5.4. 노드 호스트 관련 권장 사례


OpenShift Container Platform 노드 구성 파일에는 중요한 옵션이 포함되어 있습니다. 예를 들어 두 개의 매개변수 podsPerCoremaxPods는 하나의 노드에 대해 예약할 수 있는 최대 Pod 수를 제어합니다.

옵션을 둘 다 사용하는 경우 한 노드의 Pod 수는 두 값 중 작은 값으로 제한됩니다. 이 값을 초과하면 다음과 같은 결과가 발생할 수 있습니다.

  • CPU 사용률 증가
  • Pod 예약 속도 저하
  • 노드의 메모리 크기에 따라 메모리 부족 시나리오 발생
  • IP 주소 모두 소진
  • 리소스 초과 커밋으로 인한 사용자 애플리케이션 성능 저하
중요

Kubernetes의 경우 단일 컨테이너를 보유한 하나의 Pod에서 실제로 두 개의 컨테이너가 사용됩니다. 두 번째 컨테이너는 실제 컨테이너 시작 전 네트워킹 설정에 사용됩니다. 따라서 10개의 Pod를 실행하는 시스템에서는 실제로 20개의 컨테이너가 실행됩니다.

참고

클라우드 공급자의 디스크 IOPS 제한이 CRI-O 및 kubelet에 영향을 미칠 수 있습니다. 노드에서 다수의 I/O 집약적 Pod가 실행되고 있는 경우 오버로드될 수 있습니다. 노드에서 디스크 I/O를 모니터링하고 워크로드에 대해 처리량이 충분한 볼륨을 사용하는 것이 좋습니다.

podsPerCore 매개변수는 노드의 프로세서 코어 수에 따라 노드에서 실행할 수 있는 Pod 수를 설정합니다. 예를 들어 프로세서 코어가 4개인 노드에서 podsPerCore10으로 설정된 경우 노드에 허용되는 최대 Pod 수는 40이 됩니다.

kubeletConfig:
  podsPerCore: 10

podsPerCore0으로 설정하면 이 제한이 비활성화됩니다. 기본값은 0입니다. podsPerCore 매개변수 값은 maxPods 매개변수 값을 초과할 수 없습니다.

maxPods 매개변수는 노드의 속성에 관계없이 노드가 실행할 수 있는 Pod 수를 고정된 값으로 설정합니다.

 kubeletConfig:
    maxPods: 250

5.4.1. KubeletConfig CRD를 생성하여 kubelet 매개변수 편집

kubelet 구성은 현재 Ignition 구성으로 직렬화되어 있으므로 직접 편집할 수 있습니다. 하지만 MCC(Machine Config Controller)에 새 kubelet-config-controller도 추가되어 있습니다. 이를 통해 KubeletConfig CR(사용자 정의 리소스)을 사용하여 kubelet 매개변수를 편집할 수 있습니다.

참고

kubeletConfig 오브젝트의 필드가 Kubernetes 업스트림에서 kubelet으로 직접 전달되므로 kubelet은 해당 값을 직접 검증합니다. kubeletConfig 오브젝트의 값이 유효하지 않으면 클러스터 노드를 사용할 수 없게 될 수 있습니다. 유효한 값은 Kubernetes 설명서를 참조하십시오.

다음 지침 사항을 고려하십시오.

  • 기존 KubeletConfig CR을 편집하여 각 변경 사항에 대한 CR을 생성하는 대신 기존 설정을 수정하거나 새 설정을 추가합니다. 변경 사항을 되돌릴 수 있도록 다른 머신 구성 풀을 수정하거나 임시로 변경하려는 변경 사항만 수정하기 위해 CR을 생성하는 것이 좋습니다.
  • 해당 풀에 필요한 모든 구성 변경 사항을 사용하여 각 머신 구성 풀에 대해 하나의 KubeletConfig CR을 생성합니다.
  • 필요에 따라 클러스터당 10개로 제한되는 여러 KubeletConfig CR을 생성합니다. 첫 번째 KubeletConfig CR의 경우 MCO(Machine Config Operator)는 kubelet에 추가된 머신 구성을 생성합니다. 이후 각 CR을 통해 컨트롤러는 숫자 접미사가 있는 다른 kubelet 머신 구성을 생성합니다. 예를 들어, -2 접미사가 있는 kubelet 머신 구성이 있는 경우 다음 kubelet 머신 구성에 -3이 추가됩니다.
참고

사용자 정의 머신 구성 풀에 kubelet 또는 컨테이너 런타임 구성을 적용하는 경우 machineConfigSelector 의 사용자 지정 역할은 사용자 정의 머신 구성 풀의 이름과 일치해야 합니다.

예를 들어 다음 사용자 지정 머신 구성 풀의 이름은 infra 이므로 사용자 지정 역할도 infra 여야 합니다.

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
  name: infra
spec:
  machineConfigSelector:
    matchExpressions:
      - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,infra]}
# ...

머신 구성을 삭제하려면 제한을 초과하지 않도록 해당 구성을 역순으로 삭제합니다. 예를 들어 kubelet-2 머신 구성을 삭제하기 전에 kubelet-3 머신 구성을 삭제합니다.

참고

kubelet-9 접미사가 있는 머신 구성이 있고 다른 KubeletConfig CR을 생성하는 경우 kubelet 머신 구성이 10개 미만인 경우에도 새 머신 구성이 생성되지 않습니다.

KubeletConfig CR 예

$ oc get kubeletconfig

NAME                AGE
set-max-pods        15m

KubeletConfig 머신 구성 표시 예

$ oc get mc | grep kubelet

...
99-worker-generated-kubelet-1                  b5c5119de007945b6fe6fb215db3b8e2ceb12511   3.2.0             26m
...

다음 프로세스는 작업자 노드의 각 노드에 대한 최대 Pod 수를 구성하는 방법을 보여줍니다.

사전 요구 사항

  1. 구성하려는 노드 유형의 정적 MachineConfigPool CR와 연관된 라벨을 가져옵니다. 다음 중 하나를 실행합니다.

    1. Machine config pool을 표시합니다.

      $ oc describe machineconfigpool <name>

      예를 들면 다음과 같습니다.

      $ oc describe machineconfigpool worker

      출력 예

      apiVersion: machineconfiguration.openshift.io/v1
      kind: MachineConfigPool
      metadata:
        creationTimestamp: 2019-02-08T14:52:39Z
        generation: 1
        labels:
          custom-kubelet: set-max-pods 1

      1
      라벨이 추가되면 labels 아래에 표시됩니다.
    2. 라벨이 없으면 키/값 쌍을 추가합니다.

      $ oc label machineconfigpool worker custom-kubelet=set-max-pods

프로세스

  1. 이 명령은 선택할 수 있는 사용 가능한 머신 구성 오브젝트를 표시합니다.

    $ oc get machineconfig

    기본적으로 두 개의 kubelet 관련 구성은 01-master-kubelet01-worker-kubelet입니다.

  2. 노드당 최대 Pod의 현재 값을 확인하려면 다음을 실행합니다.

    $ oc describe node <node_name>

    예를 들면 다음과 같습니다.

    $ oc describe node ci-ln-5grqprb-f76d1-ncnqq-worker-a-mdv94

    Allocatable 스탠자에서 value: pods: <value>를 찾습니다.

    출력 예

    Allocatable:
     attachable-volumes-aws-ebs:  25
     cpu:                         3500m
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      15341844Ki
     pods:                        250

  3. 작업자 노드에서 노드당 최대 Pod 수를 설정하려면 kubelet 구성이 포함된 사용자 정의 리소스 파일을 생성합니다.

    중요

    특정 머신 구성 풀을 대상으로 하는 kubelet 구성도 종속 풀에 영향을 미칩니다. 예를 들어 작업자 노드가 포함된 풀에 대한 kubelet 구성을 생성하면 인프라 노드가 포함된 풀을 포함한 모든 하위 집합 풀에도 적용됩니다. 이를 방지하려면 작업자 노드만 포함하는 선택 표현식을 사용하여 새 머신 구성 풀을 생성하고 kubelet 구성이 이 새 풀을 대상으로 지정하도록 해야 합니다.

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-max-pods
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: set-max-pods 1
      kubeletConfig:
        maxPods: 500 2
    1
    머신 구성 풀에서 레이블을 입력합니다.
    2
    kubelet 구성을 추가합니다. 이 예에서는 maxPods를 사용하여 노드당 최대 Pod를 설정합니다.
    참고

    kubelet이 API 서버와 통신하는 속도는 QPS(초당 쿼리) 및 버스트 값에 따라 달라집니다. 노드마다 실행되는 Pod 수가 제한된 경우 기본 값인 50(kubeAPIQPS인 경우) 및 100(kubeAPIBurst인 경우)이면 충분합니다. 노드에 CPU 및 메모리 리소스가 충분한 경우 kubelet QPS 및 버스트 속도를 업데이트하는 것이 좋습니다.

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: set-max-pods
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: set-max-pods
      kubeletConfig:
        maxPods: <pod_count>
        kubeAPIBurst: <burst_rate>
        kubeAPIQPS: <QPS>
    1. 라벨을 사용하여 작업자의 머신 구성 풀을 업데이트합니다.

      $ oc label machineconfigpool worker custom-kubelet=set-max-pods
    2. KubeletConfig 오브젝트를 생성합니다.

      $ oc create -f change-maxPods-cr.yaml
    3. KubeletConfig 오브젝트가 생성되었는지 확인합니다.

      $ oc get kubeletconfig

      출력 예

      NAME                AGE
      set-max-pods        15m

      클러스터의 작업자 노드 수에 따라 작업자 노드가 하나씩 재부팅될 때까지 기다립니다. 작업자 노드가 3개인 클러스터의 경우 약 10~15분이 걸릴 수 있습니다.

  4. 변경 사항이 노드에 적용되었는지 확인합니다.

    1. 작업자 노드에서 maxPods 값이 변경되었는지 확인합니다.

      $ oc describe node <node_name>
    2. Allocatable 스탠자를 찾습니다.

       ...
      Allocatable:
        attachable-volumes-gce-pd:  127
        cpu:                        3500m
        ephemeral-storage:          123201474766
        hugepages-1Gi:              0
        hugepages-2Mi:              0
        memory:                     14225400Ki
        pods:                       500 1
       ...
      1
      이 예에서 pods 매개변수는 KubeletConfig 오브젝트에 설정한 값을 보고해야 합니다.
  5. KubeletConfig 오브젝트에서 변경 사항을 확인합니다.

    $ oc get kubeletconfigs set-max-pods -o yaml

    다음 예와 같이 Truetype:Success 상태가 표시되어야 합니다.

    spec:
      kubeletConfig:
        maxPods: 500
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: set-max-pods
    status:
      conditions:
      - lastTransitionTime: "2021-06-30T17:04:07Z"
        message: Success
        status: "True"
        type: Success

5.4.2. 사용할 수 없는 작업자 노드 수 수정

기본적으로 kubelet 관련 구성을 사용 가능한 작업자 노드에 적용하는 경우 하나의 머신만 사용할 수 없는 상태로 둘 수 있습니다. 대규모 클러스터의 경우 구성 변경사항을 반영하는 데 시간이 오래 걸릴 수 있습니다. 언제든지 업데이트하는 머신 수를 조정하여 프로세스 속도를 높일 수 있습니다.

프로세스

  1. worker 머신 구성 풀을 편집합니다.

    $ oc edit machineconfigpool worker
  2. maxUnavailable 필드를 추가하고 값을 설정합니다.

    spec:
      maxUnavailable: <node_count>
    중요

    값을 설정하는 경우 클러스터에서 실행 중인 애플리케이션에 영향을 미치지 않고 사용 가능한 상태로 둘 수 있는 작업자 노드 수를 고려하십시오.

5.4.3. 컨트롤 플레인 노드 크기 조정

컨트롤 플레인 노드 리소스 요구 사항은 클러스터의 노드 및 오브젝트 수와 유형에 따라 다릅니다. 다음 컨트롤 플레인 노드 크기 권장 사항은 컨트롤 플레인 밀도 중심 테스트 또는 Cluster-density 결과를 기반으로 합니다. 이 테스트에서는 지정된 수의 네임스페이스에서 다음 오브젝트를 생성합니다.

  • 이미지 스트림 1개
  • 빌드 1개
  • 5개의 배포, 절전 상태에 2개의 Pod 복제본이 있는 배포, 4개의 시크릿 마운트, 4개의 구성 맵, 각각 1개의 Downward API 볼륨
  • 5개의 서비스, 각각 이전 배포 중 하나의 TCP/8080 및 TCP/8443 포트를 가리킵니다.
  • 이전 서비스 중 첫 번째를 가리키는 1 경로
  • 2048 임의의 문자열 문자가 포함된 10개의 보안
  • 2048 임의의 문자열 문자가 포함된 10개의 구성 맵
작업자 노드 수cluster-density(네임스페이스)CPU 코어 수메모리(GB)

24

500

4

16

120

1000

8

32

252

4000

16, 그러나 24 OVN-Kubernetes 네트워크 플러그인을 사용하는 경우

OVN-Kubernetes 네트워크 플러그인을 사용하는 경우 64이지만 128

501 그러나 OVN-Kubernetes 네트워크 플러그인으로 테스트되지 않음

4000

16

96

위의 표의 데이터는 r5.4xlarge 인스턴스를 컨트롤 플레인 노드로 사용하고 m5.2xlarge 인스턴스를 작업자 노드로 사용하여 AWS에서 실행되는 OpenShift Container Platform을 기반으로 합니다.

컨트롤 플레인 노드가 3개인 대규모 및 밀도가 높은 클러스터에서는 노드 중 하나가 중지, 재부팅 또는 실패할 때 CPU 및 메모리 사용량이 증가합니다. 비용 절감을 위해 전원, 네트워크, 기본 인프라 또는 의도적인 경우 클러스터를 종료한 후 클러스터를 다시 시작하는 예기치 않은 문제로 인해 오류가 발생할 수 있습니다. 나머지 두 컨트롤 플레인 노드는 고가용성이 되기 위해 부하를 처리하여 리소스 사용량을 늘려야 합니다. 이는 컨트롤 플레인 노드가 직렬로 연결, 드레이닝, 재부팅되어 운영 체제 업데이트를 적용하고 컨트롤 플레인 Operator 업데이트를 적용하기 때문에 업그레이드 중에도 이 문제가 발생할 수 있습니다. 단계적 오류를 방지하려면 컨트롤 플레인 노드에서 전체 CPU 및 메모리 리소스 사용량을 사용 가능한 모든 용량의 최대 60 %로 유지하여 리소스 사용량 급증을 처리합니다. 리소스 부족으로 인한 다운타임을 방지하기 위해 컨트롤 플레인 노드에서 CPU 및 메모리를 늘립니다.

중요

노드 크기 조정은 클러스터의 노드 수와 개체 수에 따라 달라집니다. 또한 클러스터에서 개체가 현재 생성되는지에 따라 달라집니다. 개체 생성 중에 컨트롤 플레인은 개체가 running 단계에 있을 때보다 리소스 사용량 측면에서 더 활성화됩니다.

OLM(Operator Lifecycle Manager)은 컨트롤 플레인 노드에서 실행되며 해당 메모리 공간은 OLM이 클러스터에서 관리해야 하는 네임스페이스 및 사용자 설치된 Operator 수에 따라 다릅니다. OOM이 종료되지 않도록 컨트를 플레인 노드의 크기를 적절하게 조정해야 합니다. 다음 데이터 지점은 클러스터 최대값 테스트 결과를 기반으로 합니다.

네임스페이스 수유휴 상태의 OLM 메모리(GB)5명의 사용자 operator가 설치된 OLM 메모리(GB)

500

0.823

1.7

1000

1.2

2.5

1500

1.7

3.2

2000

2

4.4

3000

2.7

5.6

4000

3.8

7.6

5000

4.2

9.02

6000

5.8

11.3

7000

6.6

12.9

8000

6.9

14.8

9000

8

17.7

10,000

9.9

21.6

중요

다음 구성에서만 실행 중인 OpenShift Container Platform 4.17 클러스터에서 컨트롤 플레인 노드 크기를 수정할 수 있습니다.

  • 사용자 프로비저닝 설치 방법으로 설치된 클러스터입니다.
  • 설치 관리자 프로비저닝 인프라 설치 방법을 사용하여 설치된 AWS 클러스터
  • 컨트롤 플레인 머신 세트를 사용하여 컨트롤 플레인 시스템을 관리하는 클러스터입니다.

다른 모든 구성의 경우 총 노드 수를 추정하고 설치 중에 제안된 컨트롤 플레인 노드 크기를 사용해야 합니다.

참고

OpenShift Container Platform 4.17에서는 기본적으로 OpenShift Container Platform 3.11 및 이전 버전과 비교하여 CPU 코어의 절반(500밀리코어)이 시스템에 의해 예약되어 있습니다. 이러한 점을 고려하여 크기가 결정됩니다.

5.4.4. CPU 관리자 설정

CPU 관리자를 구성하려면 KubeletConfig CR(사용자 정의 리소스)을 생성하고 원하는 노드 세트에 적용합니다.

프로세스

  1. 다음 명령을 실행하여 노드에 레이블을 지정합니다.

    # oc label node perf-node.example.com cpumanager=true
  2. 모든 컴퓨팅 노드에 대해 CPU 관리자를 활성화하려면 다음 명령을 실행하여 CR을 편집합니다.

    # oc edit machineconfigpool worker
  3. metadata.labels 섹션에 custom-kubelet: cpumanager-enabled 레이블을 추가합니다.

    metadata:
      creationTimestamp: 2020-xx-xxx
      generation: 3
      labels:
        custom-kubelet: cpumanager-enabled
  4. KubeletConfig, cpumanager-kubeletconfig.yaml, CR(사용자 정의 리소스)을 생성합니다. 이전 단계에서 생성한 레이블을 참조하여 올바른 노드가 새 kubelet 구성으로 업데이트되도록 합니다. machineConfigPoolSelector 섹션을 참조하십시오.

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: cpumanager-enabled
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: cpumanager-enabled
      kubeletConfig:
         cpuManagerPolicy: static 1
         cpuManagerReconcilePeriod: 5s 2
    1
    정책을 지정합니다.
    • none. 이 정책은 기존 기본 CPU 선호도 체계를 명시적으로 활성화하여 스케줄러가 자동으로 수행하는 것 이상으로 선호도를 제공하지 않도록 합니다. 이는 기본 정책입니다.
    • static. 이 정책은 정수 CPU 요청이 있는 보장된 Pod의 컨테이너를 허용합니다. 또한 노드의 전용 CPU로 액세스를 제한합니다. 적인 경우 소문자 s 를 사용해야 합니다.
    2
    선택 사항입니다. CPU 관리자 조정 빈도를 지정합니다. 기본값은 5s입니다.
  5. 다음 명령을 실행하여 동적 kubelet 구성을 생성합니다.

    # oc create -f cpumanager-kubeletconfig.yaml

    그러면 kubelet 구성에 CPU 관리자 기능이 추가되고 필요한 경우 MCO(Machine Config Operator)가 노드를 재부팅합니다. CPU 관리자를 활성화하는 데는 재부팅이 필요하지 않습니다.

  6. 다음 명령을 실행하여 병합된 kubelet 구성을 확인합니다.

    # oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep ownerReference -A7

    출력 예

           "ownerReferences": [
                {
                    "apiVersion": "machineconfiguration.openshift.io/v1",
                    "kind": "KubeletConfig",
                    "name": "cpumanager-enabled",
                    "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"
                }
            ]

  7. 다음 명령을 실행하여 컴퓨팅 노드에서 업데이트된 kubelet.conf 파일이 있는지 확인합니다.

    # oc debug node/perf-node.example.com
    sh-4.2# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager

    출력 예

    cpuManagerPolicy: static        1
    cpuManagerReconcilePeriod: 5s   2

    1
    cpuManagerPolicyKubeletConfig CR을 생성할 때 정의됩니다.
    2
    KubeletConfig CR을 생성할 때 cpuManagerReconcilePeriod 가 정의됩니다.
  8. 다음 명령을 실행하여 프로젝트를 생성합니다.

    $ oc new-project <project_name>
  9. 코어를 하나 이상 요청하는 Pod를 생성합니다. 제한 및 요청 둘 다 해당 CPU 값이 정수로 설정되어야 합니다. 해당 숫자는 이 Pod 전용으로 사용할 코어 수입니다.

    # cat cpumanager-pod.yaml

    출력 예

    apiVersion: v1
    kind: Pod
    metadata:
      generateName: cpumanager-
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
      - name: cpumanager
        image: gcr.io/google_containers/pause:3.2
        resources:
          requests:
            cpu: 1
            memory: "1G"
          limits:
            cpu: 1
            memory: "1G"
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop: [ALL]
      nodeSelector:
        cpumanager: "true"

  10. Pod를 생성합니다.

    # oc create -f cpumanager-pod.yaml

검증

  1. 다음 명령을 실행하여 레이블을 지정한 노드에 Pod가 예약되어 있는지 확인합니다.

    # oc describe pod cpumanager

    출력 예

    Name:               cpumanager-6cqz7
    Namespace:          default
    Priority:           0
    PriorityClassName:  <none>
    Node:  perf-node.example.com/xxx.xx.xx.xxx
    ...
     Limits:
          cpu:     1
          memory:  1G
        Requests:
          cpu:        1
          memory:     1G
    ...
    QoS Class:       Guaranteed
    Node-Selectors:  cpumanager=true

  2. 다음 명령을 실행하여 CPU가 Pod에만 할당되었는지 확인합니다.

    # oc describe node --selector='cpumanager=true' | grep -i cpumanager- -B2

    출력 예

    NAMESPACE    NAME                CPU Requests  CPU Limits  Memory Requests  Memory Limits  Age
    cpuman       cpumanager-mlrrz    1 (28%)       1 (28%)     1G (13%)         1G (13%)       27m

  3. cgroups가 올바르게 설정되었는지 검증합니다. 다음 명령을 실행하여 일시 중지 프로세스의 PID(프로세스 ID)를 가져옵니다.

    # oc debug node/perf-node.example.com
    sh-4.2# systemctl status | grep -B5 pause
    참고

    출력에서 일시 정지 프로세스 항목을 여러 개 반환하는 경우 올바른 일시 중지 프로세스를 식별해야 합니다.

    출력 예

    # ├─init.scope
    │ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
    └─kubepods.slice
      ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice
      │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope
      │ └─32706 /pause

  4. 다음 명령을 실행하여 QoS(Quality of Service) 계층 Guaranteed 의 Pod가 kubepods.slice 하위 디렉터리에 배치되었는지 확인합니다.

    # cd /sys/fs/cgroup/kubepods.slice/kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope
    # for i in `ls cpuset.cpus cgroup.procs` ; do echo -n "$i "; cat $i ; done
    참고

    다른 QoS 계층의 Pod는 상위 kubepods 의 하위 cgroup 에 있습니다.

    출력 예

    cpuset.cpus 1
    tasks 32706

  5. 다음 명령을 실행하여 작업에 허용되는 CPU 목록을 확인합니다.

    # grep ^Cpus_allowed_list /proc/32706/status

    출력 예

     Cpus_allowed_list:    1

  6. 시스템의 다른 Pod가 Guaranteed Pod에 할당된 코어에서 실행할 수 없는지 확인합니다. 예를 들어 besteffort QoS 계층에서 Pod를 확인하려면 다음 명령을 실행합니다.

    # cat /sys/fs/cgroup/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-c56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus
    # oc describe node perf-node.example.com

    출력 예

    ...
    Capacity:
     attachable-volumes-aws-ebs:  39
     cpu:                         2
     ephemeral-storage:           124768236Ki
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      8162900Ki
     pods:                        250
    Allocatable:
     attachable-volumes-aws-ebs:  39
     cpu:                         1500m
     ephemeral-storage:           124768236Ki
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      7548500Ki
     pods:                        250
    -------                               ----                           ------------  ----------  ---------------  -------------  ---
      default                                 cpumanager-6cqz7               1 (66%)       1 (66%)     1G (12%)         1G (12%)       29m
    
    Allocated resources:
      (Total limits may be over 100 percent, i.e., overcommitted.)
      Resource                    Requests          Limits
      --------                    --------          ------
      cpu                         1440m (96%)       1 (66%)

    이 VM에는 두 개의 CPU 코어가 있습니다. system-reserved 설정은 500밀리코어로 설정되었습니다. 즉, Node Allocatable 양이 되는 노드의 전체 용량에서 한 코어의 절반이 감산되었습니다. Allocatable CPU는 1500 밀리코어임을 확인할 수 있습니다. 즉, Pod마다 하나의 전체 코어를 사용하므로 CPU 관리자 Pod 중 하나를 실행할 수 있습니다. 전체 코어는 1000밀리코어에 해당합니다. 두 번째 Pod를 예약하려고 하면 시스템에서 해당 Pod를 수락하지만 Pod가 예약되지 않습니다.

    NAME                    READY   STATUS    RESTARTS   AGE
    cpumanager-6cqz7        1/1     Running   0          33m
    cpumanager-7qc2t        0/1     Pending   0          11s
Red Hat logoGithubRedditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

© 2024 Red Hat, Inc.