8.2. 在裸机上安装用户置备的集群


在 OpenShift Container Platform 4.9 中,您可以在您置备的裸机基础架构上安装集群。

重要

虽然您可能能够按照以下步骤在虚拟化或云环境中部署集群,但您必须了解非裸机平台的其他注意事项。在尝试在此类环境中安装 OpenShift Container Platform 集群前,请参阅有关在未经测试的平台上部署 OpenShift Container Platform 的指南 中的信息。

8.2.1. 先决条件

8.2.2. OpenShift Container Platform 互联网访问

在 OpenShift Container Platform 4.9 中,您需要访问互联网来安装集群。

您必须具有以下互联网访问权限:

  • 访问 OpenShift Cluster Manager 以下载安装程序并执行订阅管理。如果集群可以访问互联网,并且没有禁用 Telemetry,该服务会自动授权您的集群。
  • 访问 Quay.io,以获取安装集群所需的软件包。
  • 获取执行集群更新所需的软件包。
重要

如果您的集群无法直接访问互联网,则可以在置备的某些类型的基础架构上执行受限网络安装。在此过程中,您可以下载所需的内容,并使用它为镜像 registry 填充安装软件包。对于某些安装类型,集群要安装到的环境不需要访问互联网。在更新集群前,您要更新镜像 registry 的内容。

8.2.3. 具有用户置备基础架构的集群的要求

对于包含用户置备的基础架构的集群,您必须部署所有所需的机器。

本节论述了在用户置备的基础架构上部署 OpenShift Container Platform 的要求。

8.2.3.1. 集群安装所需的机器

最小的 OpenShift Container Platform 集群需要以下主机:

表 8.1. 最低所需的主机
主机描述

一个临时 bootstrap 机器

集群需要 bootstrap 机器在三台 control plane 机器上部署 OpenShift Container Platform 集群。您可在安装集群后删除 bootstrap 机器。

三台 control plane 机器

control plane 机器运行组成 control plane 的 Kubernetes 和 OpenShift Container Platform 服务。

至少两台计算机器,也称为 worker 机器。

OpenShift Container Platform 用户请求的工作负载在计算机器上运行。

注意

作为例外,您可以在裸机集群中运行零台计算机器,它们仅由三台 control plane 机器组成。这为集群管理员和开发人员提供了更小、效率更高的集群,用于测试、开发和生产。不支持运行一台计算机器。

重要

要保持集群的高可用性,请将独立的物理主机用于这些集群机器。

bootstrap 和 control plane 机器必须使用 Red Hat Enterprise Linux CoreOS(RHCOS)作为操作系统。但是,计算机器可以在 Red Hat Enterprise Linux CoreOS(RHCOS)、Red Hat Enterprise Linux(RHEL)7.9 或 RHEL 8.4 之间进行选择。

请注意,RHCOS 基于 Red Hat Enterprise Linux(RHEL)8,并继承其所有硬件认证和要求。查看 红帽企业 Linux 技术功能和限制

8.2.3.2. 集群安装的最低资源要求

每台集群机器都必须满足以下最低要求:

表 8.2. 最低资源要求
机器操作系统CPU [1]RAMStorageIOPS [2]

bootstrap

RHCOS

4

16 GB

100 GB

300

Control plane(控制平面)

RHCOS

4

16 GB

100 GB

300

Compute

RHCOS、RHEL 7.9 或 RHEL 8.4 [3]

2

8 GB

100 GB

300

  1. 当未启用并发多线程 (SMT) 或超线程时,一个 CPU 相当于一个物理内核。启用后,使用以下公式来计算对应的比例:(每个内核数的线程)× sockets = CPU。
  2. OpenShift Container Platform 和 Kubernetes 对磁盘性能非常敏感,建议使用更快的存储速度,特别是 control plane 节点上需要 10 ms p99 fsync 持续时间的 etcd。请注意,在许多云平台上,存储大小和 IOPS 可一起扩展,因此您可能需要过度分配存储卷来获取足够的性能。
  3. 与所有用户置备的安装一样,如果您选择在集群中使用 RHEL 计算机器,则负责所有操作系统生命周期管理和维护,包括执行系统更新、应用补丁和完成所有其他必要的任务。RHEL 7 计算机器已被弃用,并计划在以后的 OpenShift Container Platform 4 发行版本中删除。

8.2.3.3. 证书签名请求管理

在使用您置备的基础架构时,集群只能有限地访问自动机器管理,因此您必须提供一种在安装后批准集群证书签名请求 (CSR) 的机制。kube-controller-manager 只能批准 kubelet 客户端 CSR。machine-approver 无法保证使用 kubelet 凭证请求的提供证书的有效性,因为它不能确认是正确的机器发出了该请求。您必须决定并实施一种方法,以验证 kubelet 提供证书请求的有效性并进行批准。

8.2.3.4. 用户置备的基础架构对网络的要求

所有 Red Hat Enterprise Linux CoreOS(RHCOS)机器都需要在启动时在 initramfs 中配置联网,以获取它们的 Ignition 配置文件。

在初次启动过程中,机器需要 IP 地址配置,该配置通过 DHCP 服务器或静态设置,提供所需的引导选项。建立网络连接后,机器会从 HTTP 或 HTTPS 服务器下载 Ignition 配置文件。然后,Ignition 配置文件用于设置每台机器的确切状态。Machine Config Operator 在安装后完成对机器的更多更改,如应用新证书或密钥。

建议使用 DHCP 服务器对集群机器进行长期管理。确保 DHCP 服务器已配置为向集群机器提供持久的 IP 地址、DNS 服务器信息和主机名。

注意

如果用户置备的基础架构没有 DHCP 服务,您可以在 RHCOS 安装时向节点提供 IP 网络配置和 DNS 服务器地址。如果要从 ISO 镜像安装,这些参数可作为引导参数传递。如需有关静态 IP 置备和高级网络选项的更多信息,请参阅 安装 RHCOS 并启动 OpenShift Container Platform bootstrap 过程 部分。

Kubernetes API 服务器必须能够解析集群机器的节点名称。如果 API 服务器和 worker 节点位于不同的区域中,您可以配置默认 DNS 搜索区域,以允许 API 服务器解析节点名称。另一种支持的方法是始终通过节点对象和所有 DNS 请求中的完全限定域名引用主机。

8.2.3.4.1. 通过 DHCP 设置集群节点主机名

在 Red Hat Enterprise Linux CoreOS(RHCOS)机器上,主机名是通过 NetworkManager 设置的。默认情况下,机器通过 DHCP 获取其主机名。如果主机名不是由 DHCP 提供,请通过内核参数或者其它方法进行静态设置,请通过反向 DNS 查找获取。反向 DNS 查找在网络初始化后进行,可能需要一些时间来解决。其他系统服务可以在此之前启动,并将主机名检测为 localhost 或类似的内容。您可以使用 DHCP 为每个集群节点提供主机名来避免这种情况。

另外,通过 DHCP 设置主机名可以绕过实施 DNS split-horizon 的环境中的手动 DNS 记录名称配置错误。

8.2.3.4.2. 网络连接要求

您必须配置机器之间的网络连接,以允许 OpenShift Container Platform 集群组件进行通信。每台机器都必须能够解析集群中所有其他机器的主机名。

本节详细介绍了所需的端口。

重要

在连接的 OpenShift Container Platform 环境中,所有节点都需要访问互联网才能为平台容器拉取镜像,并向红帽提供遥测数据。

表 8.3. 用于全机器到所有机器通信的端口
协议port描述

ICMP

N/A

网络可访问性测试

TCP

1936

指标

9000-9999

主机级别的服务,包括端口 9 100-9101 上的节点导出器,以及端口 9099 上的 Cluster Version Operator。

10250-10259

Kubernetes 保留的默认端口

10256

openshift-sdn

UDP

4789

VXLAN 和 Geneve

6081

VXLAN 和 Geneve

9000-9999

主机级别的服务,包括端口 91009101 上的节点导出器。

500

IPsec IKE 数据包

4500

IPsec NAT-T 数据包

TCP/UDP

30000-32767

Kubernetes 节点端口

ESP

N/A

IPsec Encapsulating Security Payload(ESP)

表 8.4. 用于所有机器控制平面通信的端口
协议port描述

TCP

6443

Kubernetes API

表 8.5. control plane 机器用于 control plane 机器通信的端口
协议port描述

TCP

2379-2380

etcd 服务器和对等端口

用户置备的基础架构的 NTP 配置

OpenShift Container Platform 集群被配置为默认使用公共网络时间协议(NTP)服务器。如果要使用本地企业 NTP 服务器,或者集群部署在断开连接的网络中,您可以将集群配置为使用特定的时间服务器。如需更多信息,请参阅配置 chrony 时间服务 的文档。

如果 DHCP 服务器提供 NTP 服务器信息,Red Hat Enterprise Linux CoreOS(RHCOS)机器上的 chrony 时间服务会读取信息,并可以把时钟与 NTP 服务器同步。

8.2.3.5. 用户置备的 DNS 要求

在 OpenShift Container Platform 部署中,以下组件需要 DNS 名称解析:

  • The Kubernetes API
  • OpenShift Container Platform 应用程序通配符
  • bootstrap、control plane 和计算机器

Kubernetes API、bootstrap 机器、control plane 机器和计算机器也需要反向 DNS 解析。

DNS A/AAAA 或 CNAME 记录用于名称解析,PTR 记录用于反向名称解析。反向记录很重要,因为 Red Hat Enterprise Linux CoreOS(RHCOS)使用反向记录为所有节点设置主机名,除非 DHCP 提供主机名。另外,反向记录用于生成 OpenShift Container Platform 需要操作的证书签名请求(CSR)。

注意

建议使用 DHCP 服务器为每个群集节点提供主机名。如需更多信息,请参阅用户置备的基础架构部分的 DHCP 建议

用户置备的 OpenShift Container Platform 集群需要以下 DNS 记录,这些记录必须在安装前就位。在每个记录中,<cluster_name> 是集群名称,<base_domain> 是您在 install-config.yaml 文件中指定的基域。完整的 DNS 记录采用以下形式: <component>.<cluster_name>.<base_domain>.

表 8.6. 所需的 DNS 记录
组件记录描述

Kubernetes API

api.<cluster_name>.<base_domain>.

DNS A/AAAA 或 CNAME 记录,以及用于标识 API 负载均衡器的 DNS PTR 记录。这些记录必须由集群外的客户端和集群中的所有节点解析。

api-int.<cluster_name>.<base_domain>.

DNS A/AAAA 或 CNAME 记录,以及用于内部标识 API 负载均衡器的 DNS PTR 记录。这些记录必须可以从集群中的所有节点解析。

重要

API 服务器必须能够根据 Kubernetes 中记录的主机名解析 worker 节点。如果 API 服务器无法解析节点名称,则代理的 API 调用会失败,且您无法从 pod 检索日志。

Routes

*.apps.<cluster_name>.<base_domain>.

通配符 DNS A/AAAA 或 CNAME 记录,指向应用程序入口负载均衡器。应用程序入口负载均衡器以运行 Ingress Controller Pod 的机器为目标。默认情况下,Ingress Controller Pod 在计算机器上运行。这些记录必须由集群外的客户端和集群中的所有节点解析。

例如,console -openshift-console.apps.<cluster_name>.<base_domain> 用作到 OpenShift Container Platform 控制台的通配符路由。

bootstrap 机器

bootstrap.<cluster_name>.<base_domain>.

DNS A/AAAA 或 CNAME 记录,以及用于标识 bootstrap 机器的 DNS PTR 记录。这些记录必须由集群中的节点解析。

control plane 机器

<master><n>.<cluster_name>.<base_domain>.

DNS A/AAAA 或 CNAME 记录,以识别 control plane 节点的每台机器。这些记录必须由集群中的节点解析。

计算机器

<worker><n>.<cluster_name>.<base_domain>.

DNS A/AAAA 或 CNAME 记录,用于识别 worker 节点的每台机器。这些记录必须由集群中的节点解析。

注意

在 OpenShift Container Platform 4.4 及更新的版本中,您不需要在 DNS 配置中指定 etcd 主机和 SRV 记录。

提示

您可以使用 dig 命令验证名称和反向名称解析。如需了解详细的 验证步骤,请参阅为用户置备的基础架构验证 DNS 解析 一节。

8.2.3.5.1. 用户置备的集群的 DNS 配置示例

本节提供 A 和 PTR 记录配置示例,它们满足了在用户置备的基础架构上部署 OpenShift Container Platform 的 DNS 要求。样本不是为选择一个 DNS 解决方案提供建议。

在这个示例中,集群名称为 ocp4,基域是 example.com

用户置备的集群的 DNS A 记录配置示例

以下示例是 BIND 区域文件,其中显示了用户置备的集群中名称解析的 A 记录示例。

例 8.1. DNS 区数据库示例

$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W )		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1.example.com.		IN	A	192.168.1.5
smtp.example.com.		IN	A	192.168.1.5
;
helper.example.com.		IN	A	192.168.1.5
helper.ocp4.example.com.	IN	A	192.168.1.5
;
api.ocp4.example.com.		IN	A	192.168.1.5 1
api-int.ocp4.example.com.	IN	A	192.168.1.5 2
;
*.apps.ocp4.example.com.	IN	A	192.168.1.5 3
;
bootstrap.ocp4.example.com.	IN	A	192.168.1.96 4
;
master0.ocp4.example.com.	IN	A	192.168.1.97 5
master1.ocp4.example.com.	IN	A	192.168.1.98 6
master2.ocp4.example.com.	IN	A	192.168.1.99 7
;
worker0.ocp4.example.com.	IN	A	192.168.1.11 8
worker1.ocp4.example.com.	IN	A	192.168.1.7 9
;
;EOF
1
为 Kubernetes API 提供名称解析。记录引用 API 负载均衡器的 IP 地址。
2
为 Kubernetes API 提供名称解析。记录引用 API 负载均衡器的 IP 地址,用于内部集群通信。
3
为通配符路由提供名称解析。记录引用应用程序入口负载均衡器的 IP 地址。应用程序入口负载均衡器以运行 Ingress Controller Pod 的机器为目标。默认情况下,Ingress Controller Pod 在计算机器上运行。
注意

在这个示例中,将相同的负载均衡器用于 Kubernetes API 和应用入口流量。在生产环境中,您可以单独部署 API 和应用程序入口负载均衡器,以便可以隔离扩展每个负载均衡器基础架构。

4
为 bootstrap 机器提供名称解析。
5 6 7
为 control plane 机器提供名称解析。
8 9
为计算机器提供名称解析。

用户置备的集群的 DNS PTR 记录配置示例

以下示例 BIND 区域文件显示了用户置备的集群中反向名称解析的 PTR 记录示例。

例 8.2. 反向记录的 DNS 区数据库示例

$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W )		; minimum (1 week)
	IN	NS	ns1.example.com.
;
5.1.168.192.in-addr.arpa.	IN	PTR	api.ocp4.example.com. 1
5.1.168.192.in-addr.arpa.	IN	PTR	api-int.ocp4.example.com. 2
;
96.1.168.192.in-addr.arpa.	IN	PTR	bootstrap.ocp4.example.com. 3
;
97.1.168.192.in-addr.arpa.	IN	PTR	master0.ocp4.example.com. 4
98.1.168.192.in-addr.arpa.	IN	PTR	master1.ocp4.example.com. 5
99.1.168.192.in-addr.arpa.	IN	PTR	master2.ocp4.example.com. 6
;
11.1.168.192.in-addr.arpa.	IN	PTR	worker0.ocp4.example.com. 7
7.1.168.192.in-addr.arpa.	IN	PTR	worker1.ocp4.example.com. 8
;
;EOF
1
为 Kubernetes API 提供反向 DNS 解析。PTR 记录引用 API 负载均衡器的记录名称。
2
为 Kubernetes API 提供反向 DNS 解析。PTR 记录引用 API 负载均衡器的记录名称,用于内部集群通信。
3
为 bootstrap 机器提供反向 DNS 解析。
4 5 6
为 control plane 机器提供反向 DNS 解析。
7 8
为计算机器提供反向 DNS 解析。
注意

OpenShift Container Platform 应用程序通配符不需要 PTR 记录。

8.2.3.6. 用户置备的基础架构的负载均衡要求

在安装 OpenShift Container Platform 前,您必须置备 API 和应用程序入口负载均衡基础架构。在生产环境中,您可以单独部署 API 和应用程序入口负载均衡器,以便可以隔离扩展每个负载均衡器基础架构。

注意

如果要使用 Red Hat Enterprise Linux (RHEL) 实例部署 API 和应用程序入口负载均衡器,您必须单独购买 RHEL 订阅。

负载平衡基础架构必须满足以下要求:

  1. API 负载均衡器 :提供一个通用端点,供用户(包括人工和机器)与平台交互和配置。配置以下条件:

    • 仅第 4 层负载均衡.这可称为 Raw TCP、SSL Passthrough 或 SSL 网桥模式。如果使用 SSL Bridge 模式,必须为 API 路由启用 Server Name Indication(SNI)。
    • 无状态负载平衡算法。这些选项根据负载均衡器的实施而有所不同。
    注意

    API 负载均衡器正常工作不需要会话持久性。

    在负载均衡器的前端和后端配置以下端口:

    表 8.7. API 负载均衡器
    port后端机器(池成员)internal外部描述

    6443

    Bootstrap 和 control plane.bootstrap 机器初始化集群 control plane 后,您要从负载均衡器中删除 bootstrap 机器。您必须为 API 服务器健康检查探测配置 /readyz 端点。

    X

    X

    Kubernetes API 服务器

    22623

    Bootstrap 和 control plane.bootstrap 机器初始化集群 control plane 后,您要从负载均衡器中删除 bootstrap 机器。

    X

     

    机器配置服务器

    注意

    负载均衡器必须配置为,从 API 服务器关闭 /readyz 端点到从池中移除 API 服务器实例时最多需要 30 秒。在 /readyz 返回错误或健康后的时间范围内,端点必须被删除或添加。每 5 秒或 10 秒探测一次,有两个成功请求处于健康状态,三个成为不健康的请求是经过良好测试的值。

  2. 应用程序入口负载均衡器 :为应用程序流量从集群外部流提供入口点。配置以下条件:

    • 仅第 4 层负载均衡.这可称为 Raw TCP、SSL Passthrough 或 SSL 网桥模式。如果使用 SSL Bridge 模式,您必须为入口路由启用 Server Name Indication(SNI)。
    • 建议根据可用选项以及平台上托管的应用程序类型,使用基于连接的或基于会话的持久性。
    提示

    如果应用程序入口负载均衡器可以看到客户端的真实 IP 地址,启用基于 IP 的会话持久性可以提高使用端到端 TLS 加密的应用程序的性能。

    在负载均衡器的前端和后端配置以下端口:

    表 8.8. 应用程序入口负载均衡器
    port后端机器(池成员)internal外部描述

    443

    默认情况下,运行 Ingress Controller Pod、计算或 worker 的机器。

    X

    X

    HTTPS 流量

    80

    默认情况下,运行 Ingress Controller Pod、计算或 worker 的机器。

    X

    X

    HTTP 流量

    1936

    默认情况下,运行 Ingress Controller Pod 的 worker 节点。您必须为 ingress 健康检查探测配置 /healthz/ready 端点。

    X

    X

    HTTP 流量

注意

如果要部署一个带有零计算节点的三节点集群,Ingress Controller Pod 在 control plane 节点上运行。在三节点集群部署中,您必须配置应用程序入口负载均衡器,将 HTTP 和 HTTPS 流量路由到 control plane 节点。

注意

OpenShift Container Platform 集群需要正确配置入口路由器。control plane 初始化后,您必须配置入口路由器。

8.2.3.6.1. 用户置备的集群的负载均衡器配置示例

本节提供了一个满足用户置备集群的负载均衡要求的 API 和应用程序入口负载均衡器配置示例。示例是 HAProxy 负载均衡器的 /etc/haproxy/haproxy.cfg 配置。这个示例不是为选择一个负载平衡解决方案提供建议。

注意

在这个示例中,将相同的负载均衡器用于 Kubernetes API 和应用入口流量。在生产环境中,您可以单独部署 API 和应用程序入口负载均衡器,以便您可以隔离扩展每个负载均衡器基础架构。

例 8.3. API 和应用程序入口负载均衡器配置示例

global
  log         127.0.0.1 local2
  pidfile     /var/run/haproxy.pid
  maxconn     4000
  daemon
defaults
  mode                    http
  log                     global
  option                  dontlognull
  option http-server-close
  option                  redispatch
  retries                 3
  timeout http-request    10s
  timeout queue           1m
  timeout connect         10s
  timeout client          1m
  timeout server          1m
  timeout http-keep-alive 10s
  timeout check           10s
  maxconn                 3000
frontend stats
  bind *:1936
  mode            http
  log             global
  maxconn 10
  stats enable
  stats hide-version
  stats refresh 30s
  stats show-node
  stats show-desc Stats for ocp4 cluster 1
  stats auth admin:ocp4
  stats uri /stats
listen api-server-6443 2
  bind *:6443
  mode tcp
  server bootstrap bootstrap.ocp4.example.com:6443 check inter 1s backup 3
  server master0 master0.ocp4.example.com:6443 check inter 1s
  server master1 master1.ocp4.example.com:6443 check inter 1s
  server master2 master2.ocp4.example.com:6443 check inter 1s
listen machine-config-server-22623 4
  bind *:22623
  mode tcp
  server bootstrap bootstrap.ocp4.example.com:22623 check inter 1s backup 5
  server master0 master0.ocp4.example.com:22623 check inter 1s
  server master1 master1.ocp4.example.com:22623 check inter 1s
  server master2 master2.ocp4.example.com:22623 check inter 1s
listen ingress-router-443 6
  bind *:443
  mode tcp
  balance source
  server worker0 worker0.ocp4.example.com:443 check inter 1s
  server worker1 worker1.ocp4.example.com:443 check inter 1s
listen ingress-router-80 7
  bind *:80
  mode tcp
  balance source
  server worker0 worker0.ocp4.example.com:80 check inter 1s
  server worker1 worker1.ocp4.example.com:80 check inter 1s
1
在本例中,集群名称为 ocp4
2
端口 6443 处理 Kubernetes API 流量并指向 control plane 机器。
3 5
bootstrap 条目必须在 OpenShift Container Platform 集群安装前就位,且必须在 bootstrap 过程完成后删除它们。
4
端口 22623 处理机器配置服务器流量并指向 control plane 机器。
6
端口 443 处理 HTTPS 流量,并指向运行 Ingress Controller pod 的机器。默认情况下,Ingress Controller Pod 在计算机器上运行。
7
端口 80 处理 HTTP 流量,并指向运行 Ingress Controller pod 的机器。默认情况下,Ingress Controller Pod 在计算机器上运行。
注意

如果要部署一个带有零计算节点的三节点集群,Ingress Controller Pod 在 control plane 节点上运行。在三节点集群部署中,您必须配置应用程序入口负载均衡器,将 HTTP 和 HTTPS 流量路由到 control plane 节点。

提示

如果您使用 HAProxy 作为负载均衡器,您可以通过在 HAProxy 节点上运行 netstat -nltupe 来检查 haproxy 进程是否在侦听端口 64432262344380

注意

如果您使用 HAProxy 作为负载均衡器,并且 SELinux 设置为 enforcing,您必须通过运行 setsebool -P haproxy_connect_any=1 来确保 HAProxy 服务可以绑定到配置的 TCP 端口。

8.2.4. 准备用户置备的基础架构

在用户置备的基础架构上安装 OpenShift Container Platform 之前,您必须准备底层基础架构。

本节详细介绍了设置集群基础架构以准备 OpenShift Container Platform 安装所需的高级别步骤。这包括为您的集群节点配置 IP 网络和网络连接,通过防火墙启用所需的端口,以及设置所需的 DNS 和负载均衡基础架构。

准备后,集群基础架构必须满足 带有用户置备的基础架构部分的集群要求

先决条件

流程

  1. 如果您使用 DHCP 向集群节点提供 IP 网络配置,请配置 DHCP 服务。

    1. 将节点的持久 IP 地址添加到您的 DHCP 服务器配置。在您的配置中,将相关网络接口的 MAC 地址与每个节点的预期 IP 地址匹配。
    2. 当您使用 DHCP 为集群机器配置 IP 寻址时,机器还通过 DHCP 获取 DNS 服务器信息。定义集群节点通过 DHCP 服务器配置使用的持久性 DNS 服务器地址。

      注意

      如果没有使用 DHCP 服务,则必须在 RHCOS 安装时为节点提供 IP 网络配置和 DNS 服务器地址。如果要从 ISO 镜像安装,这些参数可作为引导参数传递。如需有关静态 IP 置备和高级网络选项的更多信息,请参阅 安装 RHCOS 并启动 OpenShift Container Platform bootstrap 过程 部分。

    3. 在 DHCP 服务器配置中定义集群节点的主机名。有关 主机名注意事项的详情,请参阅通过 DHCP 设置集群节点 主机名部分。

      注意

      如果没有使用 DHCP 服务,集群节点可以通过反向 DNS 查找来获取其主机名。

  2. 确保您的网络基础架构提供集群组件之间所需的网络连接。有关 要求的详情,请参阅用户置备的基础架构 的网络要求部分。
  3. 将防火墙配置为启用 OpenShift Container Platform 集群组件进行通信所需的端口。如需有关所需端口的详细信息,请参阅用户置备的基础架构 部分的网络要求。
  4. 为集群设置所需的 DNS 基础架构。

    1. 为 Kubernetes API、应用程序通配符、bootstrap 机器、control plane 机器和计算机器配置 DNS 名称解析。
    2. 为 Kubernetes API、bootstrap 机器、control plane 机器和计算机器配置反向 DNS 解析。

      如需有关 OpenShift Container Platform DNS 要求的更多信息,请参阅用户置备 DNS 要求部分。

  5. 验证您的 DNS 配置。

    1. 从安装节点,针对 Kubernetes API 的记录名称、通配符路由和集群节点运行 DNS 查找。验证响应中的 IP 地址是否与正确的组件对应。
    2. 从安装节点,针对负载均衡器和集群节点的 IP 地址运行反向 DNS 查找。验证响应中的记录名称是否与正确的组件对应。

      有关详细的 DNS 验证步骤,请参阅用户置备的基础架构 验证 DNS 解析部分。

  6. 置备所需的 API 和应用程序入口负载平衡基础架构。有关 要求的更多信息,请参阅用户置备的基础架构的负载平衡 要求部分。
注意

某些负载平衡解决方案要求在初始化负载平衡之前,对群集节点进行 DNS 名称解析。

8.2.5. 验证用户置备的基础架构的 DNS 解析

您可以在在用户置备的基础架构上安装 OpenShift Container Platform 前验证 DNS 配置。

重要

本节中详述的验证步骤必须在安装集群前成功。

先决条件

  • 已为您的用户置备的基础架构配置了所需的 DNS 记录。

流程

  1. 从安装节点,针对 Kubernetes API 的记录名称、通配符路由和集群节点运行 DNS 查找。验证响应中包含的 IP 地址是否与正确的组件对应。

    1. 对 Kubernetes API 记录名称执行查询。检查结果是否指向 API 负载均衡器的 IP 地址:

      $ dig +noall +answer @<nameserver_ip> api.<cluster_name>.<base_domain> 1
      1
      <nameserver_ip> 替换为 nameserver 的 IP 地址,<cluster_name> 替换为您的集群名称,<base_domain> 替换为您的基本域名。

      输出示例

      api.ocp4.example.com.		0	IN	A	192.168.1.5

    2. 对 Kubernetes 内部 API 记录名称执行查询。检查结果是否指向 API 负载均衡器的 IP 地址:

      $ dig +noall +answer @<nameserver_ip> api-int.<cluster_name>.<base_domain>

      输出示例

      api-int.ocp4.example.com.		0	IN	A	192.168.1.5

    3. 测试 *.apps.<cluster_name>.<base_domain> DNS 通配符查找示例。所有应用程序通配符查询都必须解析为应用程序入口负载均衡器的 IP 地址:

      $ dig +noall +answer @<nameserver_ip> random.apps.<cluster_name>.<base_domain>

      输出示例

      random.apps.ocp4.example.com.		0	IN	A	192.168.1.5

      注意

      在示例中,将相同的负载均衡器用于 Kubernetes API 和应用程序入口流量。在生产环境中,您可以单独部署 API 和应用程序入口负载均衡器,以便可以隔离扩展每个负载均衡器基础架构。

      您可以使用另一个通配符值替换 random。例如,您可以查询到 OpenShift Container Platform 控制台的路由:

      $ dig +noall +answer @<nameserver_ip> console-openshift-console.apps.<cluster_name>.<base_domain>

      输出示例

      console-openshift-console.apps.ocp4.example.com. 0 IN	A 192.168.1.5

    4. 针对 bootstrap DNS 记录名称运行查询。检查结果是否指向 bootstrap 节点的 IP 地址:

      $ dig +noall +answer @<nameserver_ip> bootstrap.<cluster_name>.<base_domain>

      输出示例

      bootstrap.ocp4.example.com.		0	IN	A	192.168.1.96

    5. 使用此方法对 control plane 和计算节点的 DNS 记录名称执行查找。检查结果是否与每个节点的 IP 地址对应。
  2. 从安装节点,针对负载均衡器和集群节点的 IP 地址运行反向 DNS 查找。验证响应中包含的记录名称是否与正确的组件对应。

    1. 对 API 负载均衡器的 IP 地址执行反向查找。检查响应是否包含 Kubernetes API 和 Kubernetes 内部 API 的记录名称:

      $ dig +noall +answer @<nameserver_ip> -x 192.168.1.5

      输出示例

      5.1.168.192.in-addr.arpa. 0	IN	PTR	api-int.ocp4.example.com. 1
      5.1.168.192.in-addr.arpa. 0	IN	PTR	api.ocp4.example.com. 2

      1
      为 Kubernetes 内部 API 提供记录名称。
      2
      为 Kubernetes API 提供记录名称。
      注意

      OpenShift Container Platform 应用程序通配符不需要 PTR 记录。针对应用程序入口负载均衡器的 IP 地址解析反向 DNS 解析不需要验证步骤。

    2. 对 bootstrap 节点的 IP 地址执行反向查找。检查结果是否指向 bootstrap 节点的 DNS 记录名称:

      $ dig +noall +answer @<nameserver_ip> -x 192.168.1.96

      输出示例

      96.1.168.192.in-addr.arpa. 0	IN	PTR	bootstrap.ocp4.example.com.

    3. 使用此方法对 control plane 和计算节点的 IP 地址执行反向查找。检查结果是否与每个节点的 DNS 记录名称对应。

8.2.6. 为集群节点 SSH 访问生成密钥对

在 OpenShift Container Platform 安装过程中,您可以为安装程序提供 SSH 公钥。密钥通过它们的 Ignition 配置文件传递给 Red Hat Enterprise Linux CoreOS(RHCOS)节点,用于验证对节点的 SSH 访问。密钥添加到每个节点上 core 用户的 ~/.ssh/authorized_keys 列表中,这将启用免密码身份验证。

将密钥传递给节点后,您可以使用密钥对作为用户 核心 通过 SSH 连接到 RHCOS 节点。若要通过 SSH 访问节点,必须由 SSH 为您的本地用户管理私钥身份。

如果要通过 SSH 连接到集群节点来执行安装调试或灾难恢复,则必须在安装过程中提供 SSH 公钥。./openshift-install gather 命令还需要在集群节点上设置 SSH 公钥。

重要

不要在生产环境中跳过这个过程,在生产环境中需要灾难恢复和调试。

注意

您必须使用本地密钥,而不是使用特定平台方法配置 的密钥,如 AWS 密钥对

流程

  1. 如果您在本地计算机上没有可用于在集群节点上进行身份验证的现有 SSH 密钥对,请创建一个。例如,在使用 Linux 操作系统的计算机上运行以下命令:

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    指定新 SSH 密钥的路径和文件名,如 ~/.ssh/id_ed25519。如果您已有密钥对,请确保您的公钥位于 ~/.ssh 目录中。
    注意

    如果您计划在 x86_64 架构上安装使用 FIPS 验证的/Modules in Process 加密库的 OpenShift Container Platform 集群,请不要创建使用 ed25519 算法的密钥。相反,创建一个使用 rsaecdsa 算法的密钥。

  2. 查看公共 SSH 密钥:

    $ cat <path>/<file_name>.pub

    例如,运行以下命令来查看 ~/.ssh/id_ed25519.pub 公钥:

    $ cat ~/.ssh/id_ed25519.pub
  3. 将 SSH 私钥身份添加到本地用户的 SSH 代理(如果尚未添加)。在集群节点上,或者要使用 ./openshift-install gather 命令,需要对该密钥进行 SSH 代理管理,才能在集群节点上进行免密码 SSH 身份验证。

    注意

    在某些发行版中,自动管理默认 SSH 私钥身份,如 ~/.ssh/id_rsa~/.ssh/id_dsa

    1. 如果 ssh-agent 进程尚未为您的本地用户运行,请将其作为后台任务启动:

      $ eval "$(ssh-agent -s)"

      输出示例

      Agent pid 31874

      注意

      如果集群处于 FIPS 模式,则只使用 FIPS 兼容算法来生成 SSH 密钥。密钥必须是 RSA 或 ECDSA。

  4. 将 SSH 私钥添加到 ssh-agent

    $ ssh-add <path>/<file_name> 1
    1
    指定 SSH 私钥的路径和文件名,如 ~/.ssh/id_ed25519.pub

    输出示例

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

后续步骤

  • 安装 OpenShift Container Platform 时,为安装程序提供 SSH 公钥。如果在您置备的基础架构上安装集群,则必须为安装程序提供密钥。

8.2.7. 获取安装程序

在安装 OpenShift Container Platform 之前,将安装文件下载到本地计算机上。

先决条件

  • 您有一台运行 Linux 或 macOS 的计算机,本地磁盘空间为 500 MB

流程

  1. 访问 OpenShift Cluster Manager 站点的 Infrastructure Provider 页面。如果您有红帽帐户,请使用您的凭证登录。如果没有,请创建一个帐户。
  2. 选择您的基础架构供应商。
  3. 进入您的安装类型的页面,下载您的操作系统的安装程序,并将该文件放在要保存安装配置文件的目录中。

    重要

    安装程序会在用来安装集群的计算机上创建几个文件。在完成集群安装后,您必须保留安装程序和安装程序所创建的文件。这两个文件都需要删除集群。

    重要

    删除安装程序创建的文件不会删除您的集群,即使集群在安装过程中失败也是如此。要删除集群,请为特定云供应商完成 OpenShift Container Platform 卸载流程。

  4. 提取安装程序。例如,在使用 Linux 操作系统的计算机上运行以下命令:

    $ tar -xvf openshift-install-linux.tar.gz
  5. 从 Red Hat OpenShift Cluster Manager 下载安装 pull secret。此 pull secret 允许您与所含授权机构提供的服务进行身份验证,这些服务包括为 OpenShift Container Platform 组件提供容器镜像的 Quay.io。

8.2.8. 通过下载二进制文件安装 OpenShift CLI

您可以安装 OpenShift CLI(oc)来使用命令行界面与 OpenShift Container Platform 进行交互。您可以在 Linux、Windows 或 macOS 上安装 oc

重要

如果安装了旧版本的 oc,则无法使用 OpenShift Container Platform 4.9 中的所有命令。下载并安装新版本的 oc

在 Linux 上安装 OpenShift CLI

您可以按照以下流程在 Linux 上安装 OpenShift CLI(oc)二进制文件。

流程

  1. 导航到红帽客户门户网站上的 OpenShift Container Platform 下载页面
  2. Version 下拉菜单中选择相应的版本。
  3. 单击 OpenShift v4.9 Linux 客户端 条目旁边的 Download Now,再保存文件。
  4. 解包存档:

    $ tar xvf <file>
  5. oc 二进制文件放到 PATH 中的目录中

    要查看您的 PATH,请执行以下命令:

    $ echo $PATH

安装 OpenShift CLI 后,可以使用 oc 命令:

$ oc <command>
在 Windows 上安装 OpenShift CLI

您可以按照以下流程在 Windows 上安装 OpenShift CLI(oc)二进制文件。

流程

  1. 导航到红帽客户门户网站上的 OpenShift Container Platform 下载页面
  2. Version 下拉菜单中选择相应的版本。
  3. 单击 OpenShift v4.9 Windows 客户端 条目旁边的 Download Now,再保存文件。
  4. 使用 ZIP 程序解压存档。
  5. oc 二进制文件移到 PATH 中的目录中

    要查看您的 PATH,请打开命令提示并执行以下命令:

    C:\> path

安装 OpenShift CLI 后,可以使用 oc 命令:

C:\> oc <command>
在 macOS 上安装 OpenShift CLI

您可以按照以下流程在 macOS 上安装 OpenShift CLI(oc)二进制文件。

流程

  1. 导航到红帽客户门户网站上的 OpenShift Container Platform 下载页面
  2. Version 下拉菜单中选择相应的版本。
  3. 单击 OpenShift v4.9 MacOSX Client 条目旁边的 Download Now,再保存文件。
  4. 解包和解压存档。
  5. oc 二进制文件移到 PATH 的目录中。

    要查看您的 PATH,请打开终端并执行以下命令:

    $ echo $PATH

安装 OpenShift CLI 后,可以使用 oc 命令:

$ oc <command>

8.2.9. 手动创建安装配置文件

对于用户置备的 OpenShift Container Platform 安装,需要手动生成安装配置文件。

先决条件

  • 您在本地机器上有一个 SSH 公钥来提供给安装程序。该密钥将用于在集群节点上进行 SSH 身份验证,以进行调试和灾难恢复。
  • 已获取 OpenShift Container Platform 安装程序和集群的 pull secret。

流程

  1. 创建一个安装目录来存储所需的安装资产:

    $ mkdir <installation_directory>
    重要

    您必须创建一个目录。有些安装资产,如 bootstrap X.509 证书的过期间隔较短,因此不得重复使用安装目录。如果要重复使用另一个集群安装中的单个文件,您可以将它们复制到您的目录中。但是,安装资产的文件名可能会在发行版本间有所变化。从以前的 OpenShift Container Platform 版本中复制安装文件时请小心。

  2. 自定义提供的 install-config.yaml 文件模板示例,并将其保存在 <installation_directory> 中。

    注意

    您必须将此配置文件命名为 install-config.yaml

    注意

    对于某些平台类型,您可以运行 ./openshift-install create install-config --dir <installation_directory> 来生成 install-config.yaml 文件。您可以在提示符处提供有关集群配置的详情。

  3. 备份 install-config.yaml 文件,以便您可以使用它安装多个集群。

    重要

    install-config.yaml 文件会在安装过程的下一步中使用。现在必须备份它。

8.2.9.1. 安装配置参数

在部署 OpenShift Container Platform 集群前,您可以提供一个自定义 的 install-config.yaml 安装配置文件,该文件描述了您的环境的详情。

注意

安装后,您无法在 install-config.yaml 文件中修改这些参数。

重要

openshift-install 命令不验证参数的字段名称。如果指定了不正确的名称,则不会创建相关的文件或对象,且不会报告错误。确保指定的任何参数的字段名称都正确。

8.2.9.1.1. 所需的配置参数

下表描述了所需的安装配置参数:

表 8.9. 所需的参数
参数描述

apiVersion

install-config.yaml 内容的 API 版本。当前版本为 v1。安装程序还可能支持旧的 API 版本。

字符串

baseDomain

云供应商的基域。基域用于创建到 OpenShift Container Platform 集群组件的路由。集群的完整 DNS 名称是 baseDomainmetadata.name 参数值的组合,其格式为 <metadata.name>.<baseDomain>

完全限定域名或子域名,如 example.com

metadata

Kubernetes 资源 ObjectMeta,其中只消耗 name 参数。

对象

metadata.name

集群的名称。集群的 DNS 记录是 {{.metadata.name}}.{{.baseDomain}} 的子域。

小写字母和连字符 (-) 的字符串,如 dev

platform

要执行安装的具体平台配置: awsbaremetalazuregcpopenstackovirtvsphere{}。有关 platform.<platform> 参数的更多信息,请参考下表中您的特定平台。

对象

pullSecret

从 Red Hat OpenShift Cluster Manager 获取 pull secret,验证从 Quay.io 等服务中下载 OpenShift Container Platform 组件的容器镜像。

{
   "auths":{
      "cloud.openshift.com":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      },
      "quay.io":{
         "auth":"b3Blb=",
         "email":"you@example.com"
      }
   }
}
8.2.9.1.2. 网络配置参数

您可以根据现有网络基础架构的要求自定义安装配置。例如,您可以扩展集群网络的 IP 地址块,或者提供不同于默认值的不同 IP 地址块。

仅支持 IPv4 地址。

表 8.10. 网络参数
参数描述

networking

集群网络的配置。

对象

注意

您无法在安装后修改 网络 对象指定的参数。

networking.networkType

要安装的集群网络供应商 Container Network Interface (CNI) 插件。

OpenShiftSDNOVNKubernetesOpenShiftSDN 是 all-Linux 网络的 CNI 供应商。OVNKubernetes 是包含 Linux 和 Windows 服务器的 Linux 网络和混合网络的 CNI 供应商。默认值为 OpenShiftSDN

networking.clusterNetwork

pod 的 IP 地址块。

默认值为 10.128.0.0/14,主机前缀为 /23

如果您指定了多个 IP 地址块,块不得重叠。

对象数组。例如:

networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14
    hostPrefix: 23

networking.clusterNetwork.cidr

使用 networking.clusterNetwork 时需要此项。IP 地址块。

IPv4 网络。

无类别域间路由(CIDR)表示法中的 IP 地址块。IPv4 块的前缀长度介于 0 到 32 之间

networking.clusterNetwork.hostPrefix

分配给每个节点的子网前缀长度。例如,如果 hostPrefix 设为 23,则每个节点从 given cidr 中分配 a /23 子网。hostPrefix23 提供 510(2^(32 - 23)- 2)pod IP 地址。

子网前缀。

默认值为 23

networking.serviceNetwork

服务的 IP 地址块。默认值为 172.30.0.0/16

OpenShift SDN 和 OVN-Kubernetes 网络供应商只支持服务网络的一个 IP 地址块。

具有 CIDR 格式的 IP 地址块的数组。例如:

networking:
  serviceNetwork:
   - 172.30.0.0/16

networking.machineNetwork

机器的 IP 地址块。

如果您指定了多个 IP 地址块,块不得重叠。

对象数组。例如:

networking:
  machineNetwork:
  - cidr: 10.0.0.0/16

networking.machineNetwork.cidr

使用 networking.machineNetwork 时需要此项。IP 地址块。libvirt 之外的所有平台的默认值为 10.0.0.0/16。对于 libvirt,默认值 为 192.168.126.0/24

CIDR 表示法中的 IP 网络块。

例如: 10.0.0.0/16

注意

networking.machineNetwork 设置为与首选 NIC 所在的 CIDR 匹配。

8.2.9.1.3. 可选的配置参数

下表描述了可选的安装配置参数:

表 8.11. 可选参数
参数描述

additionalTrustBundle

添加到节点可信证书存储中的 PEM 编码 X.509 证书捆绑包。配置了代理时,也可以使用此信任捆绑包。

字符串

Compute

组成计算节点的机器的配置。

MachinePool 对象的数组。

compute.architecture

决定池中机器的指令集合架构。目前不支持异构集群,因此所有池都必须指定相同的架构。有效值为 amd64 (默认值)。

字符串

compute.hyperthreading

是否在计算机器上启用或禁用并发多 线程或超线程。默认情况下,启用并发多线程以提高机器内核的性能。

重要

如果您禁用并发多线程,请确保您的容量规划考虑机器性能显著降低的情况。

enabledDisabled

compute.name

使用 compute 时需要此项。机器池的名称。

worker

compute.platform

使用 compute 时需要此项。使用此参数指定托管 worker 机器的云供应商。此参数值必须与 controlPlane.platform 参数值匹配。

awsazuregcpopenstackovirtvsphere{}

compute.replicas

要置备的计算机器数量,也称为 worker 机器。

大于或等于 2 的正整数。默认值为 3

controlPlane

组成 control plane 的机器的配置。

MachinePool 对象的数组。

controlPlane.architecture

决定池中机器的指令集合架构。目前不支持异构集群,因此所有池都必须指定相同的架构。有效值为 amd64 (默认值)。

字符串

controlPlane.hyperthreading

是否在 control plane 机器上启用或禁用并发多 线程或超线程。默认情况下,启用并发多线程以提高机器内核的性能。

重要

如果您禁用并发多线程,请确保您的容量规划考虑机器性能显著降低的情况。

enabledDisabled

controlPlane.name

使用 controlPlane 时需要此项。机器池的名称。

master

controlPlane.platform

使用 controlPlane 时需要此项。使用此参数指定托管 control plane 机器的云供应商。此参数值必须与 compute.platform 参数值匹配。

awsazuregcpopenstackovirtvsphere{}

controlPlane.replicas

要置备的 control plane 机器数量。

唯一支持的值是 3,这是默认值。

credentialsMode

Cloud Credential Operator(CCO)模式。如果没有指定模式,CCO 会动态尝试决定提供的凭证的功能,在支持多个模式的平台上首选 mint 模式。

注意

不是所有 CCO 模式都支持所有云供应商。如需有关 CCO 模式的更多信息,请参阅集群 Operator 参考内容中的 Cloud Credential Operator 条目。

注意

如果您的 AWS 帐户启用了服务控制策略 (SCP),您必须将 credentialsMode 参数配置为 MintPassthroughManual

MintPassthroughManual 或空字符串("")。

fips

启用或禁用 FIPS 模式。默认值为 false (禁用)。如果启用了 FIPS 模式,运行 OpenShift Container Platform 的 Red Hat Enterprise Linux CoreOS(RHCOS)机器会绕过默认的 Kubernetes 加密套件,并使用由 RHCOS 提供的加密模块。

重要

只有在 x86_64 架构的 OpenShift Container Platform 部署中才支持使用 FIPS 验证的/Modules in Process 加密库。

注意

如果使用 Azure File 存储,则无法启用 FIPS 模式。

falsetrue

imageContentSources

release-image 内容的源和存储库。

对象数组。包括一个 source 以及可选的 mirrors,如本表的以下行所述。

imageContentSources.source

使用 imageContentSources 时需要此项。指定用户在镜像拉取规格中引用的存储库。

字符串

imageContentSources.mirrors

指定可能还包含同一镜像的一个或多个仓库。

字符串数组

publish

如何发布或公开集群的面向用户的端点,如 Kubernetes API、OpenShift 路由。

内部或外部 .默认值为 External

非云平台不支持将此字段设置为 Internal

sshKey

用于验证集群机器访问的 SSH 密钥或密钥。

注意

对于您要在其上执行安装调试或灾难恢复的生产环境 OpenShift Container Platform 集群,请指定 ssh-agent 进程使用的 SSH 密钥。

一个或多个密钥。例如:

sshKey:
  <key1>
  <key2>
  <key3>

8.2.9.2. 裸机 install-config.yaml 文件示例

您可以自定义 install-config.yaml 文件,以指定有关 OpenShift Container Platform 集群平台的更多详情,或修改所需参数的值。

apiVersion: v1
baseDomain: example.com 1
compute: 2
- hyperthreading: Enabled 3
  name: worker
  replicas: 0 4
controlPlane: 5
  hyperthreading: Enabled 6
  name: master
  replicas: 3 7
metadata:
  name: test 8
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14 9
    hostPrefix: 23 10
  networkType: OpenShiftSDN
  serviceNetwork: 11
  - 172.30.0.0/16
platform:
  none: {} 12
fips: false 13
pullSecret: '{"auths": ...}' 14
sshKey: 'ssh-ed25519 AAAA...' 15
1
集群的基域。所有 DNS 记录都必须是这个基域的子域,并包含集群名称。
2 5
controlPlane 部分是一个单个映射,但 compute 部分是一系列映射。为满足不同数据结构的要求,compute 部分的第一行必须以连字符 - 开头,controlPlane 部分 的第一行则不以连字符开头。仅使用一个 control plane 池。
3 6
指定要启用或禁用并发多线程(SMT)还是超线程。默认情况下,启用 SMT 可提高机器中内核的性能。您可以通过将 参数值设置为 Disabled 来禁用它。如果禁用 SMT,则必须在所有集群机器中禁用它;这包括 control plane 和计算机器。
注意

默认启用并发多线程(SMT)。如果您的 BIOS 设置中没有启用 SMT,超线程 参数无效。

重要

如果您禁用 超线程,无论是在 BIOS 中,还是在 install-config.yaml 文件中,请确保您的容量规划考虑机器性能显著降低的情况。

4
在用户置备的基础架构上安装 OpenShift Container Platform 时,必须将这个值设置为 0。在安装程序置备的安装中,参数控制集群为您创建和管理的计算机器数量。在用户置备的安装中,您必须在完成集群安装前手动部署计算机器。
注意

如果要安装一个三节点集群,在安装 Red Hat Enterprise Linux CoreOS(RHCOS)机器时不要部署任何计算机器。

7
您添加到集群的 control plane 机器数量。由于集群使用这些值作为集群中的 etcd 端点数量,所以该值必须与您部署的 control plane 机器数量匹配。
8
您在 DNS 记录中指定的集群名称。
9
从中分配 Pod IP 地址的 IP 地址块。此块不得与现有物理网络重叠。这些 IP 地址用于 pod 网络。如果需要从外部网络访问 pod,您必须配置负载均衡器和路由器来管理流量。
注意

类 E CIDR 范围被保留以供以后使用。要使用 Class E CIDR 范围,您必须确保您的网络环境接受 Class E CIDR 范围内的 IP 地址。

10
分配给每个节点的子网前缀长度。例如,如果 hostPrefix 设为 23,则每个节点从 given cidr 中分配 a /23 子网,这样就能有 510(2^(32 - 23)- 2)个 pod IP 地址。如果需要从外部网络访问节点,请配置负载均衡器和路由器来管理流量。
11
用于服务 IP 地址的 IP 地址池。您只能输入一个 IP 地址池。此块不得与现有物理网络重叠。如果您需要从外部网络访问服务,请配置负载均衡器和路由器来管理流量。
12
您必须将平台设置为 none。您无法为您的平台提供额外的平台配置变量。
重要

使用平台类型 none 安装的集群无法使用一些功能,如使用 Machine API 管理计算机器。即使附加到集群的计算机器安装在通常支持该功能的平台上,也会应用这个限制。在安装后无法更改此参数。

13
是否启用或禁用 FIPS 模式。默认情况下不启用 FIPS 模式。如果启用了 FIPS 模式,运行 OpenShift Container Platform 的 Red Hat Enterprise Linux CoreOS(RHCOS)机器会绕过默认的 Kubernetes 加密套件,并使用由 RHCOS 提供的加密模块。
重要

只有在 x86_64 架构的 OpenShift Container Platform 部署中才支持使用 FIPS 验证的/Modules in Process 加密库。

14
Red Hat OpenShift Cluster Manager 中的 pull secret。此 pull secret 允许您与所含授权机构提供的服务进行身份验证,这些服务包括为 OpenShift Container Platform 组件提供容器镜像的 Quay.io。
15
Red Hat Enterprise Linux CoreOS(RHCOS)中 core 用户的 SSH 公钥。
注意

对于您要在其上执行安装调试或灾难恢复的生产环境 OpenShift Container Platform 集群,请指定 ssh-agent 进程使用的 SSH 密钥。

8.2.9.3. 在安装过程中配置集群范围的代理

生产环境可能会拒绝直接访问互联网,而是提供 HTTP 或 HTTPS 代理。您可以通过在 install-config.yaml 文件中配置代理设置,将新的 OpenShift Container Platform 集群配置为使用代理。

注意

对于裸机安装,如果您没有从 install-config.yaml 文件中的 networking.machineNetwork[].cidr 字段指定的范围分配节点 IP 地址,您必须将其包括在 proxy.noProxy 字段中。

先决条件

  • 您有一个现有的 install-config.yaml 文件。
  • 您检查了集群需要访问的站点,并确定它们中的任何站点是否需要绕过代理。默认情况下,所有集群出口流量都经过代理,包括对托管云供应商 API 的调用。如果需要,您将在 Proxy 对象的 spec.noProxy 字段中添加站点来绕过代理。

    注意

    Proxy 对象 status.noProxy 字段使用安装配置中的 networking.machineNetwork[].cidrnetworking.clusterNetwork[].cidrnetworking.serviceNetwork[] 字段的值填充。

    对于在 Amazon Web Services(AWS)、Google Cloud Platform(GCP)、Microsoft Azure 和 Red Hat OpenStack Platform(RHOSP)上安装,Proxy 对象 status.noProxy 字段也会使用实例元数据端点填充(169.254.169.254)。

流程

  1. 编辑 install-config.yaml 文件并添加代理设置。例如:

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    ...
    1
    用于创建集群外 HTTP 连接的代理 URL。URL 方案必须是 http
    2
    用于创建集群外 HTTPS 连接的代理 URL。
    3
    要从代理中排除的目标域名、IP 地址或其他网络 CIDR 的逗号分隔列表。在域前面加上 . 以仅匹配子域。例如,.y.com 匹配 x.y.com,但不匹配 y.com。使用 * 可 对所有目的地绕过代理。
    4
    如果提供,安装程序会在 openshift-config 命名空间中生成名为 user-ca-bundle 的配置映射来保存额外的 CA 证书。如果您提供 additionalTrustBundle 和至少一个代理设置,则 Proxy 对象会被配置为引用 trustedCA 字段中的 user-ca-bundle 配置映射。然后,Cluster Network Operator 会创建一个 trusted-ca-bundle 配置映射,该配置映射将为 trustedCA 参数指定的内容与 RHCOS 信任捆绑包合并。additionalTrustBundle 字段是必需的,除非代理的身份证书由来自 RHCOS 信任捆绑包的颁发机构签名。
    注意

    安装程序不支持代理的 readinessEndpoints 字段。

  2. 保存该文件并在安装 OpenShift Container Platform 时引用。

安装程序会创建一个名为 cluster 的集群范围代理,该代理 使用 提供的 install-config.yaml 文件中的代理设置。如果没有提供代理设置,仍然会创建一个 cluster Proxy 对象,但它会有一个空 spec

注意

只支持名为 clusterProxy 对象,且无法创建额外的代理。

8.2.9.4. 配置三节点集群

您可选择在裸机集群中部署零台计算机器,该机器只由三台 control plane 机器组成。这为集群管理员和开发人员提供了更小、效率更高的集群,用于测试、开发和生产。

在三节点 OpenShift Container Platform 环境中,三台 control plane 机器可以调度,这意味着应用程序工作负载被调度到它们上运行。

先决条件

  • 您有一个现有的 install-config.yaml 文件。

流程

  • 确保 install-config.yaml 文件中的计算副本数量设置为 0,如以下 计算 小节所示:

    compute:
    - name: worker
      platform: {}
      replicas: 0
    注意

    在用户置备的基础架构上安装 OpenShift Container Platform 时,无论您要部署的计算机器数量有多少,您必须将计算机器的 replicas 参数值设置为 0。在安装程序置备的安装中,参数控制集群为您创建和管理的计算机器数量。这不适用于手动部署计算机器的用户置备安装。

对于三节点集群安装,请按照以下步骤执行:

  • 如果要部署一个带有零计算节点的三节点集群,Ingress Controller Pod 在 control plane 节点上运行。在三节点集群部署中,您必须配置应用程序入口负载均衡器,将 HTTP 和 HTTPS 流量路由到 control plane 节点。如需更多信息,请参阅用户置备的基础架构的负载平衡要求 部分。
  • 在以下步骤中创建 Kubernetes 清单文件时,请确保 <installation_directory>/manifests/cluster-scheduler-02-config.yml 文件中的 mastersSchedulable 参数被设置为 true。这可让应用程序工作负载在 control plane 节点上运行。
  • 在创建 Red Hat Enterprise Linux CoreOS(RHCOS)机器时,不要部署任何计算节点。

8.2.10. 创建 Kubernetes 清单和 Ignition 配置文件

由于您必须修改一些集群定义文件并手动启动集群机器,因此您必须生成 Kubernetes 清单和 Ignition 配置文件来配置机器。

安装配置文件转换为 Kubernetes 清单。清单嵌套到 Ignition 配置文件中,稍后用于配置集群机器。

重要
  • OpenShift Container Platform 安装程序生成的 Ignition 配置文件包含 24 小时后过期的证书,然后在该时进行续订。如果在更新证书前关闭集群,且集群在 24 小时后重启,集群会自动恢复过期的证书。一个例外是,您必须手动批准待处理的 node-bootstrapper 证书签名请求(CSR)来恢复 kubelet 证书。如需更多信息,请参阅从过期的 control plane 证书 中恢复的文档。
  • 建议您在 Ignition 配置文件生成后的 12 小时内使用它们,因为 24 小时的证书会在集群安装后的 16 小时到 22 小时间进行轮转。通过在 12 小时内使用 Ignition 配置文件,您可以避免在安装过程中因为执行了证书更新而导致安装失败的问题。

先决条件

  • 已获得 OpenShift Container Platform 安装程序。
  • 已创建 install-config.yaml 安装配置文件。

流程

  1. 进入包含 OpenShift Container Platform 安装程序的目录,并为集群生成 Kubernetes 清单:

    $ ./openshift-install create manifests --dir <installation_directory> 1
    1
    对于 <installation_directory>,请指定包含您创建的 install-config.yaml 文件的安装目录。
    警告

    如果您要安装一个三节点集群,请跳过以下步骤,以便可以调度 control plane 节点。

    重要

    当您将 control plane 节点从默认的不可调度配置为可以调度时,需要额外的订阅。这是因为 control plane 节点随后变为 worker 节点。

  2. 检查 <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes 清单文件中的 mastersSchedulable 参数是否已设置为 false。此设置可防止在 control plane 机器上调度 pod:

    1. 打开 <installation_directory>/manifests/cluster-scheduler-02-config.yml 文件。
    2. 找到 mastersSchedulable 参数,并确保它被设置为 false
    3. 保存并退出 文件。
  3. 要创建 Ignition 配置文件,请从包含安装程序的目录运行以下命令:

    $ ./openshift-install create ignition-configs --dir <installation_directory> 1
    1
    对于 <installation_directory>,请指定相同的安装目录。

    为安装目录中的 bootstrap、control plane 和计算节点创建 Ignition 配置文件。kubeadmin-passwordkubeconfig 文件在 ./<installation_directory>/auth 目录中创建:

    .
    ├── auth
    │   ├── kubeadmin-password
    │   └── kubeconfig
    ├── bootstrap.ign
    ├── master.ign
    ├── metadata.json
    └── worker.ign

8.2.11. 安装 RHCOS 并启动 OpenShift Container Platform bootstrap 过程

要在您置备的裸机基础架构上安装 OpenShift Container Platform,您必须在机器上安装 Red Hat Enterprise Linux CoreOS(RHCOS)。安装 RHCOS 时,您必须为您要安装的机器类型提供 OpenShift Container Platform 安装程序生成的 Ignition 配置文件。如果您配置了适当的网络、DNS 和负载均衡基础架构,OpenShift Container Platform bootstrap 过程会在 RHCOS 机器重启后自动启动。

要在机器上安装 RHCOS,请按照以下步骤使用 ISO 镜像或网络 PXE 引导。

注意

本安装文档中包括的计算节点部署步骤特定于 RHCOS。如果您选择部署基于 RHEL 的计算节点,您需要负责所有操作系统生命周期管理和维护,包括执行系统更新、应用补丁和完成所有其他必要的任务。RHEL 7 计算机器已被弃用,并计划在以后的 OpenShift Container Platform 4 发行版本中删除。

您可以使用以下方法在 ISO 和 PXE 安装过程中配置 RHCOS:

  • 内核参数: 您可以使用内核参数来提供特定于安装的信息。例如,您可以指定上传到 HTTP 服务器的 RHCOS 安装文件的位置以及您要安装的节点类型的 Ignition 配置文件的位置。对于 PXE 安装,您可以使用 APPEND 参数将参数传递给 live 安装程序的内核。对于 ISO 安装,您可以中断实时安装引导过程来添加内核参数。在这两个安装情形中,您可以使用特殊的 coreos.inst.* 参数来指示实时安装程序,以及标准安装引导参数来打开或关闭标准内核服务。
  • Ignition 配置:OpenShift Container Platform Ignition 配置文件(*.ign)特定于您要安装的节点类型。您可以在 RHCOS 安装过程中传递 bootstrap、control plane 或计算节点 Ignition 配置文件的位置,以便在首次启动时生效。特殊情况下,您可以创建单独的、有限的 Ignition 配置以传递给 live 系统。该 Ignition 配置可以执行特定的任务,如在安装完成后向置备系统报告成功。此特殊的 Ignition 配置由 coreos-installer 使用,以便在首次引导安装的系统时应用。不要直接为实时 ISO 提供标准 control plane 和计算节点 Ignition 配置。
  • coreos-installer :您可以将 live ISO 安装程序引导到 shell 提示符,这可让您在第一次引导前以多种方式准备持久性系统。特别是,您可以运行 coreos-installer 命令来识别要包含的各种工件、使用磁盘分区和设置网络。在某些情况下,您可以配置 live 系统上的功能并将其复制到安装的系统中。

使用 ISO 安装还是 PXE 安装取决于您的情况。PXE 安装需要可用的 DHCP 服务并进行更多准备,但可以使安装过程更加自动化。ISO 安装是一个更手动的过程,如果您设置的机器数超过几台,则可能不方便。

注意

从 OpenShift Container Platform 4.6 开始,RHCOS ISO 和其他安装工件支持在带有 4K 扇区的磁盘上安装。

8.2.11.1. 使用 ISO 镜像安装 RHCOS

您可以使用 ISO 镜像在机器上安装 RHCOS。

先决条件

  • 已为集群创建 Ignition 配置文件。
  • 您已配置了适当的网络、DNS 和负载平衡基础架构。
  • 您有一个可以从计算机以及您创建的机器访问的 HTTP 服务器。
  • 您已参阅 Advanced RHCOS 安装配置 部分来了解配置功能的不同方法,如网络和磁盘分区。

流程

  1. 获取每个 Ignition 配置文件的 SHA512 摘要。例如,您可以在运行 Linux 的系统上使用以下内容来获取 bootstrap.ign Ignition 配置文件的 SHA512 摘要:

    $ sha512sum <installation_directory>/bootstrap.ign

    后续步骤中会向 coreos-installer 提供摘要,以验证集群节点上 Ignition 配置文件的真实性。

  2. 将安装程序创建的 bootstrap、control plane 和计算节点 Ignition 配置文件上传到 HTTP 服务器。注意这些文件的 URL。

    重要

    您可以在 Ignition 配置中添加或更改配置设置,然后将其保存到 HTTP 服务器。如果您计划在安装完成后在集群中添加更多计算机器,请不要删除这些文件。

  3. 从安装主机上,验证 Ignition 配置文件是否在 URL 上可用。以下示例获取 bootstrap 节点的 Ignition 配置文件:

    $ curl -k http://<HTTP_server>/bootstrap.ign 1

    输出示例

      % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                     Dload  Upload   Total   Spent    Left  Speed
      0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0{"ignition":{"version":"3.2.0"},"passwd":{"users":[{"name":"core","sshAuthorizedKeys":["ssh-rsa...

    在命令中将 bootstrap.ign 替换为 master.ignworker.ign,以验证 control plane 和计算节点的 Ignition 配置文件是否可用。

  4. 虽然可以从 RHCOS 镜像镜像页面获取您选择的操作系统实例安装方法所需的 RHCOS 镜像,但推荐的方法是从 openshift-install 命令的输出获取 RHCOS 镜像的正确版本:

    $ openshift-install coreos print-stream-json | grep '\.iso[^.]'

    输出示例

    "location": "<url>/art/storage/releases/rhcos-4.9-aarch64/<release>/aarch64/rhcos-<release>-live.aarch64.iso",
    "location": "<url>/art/storage/releases/rhcos-4.9-ppc64le/<release>/ppc64le/rhcos-<release>-live.ppc64le.iso",
    "location": "<url>/art/storage/releases/rhcos-4.9-s390x/<release>/s390x/rhcos-<release>-live.s390x.iso",
    "location": "<url>/art/storage/releases/rhcos-4.9/<release>/x86_64/rhcos-<release>-live.x86_64.iso",

    重要

    RHCOS 镜像可能不会随着 OpenShift Container Platform 的每个发行版本而改变。您必须下载最高版本的镜像,其版本号应小于或等于您安装的 OpenShift Container Platform 版本。如果可用,请使用与 OpenShift Container Platform 版本匹配的镜像版本。这个过程只使用 ISO 镜像。此安装类型不支持 RHCOS qcow2 镜像。

    ISO 文件名类似以下示例:

    rhcos-<version>-live.<architecture>.iso

  5. 使用 ISO 启动 RHCOS 安装。使用以下安装选项之一:

    • 将 ISO 映像刻录到磁盘并直接启动。
    • 使用 light-out 管理(LOM)接口使用 ISO 重定向。
  6. 在不指定任何选项或中断实时引导序列的情况下引导 RHCOS ISO 镜像。等待安装程序在 RHCOS live 环境中引导进入 shell 提示符。

    注意

    可以中断 RHCOS 安装引导过程来添加内核参数。但是,在这个 ISO 过程中,您应该使用以下步骤中所述的 coreos-installer 命令,而不是添加内核参数。

  7. 运行 coreos-installer 命令并指定满足您的安装要求的选项。您至少必须指定指向节点类型的 Ignition 配置文件的 URL,以及您要安装到的设备:

    $ sudo coreos-installer install --ignition-url=http://<HTTP_server>/<node_type>.ign <device> --ignition-hash=sha512-<digest> 12
    1 1
    您必须使用 sudo 运行 coreos-installer 命令,因为 core 用户没有执行安装所需的 root 权限。
    2
    当 Ignition 配置文件通过 HTTP URL 获取时,需要 --ignition-hash 选项来验证集群节点上 Ignition 配置文件的真实性。<digest> 是上一步中获取的 Ignition 配置文件 SHA512 摘要。
    注意

    如果要通过使用 TLS 的 HTTPS 服务器提供 Ignition 配置文件,您可以在运行 coreos-installer 前将内部证书颁发机构(CA)添加到系统信任存储中。

    以下示例将引导节点安装初始化到 /dev/sda 设备。bootstrap 节点的 Ignition 配置文件从 IP 地址 192.168.1.2 的 HTTP Web 服务器获取:

    $ sudo coreos-installer install --ignition-url=http://192.168.1.2:80/installation_directory/bootstrap.ign /dev/sda --ignition-hash=sha512-a5a2d43879223273c9b60af66b44202a1d1248fc01cf156c46d4a79f552b6bad47bc8cc78ddf0116e80c59d2ea9e32ba53bc807afbca581aa059311def2c3e3b
  8. 在机器的控制台上监控 RHCOS 安装的进度。

    重要

    在开始安装 OpenShift Container Platform 之前,确保每个节点中安装成功。观察安装过程可以帮助确定可能会出现 RHCOS 安装问题的原因。

  9. 安装 RHCOS 后,您必须重启系统。系统重启过程中,它会应用您指定的 Ignition 配置文件。
  10. 继续为集群创建其他机器。

    重要

    此时您必须创建 bootstrap 和 control plane 机器。如果 control plane 机器不可调度,请在安装 OpenShift Container Platform 前至少创建两台计算机器。

    如果存在所需的网络、DNS 和负载均衡器基础架构,OpenShift Container Platform bootstrap 过程会在 RHCOS 节点重启后自动启动。

    注意

    RHCOS 节点不包含 core 用户的默认密码。您可以使用可访问 SSH 私钥的用户的身份运行 ssh core@<node>.<cluster_name>.<base_domain > 来访问节点,该私钥与您在 install_config.yaml 文件中指定的公钥配对。运行 RHCOS 的 OpenShift Container Platform 4 集群节点不可变,它依赖于 Operator 来应用集群更改。不建议使用 SSH 访问集群节点。但是,当调查安装问题时,如果 OpenShift Container Platform API 不可用,或者 kubelet 在目标节点上无法正常工作,则调试或灾难恢复可能需要 SSH 访问。

8.2.11.2. 使用 PXE 或 iPXE 启动安装 RHCOS

您可以使用 PXE 或 iPXE 启动在机器上安装 RHCOS。

先决条件

  • 已为集群创建 Ignition 配置文件。
  • 您已配置了适当的网络、DNS 和负载平衡基础架构。
  • 您已配置了合适的 PXE 或 iPXE 基础架构。
  • 您有一个可以从计算机以及您创建的机器访问的 HTTP 服务器。
  • 您已参阅 Advanced RHCOS 安装配置 部分来了解配置功能的不同方法,如网络和磁盘分区。

流程

  1. 将安装程序创建的 bootstrap、control plane 和计算节点 Ignition 配置文件上传到 HTTP 服务器。注意这些文件的 URL。

    重要

    您可以在 Ignition 配置中添加或更改配置设置,然后将其保存到 HTTP 服务器。如果您计划在安装完成后在集群中添加更多计算机器,请不要删除这些文件。

  2. 从安装主机上,验证 Ignition 配置文件是否在 URL 上可用。以下示例获取 bootstrap 节点的 Ignition 配置文件:

    $ curl -k http://<HTTP_server>/bootstrap.ign 1

    输出示例

      % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                     Dload  Upload   Total   Spent    Left  Speed
      0     0    0     0    0     0      0      0 --:--:-- --:--:-- --:--:--     0{"ignition":{"version":"3.2.0"},"passwd":{"users":[{"name":"core","sshAuthorizedKeys":["ssh-rsa...

    在命令中将 bootstrap.ign 替换为 master.ignworker.ign,以验证 control plane 和计算节点的 Ignition 配置文件是否可用。

  3. 虽然可以从 RHCOS image mirror 页面获取您选择的操作系统实例所需的 RHCOS kernelinitramfsrootfs 文件,但推荐的方法是从 openshift-install 命令的输出中获取 RHCOS 文件的正确版本:

    $ openshift-install coreos print-stream-json | grep -Eo '"https.*(kernel-|initramfs.|rootfs.)\w+(\.img)?"'

    输出示例

    "<url>/art/storage/releases/rhcos-4.9-aarch64/<release>/aarch64/rhcos-<release>-live-kernel-aarch64"
    "<url>/art/storage/releases/rhcos-4.9-aarch64/<release>/aarch64/rhcos-<release>-live-initramfs.aarch64.img"
    "<url>/art/storage/releases/rhcos-4.9-aarch64/<release>/aarch64/rhcos-<release>-live-rootfs.aarch64.img"
    "<url>/art/storage/releases/rhcos-4.9-ppc64le/49.84.202110081256-0/ppc64le/rhcos-<release>-live-kernel-ppc64le"
    "<url>/art/storage/releases/rhcos-4.9-ppc64le/<release>/ppc64le/rhcos-<release>-live-initramfs.ppc64le.img"
    "<url>/art/storage/releases/rhcos-4.9-ppc64le/<release>/ppc64le/rhcos-<release>-live-rootfs.ppc64le.img"
    "<url>/art/storage/releases/rhcos-4.9-s390x/<release>/s390x/rhcos-<release>-live-kernel-s390x"
    "<url>/art/storage/releases/rhcos-4.9-s390x/<release>/s390x/rhcos-<release>-live-initramfs.s390x.img"
    "<url>/art/storage/releases/rhcos-4.9-s390x/<release>/s390x/rhcos-<release>-live-rootfs.s390x.img"
    "<url>/art/storage/releases/rhcos-4.9/<release>/x86_64/rhcos-<release>-live-kernel-x86_64"
    "<url>/art/storage/releases/rhcos-4.9/<release>/x86_64/rhcos-<release>-live-initramfs.x86_64.img"
    "<url>/art/storage/releases/rhcos-4.9/<release>/x86_64/rhcos-<release>-live-rootfs.x86_64.img"

    重要

    RHCOS 工件可能不会随着 OpenShift Container Platform 的每个发行版本而改变。您必须下载最高版本的镜像,其版本号应小于或等于您安装的 OpenShift Container Platform 版本。这个过程只使用下面描述的适当 kernelinitram fs 和 rootfs 工件。此安装类型不支持 RHCOS QCOW2 镜像。

    文件名包含 OpenShift Container Platform 版本号。它们类似以下示例:

    • kernel:rhcos-<version>-live-kernel-<architecture>
    • initramfs: rhcos-<version>-live-initramfs.<architecture>.img
    • rootfs: rhcos-<version>-live-rootfs.<architecture>.img
  4. rootfskernelinitramfs 文件上传到 HTTP 服务器。

    重要

    如果您计划在安装完成后在集群中添加更多计算机器,请不要删除这些文件。

  5. 配置网络引导基础架构,以便在安装 RHCOS 后机器从本地磁盘启动。
  6. 为 RHCOS 镜像配置 PXE 或 iPXE 安装并开始安装。

    为环境修改以下示例菜单条目之一,并验证能否正确访问镜像和 Ignition 文件:

    • 对于 PXE:

      DEFAULT pxeboot
      TIMEOUT 20
      PROMPT 0
      LABEL pxeboot
          KERNEL http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> 1
          APPEND initrd=http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 2 3
      1 1
      指定上传到 HTTP 服务器的 live kernel 文件位置。URL 必须是 HTTP、TFTP 或 FTP;不支持 HTTPS 和 NFS。
      2
      如果您使用多个 NIC,请在 ip 选项中指定一个接口。例如,要在名为 eno1 的 NIC 上使用 DHCP,请设置 ip=eno1:dhcp
      3
      指定上传到 HTTP 服务器的 RHCOS 文件的位置。initrd 参数值是 initramfs 文件的位置,coreos.live.rootfs_url 参数值是 rootfs 文件的位置,coreos.inst.ignition_url 参数值则是 bootstrap Ignition 配置文件的位置。您还可以在 APPEND 行中添加更多内核参数来配置联网或其他引导选项。
      注意

      此配置不会在图形控制台的机器上启用串行控制台访问。要配置不同的控制台,请在 APPEND 行中添加一个或多个 console= 参数。例如,添加 console=tty0 console=ttyS0 以将第一个 PC 串口设置为主控制台,并将图形控制台设置为二级控制台。如需更多信息,请参阅 如何在 Red Hat Enterprise Linux 中设置串行终端和/或控制台?

    • 对于 iPXE:

      kernel http://<HTTP_server>/rhcos-<version>-live-kernel-<architecture> initrd=main coreos.live.rootfs_url=http://<HTTP_server>/rhcos-<version>-live-rootfs.<architecture>.img coreos.inst.install_dev=/dev/sda coreos.inst.ignition_url=http://<HTTP_server>/bootstrap.ign 1 2
      initrd --name main http://<HTTP_server>/rhcos-<version>-live-initramfs.<architecture>.img 3
      boot
      1
      指定上传到 HTTP 服务器的 RHCOS 文件的位置。kernel 参数值是 kernel 文件的位置,init rd=main 参数用于在 UEFI 系统中引导,coreos.live.rootfs_url 参数值是 rootfs 文件的位置,coreos.inst.ignition_url 参数值则是 bootstrap Ignition 配置文件的位置。
      2
      如果您使用多个 NIC,请在 ip 选项中指定一个接口。例如,要在名为 eno1 的 NIC 上使用 DHCP,请设置 ip=eno1:dhcp
      3
      指定上传到 HTTP 服务器的 initramfs 文件的位置。
      注意

      此配置不会在图形控制台的机器上启用串行控制台访问。要配置不同的控制台,请在 内核参数 中添加一个或多个 console= 参数。例如,添加 console=tty0 console=ttyS0 以将第一个 PC 串口设置为主控制台,并将图形控制台设置为二级控制台。如需更多信息,请参阅 如何在 Red Hat Enterprise Linux 中设置串行终端和/或控制台?

  7. 在机器的控制台上监控 RHCOS 安装的进度。

    重要

    在开始安装 OpenShift Container Platform 之前,确保每个节点中安装成功。观察安装过程可以帮助确定可能会出现 RHCOS 安装问题的原因。

  8. 安装 RHCOS 后,系统会重启。在重启过程中,系统会应用您指定的 Ignition 配置文件。
  9. 继续为集群创建机器。

    重要

    此时您必须创建 bootstrap 和 control plane 机器。如果 control plane 机器不可调度,请在安装集群前至少创建两台计算机器。

    如果存在所需的网络、DNS 和负载均衡器基础架构,OpenShift Container Platform bootstrap 过程会在 RHCOS 节点重启后自动启动。

    注意

    RHCOS 节点不包含 core 用户的默认密码。您可以使用可访问 SSH 私钥的用户的身份运行 ssh core@<node>.<cluster_name>.<base_domain > 来访问节点,该私钥与您在 install_config.yaml 文件中指定的公钥配对。运行 RHCOS 的 OpenShift Container Platform 4 集群节点不可变,它依赖于 Operator 来应用集群更改。不建议使用 SSH 访问集群节点。但是,当调查安装问题时,如果 OpenShift Container Platform API 不可用,或者 kubelet 在目标节点上无法正常工作,则调试或灾难恢复可能需要 SSH 访问。

8.2.11.3. 高级 RHCOS 安装配置

为 OpenShift Container Platform 手动置备 Red Hat Enterprise Linux CoreOS(RHCOS)节点的一个关键优点是能够进行通过默认的 OpenShift Container Platform 安装方法无法进行的配置。本节介绍了您可以使用的一些技术进行配置,其中包括:

  • 将内核参数传递给实时安装程序
  • 从 live 系统手动运行 coreos-installer
  • 将 Ignition 配置嵌入 ISO 中

本节详述了与 Red Hat Enterprise Linux CoreOS(RHCOS)手动安装的高级配置相关的内容,如磁盘分区、网络以及使用 Ignition 配置的不同方式相关。

8.2.11.3.1. 使用高级网络选项进行 PXE 和 ISO 安装

OpenShift Container Platform 节点的网络默认使用 DHCP 来收集所有必要的配置设置。要设置静态 IP 地址或配置特殊设置,如绑定,您可以执行以下操作之一:

  • 引导 live 安装程序时传递特殊内核参数。
  • 使用机器配置将网络文件复制到安装的系统中。
  • 从 live 安装程序 shell 提示符配置网络,然后将这些设置复制到安装的系统上,以便在安装的系统第一次引导时生效。

要配置 PXE 或 iPXE 安装,请使用以下选项之一:

  • 请参阅"高级 RHCOS 安装参考"表。
  • 使用机器配置将网络文件复制到安装的系统中。

要配置 ISO 安装,请使用以下步骤:

流程

  1. 引导 ISO 安装程序.
  2. 在 live 系统 shell 提示符下,使用可用的 RHEL 工具(如 nmclinmtui )为 live 系统配置网络。
  3. 运行 coreos-installer 命令以安装系统,添加 --copy-network 选项来复制网络配置。例如:

    $ sudo coreos-installer install --copy-network \
         --ignition-url=http://host/worker.ign /dev/sda
    重要

    copy-network 选项仅复制在 /etc/NetworkManager/system-connections 下找到的网络配置。特别是,它不会复制系统主机名。

  4. 重启安装的系统。

其他资源

8.2.11.3.2. 磁盘分区

磁盘分区是在 Red Hat Enterprise Linux CoreOS(RHCOS)安装过程中在 OpenShift Container Platform 集群节点上创建的。特定架构的每个 RHCOS 节点使用相同的分区布局,除非覆盖默认的分区配置。在 RHCOS 安装过程中,根文件系统的大小会增加,以使用目标设备中剩余的可用空间。

在 OpenShift Container Platform 集群节点上安装 RHCOS 时,有两种可能想要覆盖默认分区的情况:

  • 创建单独的分区: 要在空磁盘上进行 greenfield 安装,您可能需要在分区中添加单独的存储。这正式支持在独立分区中挂载 /var/var 的子目录,如 /var/lib/etcd

    重要

    对于大于 100GB 的磁盘大小,特别是磁盘大小大于 1TB,请创建一个独立的 /var 分区。如需更多信息,请参阅"创建独立 /var 分区"和 红帽知识库文章

    重要

    Kubernetes 仅支持两个文件系统分区。如果您在原始配置中添加多个分区,Kubernetes 无法监控所有这些分区。

  • 保留现有分区:对于 brownfield 安装,您要在现有节点上重新安装 OpenShift Container Platform,并希望保留从之前的操作系统中安装的数据分区,对于 coreos-installer 来说,引导选项和选项都允许您保留现有数据分区。
警告

使用自定义分区可能会导致这些分区不会被 OpenShift Container Platform 监控或警报。如果要覆盖默认分区,请参阅 了解 OpenShift 文件系统监控(驱除条件) 以了解有关 OpenShift Container Platform 如何监控主机文件系统的更多信息。

8.2.11.3.2.1. 创建独立 /var 分区

通常,您应该使用在 RHCOS 安装过程中创建的默认磁盘分区。然而,在有些情况下您可能需要为预期增长的目录创建独立分区。

OpenShift Container Platform 支持添加单个分区将存储附加到 /var 目录或 /var 的子目录中。例如:

  • /var/lib/containers :保存随着系统中添加更多镜像和容器而增长的容器相关内容。
  • /var/lib/etcd :保存您可能希望独立保留的数据,比如 etcd 存储的性能优化。
  • /var :保存您可能希望独立保留的数据,以满足审计等目的。

    重要

    对于大于 100GB 的磁盘大小,特别是磁盘大小大于 1TB,请创建一个独立的 /var 分区。

通过单独存储 /var 目录的内容,可以更轻松地根据需要为区域扩展存储,并在以后重新安装 OpenShift Container Platform,并保持该数据的完整性。使用这个方法,您不必再次拉取所有容器,在更新系统时也不必复制大量日志文件。

将独立分区用于 /var 目录或 /var 的子目录也会防止分区目录中的数据增加填充根文件系统。

以下流程通过添加机器配置清单来设置独立的 /var 分区,该清单会在安装准备阶段封装到节点类型的 Ignition 配置文件中。

流程

  1. 在安装主机上,切换到包含 OpenShift Container Platform 安装程序的目录,并为集群生成 Kubernetes 清单:

    $ openshift-install create manifests --dir <installation_directory>
  2. 创建用于配置额外分区的 Butane 配置。例如,将文件命名为 $HOME/clusterconfig/98-var-partition.bu,将磁盘设备名称改为 worker 系统上存储设备的名称,并根据情况设置存储大小。这个示例将 /var 目录放在一个单独的分区中:

    variant: openshift
    version: 4.9.0
    metadata:
      labels:
        machineconfiguration.openshift.io/role: worker
      name: 98-var-partition
    storage:
      disks:
      - device: /dev/<device_name> 1
        partitions:
        - label: var
          start_mib: <partition_start_offset> 2
          size_mib: <partition_size> 3
      filesystems:
        - device: /dev/disk/by-partlabel/var
          path: /var
          format: xfs
          mount_options: [defaults, prjquota] 4
          with_mount_unit: true
    1
    要分区的磁盘的存储设备名称。
    2
    当在引导磁盘中添加数据分区时,推荐最少使用偏移值 25000 兆字节。root 文件系统会自动调整大小以填充所有可用空间(最多到指定的偏移值)。如果没有指定偏移值,或者指定的值小于推荐的最小值,则生成的 root 文件系统会太小,而在以后进行的 RHCOS 重新安装可能会覆盖数据分区的开始部分。
    3
    以兆字节为单位的数据分区大小。
    4
    对于用于容器存储的文件系统,必须启用 prjquota 挂载选项。
    注意

    在创建单独的 /var 分区时,如果不同的实例类型没有相同的设备名称,则无法将不同的实例类型用于计算节点。

  3. 从 Butane 配置创建一个清单,并将它保存到 clusterconfig/openshift 目录中。例如,运行以下命令:

    $ butane $HOME/clusterconfig/98-var-partition.bu -o $HOME/clusterconfig/openshift/98-var-partition.yaml
  4. 创建 Ignition 配置文件:

    $ openshift-install create ignition-configs --dir <installation_directory> 1
    1
    对于 <installation_directory>,请指定相同的安装目录。

    为安装目录中的 bootstrap、control plane 和计算节点创建 Ignition 配置文件:

    .
    ├── auth
    │   ├── kubeadmin-password
    │   └── kubeconfig
    ├── bootstrap.ign
    ├── master.ign
    ├── metadata.json
    └── worker.ign

    <installation_directory>/manifest<installation_directory>/openshift 目录中的文件被嵌套到 Ignition 配置文件中,包括包含 98-var-partition 自定义 MachineConfig 对象的文件。

后续步骤

  • 您可以通过在 RHCOS 安装过程中引用 Ignition 配置文件来应用自定义磁盘分区。
8.2.11.3.2.2. 保留现有分区

对于 ISO 安装,您可以在 coreos-installer 命令中添加可让安装程序维护一个或多个现有分区的选项。对于 PXE 安装,您可以在 APPEND 参数中添加 coreos.inst.* 选项来保留分区。

保存的分区可能是来自现有 OpenShift Container Platform 系统的数据分区。您可以通过分区标签或编号识别您要保留的磁盘分区。

注意

如果您保存了现有分区,且这些分区没有为 RHCOS 留下足够空间,则安装将失败,而不影响保存的分区。

在 ISO 安装过程中保留现有分区

这个示例保留分区标签以 数据开头的任何分区(data *):

# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
        --save-partlabel 'data*' /dev/sda

以下示例演示了在运行 coreos-installer 时要保留磁盘上的第 6 个分区:

# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign \
        --save-partindex 6 /dev/sda

这个示例保留分区 5 及更高分区:

# coreos-installer install --ignition-url http://10.0.2.2:8080/user.ign
        --save-partindex 5- /dev/sda

在前面已保存分区的示例中,coreos-installer 会立即重新创建分区。

在 PXE 安装过程中保留现有分区

这个 APPEND 选项保留分区标签以 'data'('data*')开头的任何分区:

coreos.inst.save_partlabel=data*

这个 APPEND 选项保留分区 5 及更高分区:

coreos.inst.save_partindex=5-

这个 APPEND 选项保留分区 6:

coreos.inst.save_partindex=6
8.2.11.3.3. 识别 Ignition 配置

在进行 RHCOS 手动安装时,您可以提供两种 Ignition 配置类型,它们有不同的原因:

  • 永久安装 Ignition 配置 :每个手动 RHCOS 安装都需要传递 openshift-installer 生成的 Ignition 配置文件之一,如 bootstrap.ignmaster.ignworker.ign,才能进行安装。

    重要

    不建议直接修改这些 Ignition 配置文件。您可以更新嵌套到 Ignition 配置文件中的清单文件,如上一节示例中所述。

    对于 PXE 安装,您可以使用 coreos.inst.ignition_url= 选项在 APPEND 行上传递 Ignition 配置。对于 ISO 安装,在 ISO 引导至 shell 提示符后,您可以使用带有 --ignition-url= 选项的 coreos-installer 命令行。在这两种情况下,只支持 HTTP 和 HTTPS 协议。

  • live 安装 Ignition 配置 :此类型必须手动创建,并在可能的情况下避免,因为红帽不支持它。使用此方法,Ignition 配置会传递到 live 安装介质,在引导时立即运行,并在 RHCOS 系统安装到磁盘之前和/或之后执行设置任务。这个方法只用于必须执行一次且之后不能再次应用的任务,比如不能使用机器配置进行的高级分区。

    对于 PXE 或 ISO 引导,您可以创建 Ignition 配置,APP END ignition.config.url= 选项来标识 Ignition 配置的位置。您还需要附加 ignition.firstboot ignition.platform.id=metalignition.config.url 选项。

8.2.11.3.3.1. 在 RHCOS ISO 中嵌入 live 安装 Ignition 配置

您可以直接嵌入 RHCOS ISO 镜像中的实时安装 Ignition 配置。引导 ISO 镜像后,内嵌的配置将自动应用。

流程

  1. 从以下镜像镜像页面下载 coreos-installer 二进制文件: https://mirror.openshift.com/pub/openshift-v4/clients/coreos-installer/latest/
  2. 检索 RHCOS ISO 镜像和 Ignition 配置文件,并将其复制到可访问的目录中,如 /mnt:

    # cp rhcos-<version>-live.x86_64.iso bootstrap.ign /mnt/
    # chmod 644 /mnt/rhcos-<version>-live.x86_64.iso
  3. 运行以下命令将 Ignition 配置嵌入 ISO 中:

    # ./coreos-installer iso ignition embed -i /mnt/bootstrap.ign \
         /mnt/rhcos-<version>-live.x86_64.iso

    现在,您可以使用该 ISO 使用指定的 live 安装 Ignition 配置安装 RHCOS。

    重要

    使用 coreos-installer iso ignition embed 来嵌入由 openshift-installer 生成的文件,如 bootstrap.ign, master.ignworker.ign 不被支持。

  4. 要显示嵌入的 Ignition 配置的内容并将其定向到文件中,请运行:

    # ./coreos-installer iso ignition show /mnt/rhcos-<version>-live.x86_64.iso > mybootstrap.ign
    # diff -s bootstrap.ign mybootstrap.ign

    输出示例

    Files bootstrap.ign and mybootstrap.ign are identical

  5. 要删除 Ignition 配置并将 ISO 返回到其 pristine 状态,您可以重复使用它,请运行:

    # ./coreos-installer iso ignition remove /mnt/rhcos-<version>-live.x86_64.iso

    现在,您可以将另一个 Ignition 配置嵌入到 ISO 中,或者在其 pristine 状态下使用 ISO。

8.2.11.3.4. 高级 RHCOS 安装参考

本节演示了网络配置和其他高级选项,允许您修改 Red Hat Enterprise Linux CoreOS(RHCOS)手动安装过程。下表描述了您可以用于 RHCOS live 安装程序和 coreos-installer 命令的内核参数和命令行选项。

8.2.11.3.4.1. ISO 安装的网络和绑定选项

如果从 ISO 镜像安装 RHCOS,您可以在引导镜像时手动添加内核参数,以便为节点配置网络。如果没有指定网络参数,当 RHCOS 检测到需要网络来获取 Ignition 配置文件时,在 initramfs 中激活 DHCP。

重要

在手动添加网络参数时,还必须添加 rd.neednet=1 内核参数,以便在 initramfs 中启动网络。

下表提供了在 RHCOS 节点上为 ISO 安装配置网络和绑定的示例。示例描述了如何使用 ip=、name server =bond= 内核参数。

注意

添加内核参数时顺序非常重要: ip=、name server=,然后 bond=

网络选项在系统引导过程中传递给 dracut 工具。有关由 dracut 支持的网络选项的更多信息,请参阅 dracut.cmdline 手册页。

以下信息提供了在 RHCOS 节点上为 ISO 安装配置网络的示例。示例描述了如何使用 ip=nameserver= 内核参数。

注意

在添加内核参数时,顺序非常重要:ip=nameserver=

网络选项在系统引导过程中传递给 dracut 工具。有关由 dracut 支持的网络选项的更多信息,请参阅 dracut.cmdline 手册页。

以下示例是 ISO 安装的网络选项。

配置 DHCP 或静态 IP 地址

要配置 IP 地址,可使用 DHCP(ip=dhcp)或设置单独的静态 IP 地址(ip=<host_ip>)。如果设置静态 IP,则必须在每个节点上识别 DNS 服务器 IP 地址(名称服务器=<dns_ip>)。以下示例集:

  • 节点的 IP 地址为 10.10.10.2
  • 网关地址为 10.10.10.254
  • 子网掩码为 255.255.255.0
  • core0.example.com 的主机名
  • DNS 服务器地址为 4.4.4.41
  • 自动配置值为 none。当以静态方式配置 IP 网络时,不需要自动配置。
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
nameserver=4.4.4.41
注意

当您使用 DHCP 为 RHCOS 机器配置 IP 寻址时,机器还通过 DHCP 获取 DNS 服务器信息。对于基于 DHCP 的部署,您可以通过 DHCP 服务器配置定义 RHCOS 节点使用的 DNS 服务器地址。

配置没有静态主机名的 IP 地址

您可以在不分配静态主机名的情况下配置 IP 地址。如果用户没有设置静态主机名,则会提取并通过反向 DNS 查找自动设置。要在没有静态主机名的情况下配置 IP 地址,请参考以下示例:

  • 节点的 IP 地址为 10.10.10.2
  • 网关地址为 10.10.10.254
  • 子网掩码为 255.255.255.0
  • DNS 服务器地址为 4.4.4.41
  • 自动配置值为 none。当以静态方式配置 IP 网络时,不需要自动配置。
ip=10.10.10.2::10.10.10.254:255.255.255.0::enp1s0:none
nameserver=4.4.4.41
指定多个网络接口

您可以通过设置多个 ip= 条目来指定多个网络接口。

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=10.10.10.3::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none
配置默认网关和路由

可选:您可以通过设置 a rd.route= 值来配置到额外网络的路由。

注意

当您配置一个或多个网络时,需要一个默认网关。如果额外网络网关与主要网络网关不同,则默认网关必须是主要网络网关。

  • 运行以下命令来配置默认网关:

    ip=::10.10.10.254::::
  • 输入以下命令为额外网络配置路由:

    rd.route=20.20.20.0/24:20.20.20.254:enp2s0
在单个接口中禁用 DHCP

您可以在单一接口中禁用 DHCP,例如当有两个或者多个网络接口时,且只有一个接口被使用。在示例中,enp1s0 接口具有一个静态网络配置,而 enp2s0 禁用了 DHCP,不使用它:

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp1s0:none
ip=::::core0.example.com:enp2s0:none
合并 DHCP 和静态 IP 配置

您可以将系统上的 DHCP 和静态 IP 配置与多个网络接口合并,例如:

ip=enp1s0:dhcp
ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0:none
在独立接口上配置 VLAN

可选: 您可以使用 vlan= 参数在单个接口上配置 VLAN。

  • 要在网络接口中配置 VLAN 并使用静态 IP 地址,请运行以下命令:

    ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:enp2s0.100:none
    vlan=enp2s0.100:enp2s0
  • 要在网络接口中配置 VLAN 并使用 DHCP,请运行以下命令:

    ip=enp2s0.100:dhcp
    vlan=enp2s0.100:enp2s0
提供多个 DNS 服务器

您可以通过为每个服务器添加一个 nameserver= 条目来提供多个 DNS 服务器,例如

nameserver=1.1.1.1
nameserver=8.8.8.8
将多个网络接口绑定到一个接口

可选: 您可以使用 bond= 选项将多个网络接口绑定到一个接口。请参见以下示例:

  • 配置绑定接口的语法为: bond=name[:network_interfaces][:options]

    name 是绑定设备名称(bond0)network_interfaces 代表以逗号分隔的物理(以太网)接口(em1,em2)列表,选项 是用逗号分开的绑定选项列表。输入 modinfo bonding 查看可用选项。

  • 当使用 bond= 创建绑定接口时,您必须指定如何分配 IP 地址以及绑定接口的其他信息。
  • 要将绑定接口配置为使用 DHCP,请将绑定的 IP 地址设置为 dhcp。例如:

    bond=bond0:em1,em2:mode=active-backup
    ip=bond0:dhcp
  • 要将绑定接口配置为使用静态 IP 地址,请输入您需要的特定 IP 地址和相关信息。例如:

    bond=bond0:em1,em2:mode=active-backup
    ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0:none
将多个网络接口绑定到一个接口

可选: 您可以使用 vlan= 参数并在绑定接口上配置 VLAN,并使用 DHCP,例如:

ip=bond0.100:dhcp
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0

使用以下示例配置带有 VLAN 的绑定接口并使用静态 IP 地址:

ip=10.10.10.2::10.10.10.254:255.255.255.0:core0.example.com:bond0.100:none
bond=bond0:em1,em2:mode=active-backup
vlan=bond0.100:bond0
使用网络团队

可选: 您可以使用 team= 参数来将网络团队用作绑定的替代选择:

  • 配置组接口的语法为: team=name[:network_interfaces]

    name 是组设备名称(team0),network_interfaces 代表以逗号分隔的物理(以太网)接口(em1、em2)列表。

当 RHCOS 切换到即将推出的 RHEL 版本时,团队(team)功能被计划弃用。如需更多信息,请参阅红帽知识库文章

使用以下示例配置网络团队:

team=team0:em1,em2
ip=team0:dhcp
8.2.11.3.4.2. ISO 安装 的 coreos-installer 选项

从 ISO 镜像引导 RHCOS live 环境后,您可以通过 在命令提示符下运行 coreos-installer install <options> <device > 来安装 RHCOS。

下表显示了您可以传递给 coreos-installer 命令的子命令、选项和参数。

表 8.12. coreos-installer 子命令、命令行选项和参数

coreos-installer install 子命令

子命令

描述

$ coreos-installer install <options> <device>

在 ISO 镜像中嵌入 Ignition 配置。

coreos-installer install 子命令选项

选项

描述

-u, --image-url <url>

手动指定镜像 URL。

-f,--image-file <path>

手动指定本地镜像文件。用于调试。

-i, --ignition-file <path>

从文件中嵌入 Ignition 配置。

-i,--ignition-url <URL>

从 URL 嵌入 Ignition 配置。

--ignition-hash <digest>

Ignition 配置 的 type-value 的摘要值。

-p, --platform <name>

覆盖已安装系统的 Ignition 平台 ID。

--append-karg <arg>…​

将默认内核参数附加到安装的系统中。

--delete-karg <arg>…​

从安装的系统中删除默认内核参数。

-n, --copy-network

从安装环境中复制网络配置。

重要

copy-network 选项仅复制在 /etc/NetworkManager/system-connections 下找到的网络配置。特别是,它不会复制系统主机名。

--network-dir <path>

用于 -n。默认为 /etc/NetworkManager/system-connections/

--save-partlabel <lx>..

使用这个标签 glob 保存分区。

--save-partindex <id>…​

使用这个数值或范围保存分区。

--insecure

跳过签名验证。

--insecure-ignition

允许没有 HTTPS 或 hash 的 Ignition URL。

--architecture <name>

目标 CPU 架构.默认为 x86_64

--preserve-on-error

出错时不要清除分区表。

-h,--help

打印帮助信息.

coreos-install install 子命令参数

参数

描述

<device>

目标设备.

coreos-installer ISO Ignition 子命令

子命令

描述

$ coreos-installer iso ignition embed <options> --ignition-file <file_path> <ISO_image>

在 ISO 镜像中嵌入 Ignition 配置。

coreos-installer iso ignition show <options> <ISO_image>

显示 ISO 镜像中嵌入的 Ignition 配置。

coreos-installer iso ignition remove <options> <ISO_image>

从 ISO 镜像中删除嵌入的 Ignition 配置。

coreos-installer ISO Ignition 子命令选项

选项

描述

-f,--force

覆盖现有的 Ignition 配置。

-i,--ignition-file <path>

要使用的 Ignition 配置。默认为 stdin

-o,--output <path>

将 ISO 写入到新的输出文件。

-h,--help

打印帮助信息.

coreos-installer PXE Ignition 子命令

子命令

描述

请注意,并非所有子命令都接受所有这些选项。

coreos-installer pxe ignition wrap <options>

在镜像中嵌套 Ignition 配置。

coreos-installer pxe ignition unwrap <options> <image_name>

在镜像中显示嵌套的 Ignition 配置。

coreos-installer PXE Ignition 子命令选项

选项

描述

请注意,并非所有子命令都接受所有这些选项。

-i,--ignition-file <path>

要使用的 Ignition 配置。默认为 stdin

-o, --output <path>

将 ISO 写入到新的输出文件。

-h,--help

打印帮助信息.

8.2.11.3.4.3. coreos.inst 引导选项用于 ISO 或 PXE 安装

您可以通过将 coreos.inst boot 参数传递给 RHCOS live 安装程序,在引导时自动调用 coreos-installer 选项。这些是在标准引导参数之外提供的。

  • 对于 ISO 安装,可以通过在启动加载器菜单中中断自动引导来添加 coreos.inst 选项。您可以在突出显示 RHEL CoreOS(Live) 菜单选项时按 TAB 来中断自动引导。
  • 对于 PXE 或 iPXE 安装,在引导 RHCOS live 安装程序前,coreos.inst 选项必须添加到 APPEND 行。

下表显示了用于 ISO 和 PXE 安装的 RHCOS live 安装程序 coreos.inst 引导选项。

表 8.13. coreos.inst 引导选项
参数描述

coreos.inst.install_dev

必需。要安装到的系统中的块设备。建议您使用完整路径,如 /dev/sda,但 允许使用

coreos.inst.ignition_url

可选:嵌入到安装的系统中的 Ignition 配置的 URL。如果没有指定 URL,则不会嵌入 Ignition 配置。仅支持 HTTP 和 HTTPS 协议。

coreos.inst.save_partlabel

可选:在安装过程中要保留的分区分离标签。允许使用 glob 风格的通配符。指定分区不需要存在。

coreos.inst.save_partindex

可选:在安装过程中压缩要保留的分区索引。允许 m-n 范围,mn 可以被省略。指定分区不需要存在。

coreos.inst.insecure

可选:将 coreos.inst.image_url 指定的 OS 镜像提交取消签名。

coreos.inst.image_url

可选:下载并安装指定的 RHCOS 镜像。

  • 这个参数不应该在生产环境中使用,而是只用于调试目的。
  • 虽然此参数可用于安装与 live 介质不匹配的 RHCOS 版本,但建议您使用与您要安装版本匹配的介质。
  • 如果您使用 coreos.inst.image_url,还必须使用 coreos.inst.insecure。这是因为,裸机介质没有为 OpenShift Container Platform 进行 GPG 签名。
  • 仅支持 HTTP 和 HTTPS 协议。

coreos.inst.skip_reboot

可选:安装后系统不会重启。安装完成后,您将收到提示,提示您检查在安装过程中发生的情况。这个参数不应该在生产环境中使用,而是只用于调试目的。

coreos.inst.platform_id

可选:安装 RHCOS 镜像的平台的 Ignition 平台 ID。默认为 metal。这个选项决定是否从云供应商(如 VMware)请求 Ignition 配置。例如: coreos.inst.platform_id=vmware

ignition.config.url

可选:用于实时引导的 Ignition 配置的 URL。例如,这可用于自定义调用 coreos-installer 的方式,或者用于在安装前或安装后运行代码。这与 coreos.inst.ignition_url (这是已安装系统的 Ignition 配置)不同。

8.2.11.4. 在 RHCOS 上启用带有内核参数的多路径

RHCOS 支持主磁盘上的多路径,支持更强大的硬件故障弹性,以获得更高的主机可用性。

您可以在安装时为 OpenShift Container Platform 4.8 或更高版本置备的节点启用多路径。虽然安装后支持可以通过机器配置激活多路径来实现,但建议在安装过程中启用多路径。

在任何 I/O 到未优化路径会导致 I/O 系统错误的设置中,您必须在安装时启用多路径。

重要

在 IBM Z 和 LinuxONE 中,您只能在在安装过程中为它配置集群时启用多路径。如需更多信息,请参阅在 IBM Z 和 LinuxONE 上安装使用 z/VM 的集群"安装 RHCOS 并启动 OpenShift Container Platform bootstrap 过程"。

以下流程在安装时启用多路径,并在 coreos-installer install 命令中附加内核参数,以便安装的系统本身将使用从第一次引导开始的多路径。

先决条件

  • 您有一个正在运行的 OpenShift Container Platform 集群,它使用版本 4.8 或更高版本。

    注意

    OpenShift Container Platform 不支持在从 4.6 或更早版本升级的节点上启用多路径作为 2 天的活动。

  • 以具有管理特权的用户身份登录集群。

流程

  1. 要启用多路径并启动 multipathd 守护进程,请运行以下命令:

    $ mpathconf --enable && systemctl start multipathd.service
    • 可选:如果引导 PXE 或 ISO,则可以通过从内核命令行添加 rd.multipath=default 来启用多路径。
  2. 通过调用 coreos-installer 程序附加内核参数:

    • 如果只有一个多路径设备连接到计算机,则应在路径 /dev/mapper/mpatha 上可用。例如:

      $ coreos-installer install /dev/mapper/mpatha \ 1
      --append-karg rd.multipath=default \
      --append-karg root=/dev/disk/by-label/dm-mpath-root \
      --append-karg rw
      1
      表示单一多路径设备的路径。
    • 如果有多个多路径设备连接到计算机,或者更为明确,而不是使用 /dev/mapper/mpatha,则建议使用 /dev/disk/by-id 中可用的 World Wide Name(WWN)符号链接。例如:

      $ coreos-installer install /dev/disk/by-id/wwn-<wwn_ID> \ 1
      --append-karg rd.multipath=default \
      --append-karg root=/dev/disk/by-label/dm-mpath-root \
      --append-karg rw
      1
      表示目标多路径设备的 WWN ID。例如: 0xx194e957fcedb4841

      当使用特殊 coreos.inst.* 参数指示 live 安装程序时,这个符号链接也可以用作 coreos.inst.install_dev 内核参数。如需更多信息,请参阅"安装 RHCOS 和启动 OpenShift Container Platform bootstrap 过程"。

  3. 前往其中一个 worker 节点并列出内核命令行参数(主机上的 /proc/cmdline 中),以检查内核参数是否正常工作:

    $ oc debug node/ip-10-0-141-105.ec2.internal

    输出示例

    Starting pod/ip-10-0-141-105ec2internal-debug ...
    To use host binaries, run `chroot /host`
    
    sh-4.2# cat /host/proc/cmdline
    ...
    rd.multipath=default root=/dev/disk/by-label/dm-mpath-root
    ...
    
    sh-4.2# exit

    您应看到添加的内核参数。

其他资源

8.2.11.5. 使用 bootupd 更新引导装载程序

要使用 bootupd 更新引导装载程序,您必须手动在 RHCOS 机器上安装 bootupd,或使用启用的 systemd 单元提供机器配置。与 grubby 或其他引导装载程序工具不同,boot upd 不管理内核空间配置,如传递内核参数。

安装 bootupd 后,您可以从 OpenShift Container Platform 集群远程管理它。

注意

建议您仅在裸机或虚拟化系统管理程序安装中使用 bootupd,例如防止 BootHole 漏洞。

手动安装方法

您可以使用 bootctl 命令行工具手动安装 bootupd

  1. 检查系统状态:

    # bootupctl status

    输出示例

    Component EFI
      Installed: grub2-efi-x64-1:2.04-31.fc33.x86_64,shim-x64-15-8.x86_64
      Update: At latest version

  1. 如果创建的 RHCOS 镜像没有在其中安装 bootupd,则需要一个明确的采用阶段。

    如果系统状态为 Adoptable,请执行采用:

    # bootupctl adopt-and-update

    输出示例

    Updated: grub2-efi-x64-1:2.04-31.fc33.x86_64,shim-x64-15-8.x86_64

  2. 如果有可用更新,请应用更新以便在下次重启时使更改生效:

    # bootupctl update

    输出示例

    Updated: grub2-efi-x64-1:2.04-31.fc33.x86_64,shim-x64-15-8.x86_64

机器配置方法

启用 bootupd 的另一种方法是提供机器配置。

  • 使用启用的 systemd 单元提供机器配置文件,如下例所示:

    输出示例

      variant: rhcos
      version: 1.1.0
      systemd:
        units:
          - name: custom-bootupd-auto.service
            enabled: true
            contents: |
              [Unit]
              Description=Bootupd automatic update
    
              [Service]
              ExecStart=/usr/bin/bootupctl update
              RemainAfterExit=yes
    
              [Install]
              WantedBy=multi-user.target

8.2.12. 等待 bootstrap 过程完成

OpenShift Container Platform bootstrap 过程在集群节点首次引导到安装到磁盘的持久 RHCOS 环境后开始。通过 Ignition 配置文件提供的配置信息用于初始化 bootstrap 过程并在机器上安装 OpenShift Container Platform。您必须等待 bootstrap 过程完成。

先决条件

  • 已为集群创建 Ignition 配置文件。
  • 您已配置了适当的网络、DNS 和负载平衡基础架构。
  • 已获得安装程序,并为集群生成 Ignition 配置文件。
  • 已在集群机器上安装 RHCOS,并提供 OpenShift Container Platform 安装程序生成的 Ignition 配置文件。
  • 您的机器可以直接访问互联网,或者有 HTTP 或 HTTPS 代理可用。

流程

  1. 监控 bootstrap 过程:

    $ ./openshift-install --dir <installation_directory> wait-for bootstrap-complete \ 1
        --log-level=info 2
    1
    对于 <installation_directory>,请指定安装文件保存到的目录的路径。
    2
    要查看不同的安装详情,请指定 warndebugerror,而不是 info

    输出示例

    INFO Waiting up to 30m0s for the Kubernetes API at https://api.test.example.com:6443...
    INFO API v1.22.1 up
    INFO Waiting up to 30m0s for bootstrapping to complete...
    INFO It is now safe to remove the bootstrap resources

    当 Kubernetes API 服务器提示已在 control plane 机器上引导它时,该命令会成功。

  2. bootstrap 过程完成后,从负载均衡器中删除 bootstrap 机器。

    重要

    此时您必须从负载均衡器中删除 bootstrap 机器。您还可以删除或重新格式化 bootstrap 机器本身。

其他资源

8.2.13. 使用 CLI 登录集群

您可以通过导出集群 kubeconfig 文件,以默认系统用户身份登录集群。kubeconfig 文件包含有关集群的信息,供 CLI 用于将客户端连接到正确的集群和 API 服务器。该文件特定于集群,在 OpenShift Container Platform 安装过程中创建。

先决条件

  • 已部署 OpenShift Container Platform 集群。
  • 已安装 oc CLI。

流程

  1. 导出 kubeadmin 凭证:

    $ export KUBECONFIG=<installation_directory>/auth/kubeconfig 1
    1
    对于 <installation_directory>,请指定安装文件保存到的目录的路径。
  2. 验证您可以使用导出的配置成功运行 oc 命令:

    $ oc whoami

    输出示例

    system:admin

8.2.14. 批准机器的证书签名请求

当您将机器添加到集群时,会为您添加的每台机器生成两个待处理证书签名请求(CSR)。您必须确认这些 CSR 已获得批准,或根据需要自行批准。必须首先批准客户端请求,然后批准服务器请求。

先决条件

  • 您已将机器添加到集群中。

流程

  1. 确认集群可以识别这些机器:

    $ oc get nodes

    输出示例

    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  63m  v1.22.1
    master-1  Ready     master  63m  v1.22.1
    master-2  Ready     master  64m  v1.22.1

    输出中列出了您创建的所有机器。

    注意

    在有些 CSR 被批准前,前面的输出可能不包括计算节点(也称为 worker 节点)。

  2. 检查待处理的 CSR,并确保添加到集群中的每台机器都有 PendingApproved 状态的客户端请求:

    $ oc get csr

    输出示例

    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    ...

    在本例中,两台机器加入集群。您可能会在列表中看到更多已批准的 CSR。

  3. 如果 CSR 没有获得批准,在您添加的机器的所有待处理 CSR 都处于 Pending 状态 后,请批准集群机器的 CSR:

    注意

    由于 CSR 会自动轮转,因此请在将机器添加到集群后一小时内批准您的 CSR。如果没有在一小时内批准它们,证书将会轮转,每个节点会存在多个证书。您必须批准所有这些证书。批准客户端 CSR 后,Kubelet 为服务证书创建一个二级 CSR,这需要手动批准。然后,如果 Kubelet 请求具有相同参数的新证书,则后续提供证书续订请求由 machine-approver 自动批准。

    注意

    对于在未启用机器 API 的平台上运行的集群,如裸机和其他用户置备的基础架构,您必须实施一种方法来自动批准 kubelet 提供证书请求(CSR)。如果没有批准请求,则 oc exec、ocrshoc logs 命令将无法成功,因为 API 服务器连接到 kubelet 时需要服务证书。与 Kubelet 端点联系的任何操作都需要此证书批准。该方法必须监视新的 CSR,确认 CSR 由 system: nodesystem:admin 组中的 node-bootstrapper 服务帐户提交,并确认节点的身份。

    • 要单独批准,请对每个有效的 CSR 运行以下命令:

      $ oc adm certificate approve <csr_name> 1
      1
      <csr_name> 是当前 CSR 列表中 CSR 的名称。
    • 要批准所有待处理的 CSR,请运行以下命令:

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve
      注意

      在有些 CSR 被批准前,一些 Operator 可能无法使用。

  4. 现在,您的客户端请求已被批准,您必须查看添加到集群中的每台机器的服务器请求:

    $ oc get csr

    输出示例

    NAME        AGE     REQUESTOR                                                                   CONDITION
    csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       Pending
    csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       Pending
    ...

  5. 如果剩余的 CSR 没有被批准,且处于 Pending 状态,请批准集群机器的 CSR:

    • 要单独批准,请对每个有效的 CSR 运行以下命令:

      $ oc adm certificate approve <csr_name> 1
      1
      <csr_name> 是当前 CSR 列表中 CSR 的名称。
    • 要批准所有待处理的 CSR,请运行以下命令:

      $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
  6. 批准所有客户端和服务器 CSR 后,机器将 处于 Ready 状态。运行以下命令验证:

    $ oc get nodes

    输出示例

    NAME      STATUS    ROLES   AGE  VERSION
    master-0  Ready     master  73m  v1.22.1
    master-1  Ready     master  73m  v1.22.1
    master-2  Ready     master  74m  v1.22.1
    worker-0  Ready     worker  11m  v1.22.1
    worker-1  Ready     worker  11m  v1.22.1

    注意

    批准服务器 CSR 后可能需要几分钟时间让机器过渡到 Ready 状态

其他信息

8.2.15. 初始 Operator 配置

在 control plane 初始化后,您必须立即配置一些 Operator,以便它们都可用。

先决条件

  • 您的 control plane 已初始化。

流程

  1. 观察集群组件上线:

    $ watch -n5 oc get clusteroperators

    输出示例

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
    authentication                             4.9.0     True        False         False      19m
    baremetal                                  4.9.0     True        False         False      37m
    cloud-credential                           4.9.0     True        False         False      40m
    cluster-autoscaler                         4.9.0     True        False         False      37m
    config-operator                            4.9.0     True        False         False      38m
    console                                    4.9.0     True        False         False      26m
    csi-snapshot-controller                    4.9.0     True        False         False      37m
    dns                                        4.9.0     True        False         False      37m
    etcd                                       4.9.0     True        False         False      36m
    image-registry                             4.9.0     True        False         False      31m
    ingress                                    4.9.0     True        False         False      30m
    insights                                   4.9.0     True        False         False      31m
    kube-apiserver                             4.9.0     True        False         False      26m
    kube-controller-manager                    4.9.0     True        False         False      36m
    kube-scheduler                             4.9.0     True        False         False      36m
    kube-storage-version-migrator              4.9.0     True        False         False      37m
    machine-api                                4.9.0     True        False         False      29m
    machine-approver                           4.9.0     True        False         False      37m
    machine-config                             4.9.0     True        False         False      36m
    marketplace                                4.9.0     True        False         False      37m
    monitoring                                 4.9.0     True        False         False      29m
    network                                    4.9.0     True        False         False      38m
    node-tuning                                4.9.0     True        False         False      37m
    openshift-apiserver                        4.9.0     True        False         False      32m
    openshift-controller-manager               4.9.0     True        False         False      30m
    openshift-samples                          4.9.0     True        False         False      32m
    operator-lifecycle-manager                 4.9.0     True        False         False      37m
    operator-lifecycle-manager-catalog         4.9.0     True        False         False      37m
    operator-lifecycle-manager-packageserver   4.9.0     True        False         False      32m
    service-ca                                 4.9.0     True        False         False      38m
    storage                                    4.9.0     True        False         False      37m

  2. 配置不可用的 Operator。

8.2.15.1. 安装过程中删除的镜像 registry

在不提供可共享对象存储的平台上,OpenShift Image Registry Operator bootstraps 本身为 Removed。这允许 openshift-installer 在这些平台类型上完成安装。

安装后,您必须编辑 Image Registry Operator 配置,将 managementStateRemoved 切换到 Managed

注意

Prometheus 控制台提供了一个 ImageRegistryRemoved 警报,例如:

"镜像注册表已被删除。镜像流标签、 BuildConfig 和 DeploymentConfig, 引用 ImageStreamTags 可能无法正常工作。Please configure storage and update config to Managed state by edit configs.imageregistry.operator.openshift.io."

8.2.15.2. 镜像 registry 存储配置

对于不提供默认存储的平台,Image Registry Operator 最初不可用。安装后,您必须将 registry 配置为使用存储,以便 Registry Operator 可用。

显示配置生产集群所需的持久性卷的说明。如果适用,显示有关将空目录配置为存储位置的说明,这仅适用于非生产集群。

提供了在升级过程中使用 Recreate rollout 策略来允许镜像 registry 使用块存储类型的说明。

8.2.15.2.1. 为裸机和其他手动安装配置 registry 存储

作为集群管理员,在安装后需要配置 registry 来使用存储。

先决条件

  • 您可以使用具有 cluster-admin 角色的用户访问集群。
  • 您有一个使用手动置备的 Red Hat Enterprise Linux CoreOS(RHCOS)节点(如裸机)的集群。
  • 已为集群置备了持久性存储,如 Red Hat OpenShift Container Storage。

    重要

    当您只有一个副本时,OpenShift Container Platform 支持对镜像 registry 存储的 ReadWriteOnce 访问。ReadWriteOnce 访问还要求 registry 使用 Recreate rollout 策略。要部署支持高可用性的镜像 registry,需要两个或多个副本,ReadWriteMany 访问。

  • 必须具有 100Gi 容量。

流程

  1. 要将 registry 配置为使用存储,修改 configs.imageregistry/cluster 资源中的 spec.storage.pvc

    注意

    使用共享存储时,请查看您的安全设置以防止外部访问。

  2. 验证您没有 registry pod:

    $ oc get pod -n openshift-image-registry -l docker-registry=default

    输出示例

    No resourses found in openshift-image-registry namespace

    注意

    如果您的输出中有一个 registry pod,则不需要继续这个过程。

  3. 检查 registry 配置:

    $ oc edit configs.imageregistry.operator.openshift.io

    输出示例

    storage:
      pvc:
        claim:

    claim 字段留空以允许自动创建 image-registry-storage PVC。

  4. 检查 clusteroperator 状态:

    $ oc get clusteroperator image-registry

    输出示例

    NAME             VERSION             AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
    image-registry   4.9                 True        False         False      6h50m

  5. 确保 registry 设置为 managed,以启用镜像的构建和推送。

    • 运行:

      $ oc edit configs.imageregistry/cluster

      然后,更改行

      managementState: Removed

      managementState: Managed
8.2.15.2.2. 在非生产集群中为镜像 registry 配置存储

您必须为 Image Registry Operator 配置存储。对于非生产集群,您可以将镜像 registry 设置为空目录。如果您这样做,重启 registry 时会丢失所有镜像。

流程

  • 将镜像 registry 存储设置为空目录:

    $ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'
    警告

    仅为非生产集群配置这个选项。

    如果在 Image Registry Operator 初始化其组件前运行这个命令,oc patch 命令会失败并显示以下错误:

    Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

    等待几分钟,然后再次运行 命令。

8.2.15.2.3. 配置块 registry 存储

要允许镜像 registry 在作为集群管理员升级过程中使用块存储类型,您可以使用 Recreate rollout 策略

重要

支持块存储卷,但不建议将其用于生产环境中的镜像 registry。在块存储上配置 registry 的安装不具有高可用性,因为 registry 无法具有多个副本。

流程

  1. 要将镜像 registry 存储设置为块存储类型,对 registry 进行补丁,使其使用 Recreate rollout 策略,并只使用一个(1)副本运行:

    $ oc patch config.imageregistry.operator.openshift.io/cluster --type=merge -p '{"spec":{"rolloutStrategy":"Recreate","replicas":1}}'
  2. 为块存储设备置备 PV,并为该卷创建 PVC。请求的块卷使用 ReadWriteOnce(RWO)访问模式。
  3. 编辑 registry 配置,使其引用正确的 PVC。

8.2.16. 在用户置备的基础架构上完成安装

完成 Operator 配置后,可以在您提供的基础架构上完成集群安装。

先决条件

  • 您的 control plane 已初始化。
  • 已完成初始 Operator 配置。

流程

  1. 使用以下命令确认所有集群组件都在线:

    $ watch -n5 oc get clusteroperators

    输出示例

    NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE
    authentication                             4.9.0     True        False         False      19m
    baremetal                                  4.9.0     True        False         False      37m
    cloud-credential                           4.9.0     True        False         False      40m
    cluster-autoscaler                         4.9.0     True        False         False      37m
    config-operator                            4.9.0     True        False         False      38m
    console                                    4.9.0     True        False         False      26m
    csi-snapshot-controller                    4.9.0     True        False         False      37m
    dns                                        4.9.0     True        False         False      37m
    etcd                                       4.9.0     True        False         False      36m
    image-registry                             4.9.0     True        False         False      31m
    ingress                                    4.9.0     True        False         False      30m
    insights                                   4.9.0     True        False         False      31m
    kube-apiserver                             4.9.0     True        False         False      26m
    kube-controller-manager                    4.9.0     True        False         False      36m
    kube-scheduler                             4.9.0     True        False         False      36m
    kube-storage-version-migrator              4.9.0     True        False         False      37m
    machine-api                                4.9.0     True        False         False      29m
    machine-approver                           4.9.0     True        False         False      37m
    machine-config                             4.9.0     True        False         False      36m
    marketplace                                4.9.0     True        False         False      37m
    monitoring                                 4.9.0     True        False         False      29m
    network                                    4.9.0     True        False         False      38m
    node-tuning                                4.9.0     True        False         False      37m
    openshift-apiserver                        4.9.0     True        False         False      32m
    openshift-controller-manager               4.9.0     True        False         False      30m
    openshift-samples                          4.9.0     True        False         False      32m
    operator-lifecycle-manager                 4.9.0     True        False         False      37m
    operator-lifecycle-manager-catalog         4.9.0     True        False         False      37m
    operator-lifecycle-manager-packageserver   4.9.0     True        False         False      32m
    service-ca                                 4.9.0     True        False         False      38m
    storage                                    4.9.0     True        False         False      37m

    另外,当所有集群都可用时,以下命令会通知您。它还检索并显示凭证:

    $ ./openshift-install --dir <installation_directory> wait-for install-complete 1
    1
    对于 <installation_directory>,请指定安装文件保存到的目录的路径。

    输出示例

    INFO Waiting up to 30m0s for the cluster to initialize...

    Cluster Version Operator 完成从 Kubernetes API 服务器部署 OpenShift Container Platform 集群时,该命令会成功。

    重要
    • 安装程序生成的 Ignition 配置文件包含 24 小时后过期的证书,然后在该时进行续订。如果在更新证书前关闭集群,且集群在 24 小时后重启,集群会自动恢复过期的证书。一个例外是,您必须手动批准待处理的 node-bootstrapper 证书签名请求(CSR)来恢复 kubelet 证书。如需更多信息,请参阅从过期的 control plane 证书 中恢复的文档。
    • 建议您在 Ignition 配置文件生成后的 12 小时内使用它们,因为 24 小时的证书会在集群安装后的 16 小时到 22 小时间进行轮转。通过在 12 小时内使用 Ignition 配置文件,您可以避免在安装过程中因为执行了证书更新而导致安装失败的问题。
  2. 确认 Kubernetes API 服务器正在与 pod 通信。

    1. 要查看所有 pod 的列表,请使用以下命令:

      $ oc get pods --all-namespaces

      输出示例

      NAMESPACE                         NAME                                            READY   STATUS      RESTARTS   AGE
      openshift-apiserver-operator      openshift-apiserver-operator-85cb746d55-zqhs8   1/1     Running     1          9m
      openshift-apiserver               apiserver-67b9g                                 1/1     Running     0          3m
      openshift-apiserver               apiserver-ljcmx                                 1/1     Running     0          1m
      openshift-apiserver               apiserver-z25h4                                 1/1     Running     0          2m
      openshift-authentication-operator authentication-operator-69d5d8bf84-vh2n8        1/1     Running     0          5m
      ...

    2. 使用以下命令,查看上一命令的输出中所列 pod 的日志:

      $ oc logs <pod_name> -n <namespace> 1
      1
      指定 pod 名称和命名空间,如上一命令的输出中所示。

      如果 pod 日志显示,Kubernetes API 服务器可以与集群机器通信。

  3. 对于使用光纤通道协议(FCP)的安装,还需要额外的步骤才能启用多路径。不要在安装过程中启用多路径。

    如需更多信息,请参阅 安装后机器配置任务 文档中的"使用 RHCOS 上使用内核参数启用多路径"。

8.2.17. OpenShift Container Platform 的 Telemetry 访问

在 OpenShift Container Platform 4.9 中,默认运行的 Telemetry 服务提供有关集群健康状况和成功更新的指标,需要访问互联网。如果您的集群连接到互联网,Telemetry 会自动运行,而且集群会注册到 OpenShift Cluster Manager

确认 OpenShift Cluster Manager 清单正确后,可以由 Telemetry 自动维护,也可以使用 OpenShift Cluster Manager 手动维护,使用订阅监控来跟踪帐户或多集群级别的 OpenShift Container Platform 订阅。

其他资源

8.2.18. 后续步骤

Red Hat logoGithubRedditYoutubeTwitter

学习

尝试、购买和销售

社区

关于红帽文档

通过我们的产品和服务,以及可以信赖的内容,帮助红帽用户创新并实现他们的目标。

让开源更具包容性

红帽致力于替换我们的代码、文档和 Web 属性中存在问题的语言。欲了解更多详情,请参阅红帽博客.

關於紅帽

我们提供强化的解决方案,使企业能够更轻松地跨平台和环境(从核心数据中心到网络边缘)工作。

© 2024 Red Hat, Inc.