

  • Tag key and tag value must already exist. OpenShift Container Platform does not create the key and the value.
  • A tag parentID can be either OrganizationID or ProjectID:

    • OrganizationID must consist of decimal numbers without leading zeros.
    • ProjectID must be 6 to 30 characters in length, that includes only lowercase letters, numbers, and hyphens.
    • ProjectID must start with a letter, and cannot end with a hyphen.
  • A tag key must contain only uppercase and lowercase alphanumeric characters, hyphen (-), underscore (_), and period (.).
  • A tag value must contain only uppercase and lowercase alphanumeric characters, hyphen (-), underscore (_), period (.), at sign (@), percent sign (%), equals sign (=), plus (+), colon (:), comma (,), asterisk (*), pound sign ($), ampersand (&), parentheses (()), square braces ([]), curly braces ({}), and space.
  • A tag key and value must begin and end with an alphanumeric character.
  • Tag value must be one of the pre-defined values for the key.
  • You can configure a maximum of 50 tags.
  • There should be no tag key defined with the same value as any of the existing tag keys that will be inherited from the parent resource.

4.6.2. Querying user-defined labels and tags for GCP

After creating the OpenShift Container Platform cluster, you can access the list of the labels and tags defined for the GCP resources in the infrastructures.config.openshift.io/cluster object as shown in the following sample infrastructure.yaml file.

Sample infrastructure.yaml file

apiVersion: config.openshift.io/v1
kind: Infrastructure
metadata:
 name: cluster
spec:
 platformSpec:
   type: GCP
status:
 infrastructureName: <cluster_id>1
 platform: GCP
 platformStatus:
   gcp:
     resourceLabels:
     - key: <label_key>
       value: <label_value>
     resourceTags:
     - key: <tag_key_short_name>
       parentID: <OrganizationID/ProjectID>
       value: <tag_value_short_name>
   type: GCP

1
The cluster ID that is generated during cluster installation.

Along with the user-defined labels, resources have a label defined by the OpenShift Container Platform. The format of the OpenShift Container Platform labels is kubernetes-io-cluster-<cluster_id>:owned.

4.7. Installing the OpenShift CLI by downloading the binary

You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.

Important

If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.14. Download and install the new version of oc.

Installing the OpenShift CLI on Linux

You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the architecture from the Product Variant drop-down list.
  3. Select the appropriate version from the Version drop-down list.
  4. Click Download Now next to the OpenShift v4.14 Linux Client entry and save the file.
  5. Unpack the archive:

    $ tar xvf <file>
  6. Place the oc binary in a directory that is on your PATH.

    To check your PATH, execute the following command:

    $ echo $PATH

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    $ oc <command>

Installing the OpenShift CLI on Windows

You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.14 Windows Client entry and save the file.
  4. Unzip the archive with a ZIP program.
  5. Move the oc binary to a directory that is on your PATH.

    To check your PATH, open the command prompt and execute the following command:

    C:\> path

Verification

  • After you install the OpenShift CLI, it is available using the oc command:

    C:\> oc <command>

Installing the OpenShift CLI on macOS

You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.

Procedure

  1. Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
  2. Select the appropriate version from the Version drop-down list.
  3. Click Download Now next to the OpenShift v4.14 macOS Client entry and save the file.

    Note

    For macOS arm64, choose the OpenShift v4.14 macOS arm64 Client entry.

  4. Unpack and unzip the archive.
  5. Move the oc binary to a directory on your PATH.

    To check your PATH, open a terminal and execute the following command:

    $ echo $PATH

Verification

  • Verify your installation by using an oc command:

    $ oc <command>

4.8. Alternatives to storing administrator-level secrets in the kube-system project

By default, administrator secrets are stored in the kube-system project. If you configured the credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the following alternatives:

4.8.1. Manually creating long-term credentials

The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.

Procedure

  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  2. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  3. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  4. Extract the list of CredentialsRequest custom resources (CRs) from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.

    This command creates a YAML file for each CredentialsRequest object.

    Sample CredentialsRequest object

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
        kind: GCPProviderSpec
        predefinedRoles:
        - roles/storage.admin
        - roles/iam.serviceAccountUser
        skipServiceCheck: true
      ...

  5. Create YAML files for secrets in the openshift-install manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in the spec.secretRef for each CredentialsRequest object.

    Sample CredentialsRequest object with secrets

    apiVersion: cloudcredential.openshift.io/v1
    kind: CredentialsRequest
    metadata:
      name: <component_credentials_request>
      namespace: openshift-cloud-credential-operator
      ...
    spec:
      providerSpec:
        apiVersion: cloudcredential.openshift.io/v1
          ...
      secretRef:
        name: <component_secret>
        namespace: <component_namespace>
      ...

    Sample Secret object

    apiVersion: v1
    kind: Secret
    metadata:
      name: <component_secret>
      namespace: <component_namespace>
    data:
      service_account.json: <base64_encoded_gcp_service_account_file>

Important

Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state.

4.8.2. Configuring a GCP cluster to use short-term credentials

To install a cluster that is configured to use GCP Workload Identity, you must configure the CCO utility and create the required GCP resources for your cluster.

4.8.2.1. Configuring the Cloud Credential Operator utility

To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.

Note

The ccoctl utility is a Linux binary that must run in a Linux environment.

Prerequisites

  • You have access to an OpenShift Container Platform account with cluster administrator access.
  • You have installed the OpenShift CLI (oc).

Procedure

  1. Set a variable for the OpenShift Container Platform release image by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Obtain the CCO container image from the OpenShift Container Platform release image by running the following command:

    $ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
    Note

    Ensure that the architecture of the $RELEASE_IMAGE matches the architecture of the environment in which you will use the ccoctl tool.

  3. Extract the ccoctl binary from the CCO container image within the OpenShift Container Platform release image by running the following command:

    $ oc image extract $CCO_IMAGE --file="/usr/bin/ccoctl" -a ~/.pull-secret
  4. Change the permissions to make ccoctl executable by running the following command:

    $ chmod 775 ccoctl

Verification

  • To verify that ccoctl is ready to use, display the help file. Use a relative file name when you run the command, for example:

    $ ./ccoctl.rhel9

    Example output

    OpenShift credentials provisioning tool
    
    Usage:
      ccoctl [command]
    
    Available Commands:
      alibabacloud Manage credentials objects for alibaba cloud
      aws          Manage credentials objects for AWS cloud
      azure        Manage credentials objects for Azure
      gcp          Manage credentials objects for Google cloud
      help         Help about any command
      ibmcloud     Manage credentials objects for IBM Cloud
      nutanix      Manage credentials objects for Nutanix
    
    Flags:
      -h, --help   help for ccoctl
    
    Use "ccoctl [command] --help" for more information about a command.

4.8.2.2. Creating GCP resources with the Cloud Credential Operator utility

You can use the ccoctl gcp create-all command to automate the creation of GCP resources.

Note

By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.

Prerequisites

You must have:

  • Extracted and prepared the ccoctl binary.

Procedure

  1. Set a $RELEASE_IMAGE variable with the release image from your installation file by running the following command:

    $ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
  2. Extract the list of CredentialsRequest objects from the OpenShift Container Platform release image by running the following command:

    $ oc adm release extract \
      --from=$RELEASE_IMAGE \
      --credentials-requests \
      --included \1
      --install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \2
      --to=<path_to_directory_for_credentials_requests> 3
    1
    The --included parameter includes only the manifests that your specific cluster configuration requires.
    2
    Specify the location of the install-config.yaml file.
    3
    Specify the path to the directory where you want to store the CredentialsRequest objects. If the specified directory does not exist, this command creates it.
    Note

    This command might take a few moments to run.

  3. Use the ccoctl tool to process all CredentialsRequest objects by running the following command:

    $ ccoctl gcp create-all \
      --name=<name> \1
      --region=<gcp_region> \2
      --project=<gcp_project_id> \3
      --credentials-requests-dir=<path_to_credentials_requests_directory> 4
    1
    Specify the user-defined name for all created GCP resources used for tracking.
    2
    Specify the GCP region in which cloud resources will be created.
    3
    Specify the GCP project ID in which cloud resources will be created.
    4
    Specify the directory containing the files of CredentialsRequest manifests to create GCP service accounts.
    Note

    If your cluster uses Technology Preview features that are enabled by the TechPreviewNoUpgrade feature set, you must include the --enable-tech-preview parameter.

Verification

  • To verify that the OpenShift Container Platform secrets are created, list the files in the <path_to_ccoctl_output_dir>/manifests directory:

    $ ls <path_to_ccoctl_output_dir>/manifests

    Example output

    cluster-authentication-02-config.yaml
    openshift-cloud-controller-manager-gcp-ccm-cloud-credentials-credentials.yaml
    openshift-cloud-credential-operator-cloud-credential-operator-gcp-ro-creds-credentials.yaml
    openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
    openshift-cluster-api-capg-manager-bootstrap-credentials-credentials.yaml
    openshift-cluster-csi-drivers-gcp-pd-cloud-credentials-credentials.yaml
    openshift-image-registry-installer-cloud-credentials-credentials.yaml
    openshift-ingress-operator-cloud-credentials-credentials.yaml
    openshift-machine-api-gcp-cloud-credentials-credentials.yaml

    You can verify that the IAM service accounts are created by querying GCP. For more information, refer to GCP documentation on listing IAM service accounts.

4.8.2.3. Incorporating the Cloud Credential Operator utility manifests

To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the correct directories for the installation program.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have configured the Cloud Credential Operator utility (ccoctl).
  • You have created the cloud provider resources that are required for your cluster with the ccoctl utility.

Procedure

  1. If you did not set the credentialsMode parameter in the install-config.yaml configuration file to Manual, modify the value as shown:

    Sample configuration file snippet

    apiVersion: v1
    baseDomain: example.com
    credentialsMode: Manual
    # ...

  2. If you have not previously created installation manifest files, do so by running the following command:

    $ openshift-install create manifests --dir <installation_directory>

    where <installation_directory> is the directory in which the installation program creates files.

  3. Copy the manifests that the ccoctl utility generated to the manifests directory that the installation program created by running the following command:

    $ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
  4. Copy the tls directory that contains the private key to the installation directory:

    $ cp -a /<path_to_ccoctl_output_dir>/tls .

4.9. Using the GCP Marketplace offering

Using the GCP Marketplace offering lets you deploy an OpenShift Container Platform cluster, which is billed on pay-per-use basis (hourly, per core) through GCP, while still being supported directly by Red Hat.

By default, the installation program downloads and installs the Red Hat Enterprise Linux CoreOS (RHCOS) image that is used to deploy compute machines. To deploy an OpenShift Container Platform cluster using an RHCOS image from the GCP Marketplace, override the default behavior by modifying the install-config.yaml file to reference the location of GCP Marketplace offer.

Prerequisites

  • You have an existing install-config.yaml file.

Procedure

  1. Edit the compute.platform.gcp.osImage parameters to specify the location of the GCP Marketplace image:

    • Set the project parameter to redhat-marketplace-public
    • Set the name parameter to one of the following offers:

      OpenShift Container Platform
      redhat-coreos-ocp-413-x86-64-202305021736
      OpenShift Platform Plus
      redhat-coreos-opp-413-x86-64-202305021736
      OpenShift Kubernetes Engine
      redhat-coreos-oke-413-x86-64-202305021736
  2. Save the file and reference it when deploying the cluster.

Sample install-config.yaml file that specifies a GCP Marketplace image for compute machines

apiVersion: v1
baseDomain: example.com
controlPlane:
# ...
compute:
  platform:
    gcp:
      osImage:
        project: redhat-marketplace-public
        name: redhat-coreos-ocp-413-x86-64-202305021736
# ...

4.10. Deploying the cluster

You can install OpenShift Container Platform on a compatible cloud platform.

Important

You can run the create cluster command of the installation program only once, during initial installation.

Prerequisites

  • You have configured an account with the cloud platform that hosts your cluster.
  • You have the OpenShift Container Platform installation program and the pull secret for your cluster.
  • You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.

Procedure

  1. Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:

    • The GOOGLE_CREDENTIALS, GOOGLE_CLOUD_KEYFILE_JSON, or GCLOUD_KEYFILE_JSON environment variables
    • The ~/.gcp/osServiceAccount.json file
    • The gcloud cli default credentials
  2. Change to the directory that contains the installation program and initialize the cluster deployment:

    $ ./openshift-install create cluster --dir <installation_directory> \ 1
        --log-level=info 2
    1
    For <installation_directory>, specify the location of your customized ./install-config.yaml file.
    2
    To view different installation details, specify warn, debug, or error instead of info.
  3. Optional: You can reduce the number of permissions for the service account that you used to install the cluster.

    • If you assigned the Owner role to your service account, you can remove that role and replace it with the Viewer role.
    • If you included the Service Account Key Admin role, you can remove it.

Verification

When the cluster deployment completes successfully:

  • The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the kubeadmin user.
  • Credential information also outputs to <installation_directory>/.openshift_install.log.
Important

Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.

Example output

...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s

Important
  • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.
  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

4.11. Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.

Prerequisites

  • You deployed an OpenShift Container Platform cluster.
  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    $ oc whoami

    Example output

    system:admin

Additional resources

  • See Accessing the web console for more details about accessing and understanding the OpenShift Container Platform web console.

4.12. Telemetry access for OpenShift Container Platform

In OpenShift Container Platform 4.14, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.

After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.

Additional resources

4.13. Next steps

Red Hat logoGithubRedditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

© 2024 Red Hat, Inc.