第 9 章 可扩展性和性能优化
9.1. 优化存储
优化存储有助于最小化所有资源中的存储使用。通过优化存储,管理员可帮助确保现有存储资源以高效的方式工作。
9.1.1. 可用的持久性存储选项
了解持久性存储选项,以便可以优化 OpenShift Container Platform 环境。
存储类型 | 描述 | 例子 |
---|---|---|
Block |
| AWS EBS 和 VMware vSphere 支持在 OpenShift Container Platform 中的原生动态持久性卷 (PV) 置备 。 |
File |
| RHEL NFS、NetApp NFS [1] 和供应商 NFS |
对象 |
| AWS S3 |
- NetApp NFS 在使用 Trident 插件时支持动态 PV 置备。
9.1.2. 推荐的可配置存储技术
下表总结了为给定的 OpenShift Container Platform 集群应用程序推荐的可配置存储技术。
存储类型 | Block | File | 对象 |
---|---|---|---|
1
2 3 Prometheus 是用于指标数据的底层技术。 4 这不适用于物理磁盘、虚拟机物理磁盘、VMDK 、NFS 回送、AWS EBS 和 Azure 磁盘。
5 对于指标数据,使用 6 用于日志记录,请参阅为日志存储配置持久性存储中的推荐存储解决方案。使用 NFS 存储作为持久性卷或通过 NAS (如 Gluster)可能会破坏数据。因此,OpenShift Container Platform Logging 中的 Elasticsearch 存储和 LokiStack 日志存储不支持 NFS。您必须为每个日志存储使用一个持久性卷类型。 7 对象存储不会通过 OpenShift Container Platform 的 PV 或 PVC 使用。应用程序必须与对象存储 REST API 集成。 | |||
ROX1 | Yes4 | Yes4 | 是 |
RWX2 | 否 | 是 | 是 |
Registry | 可配置 | 可配置 | 推荐的 |
扩展的 registry | 无法配置 | 可配置 | 推荐的 |
Metrics3 | 推荐的 | Configurable5 | 无法配置 |
Elasticsearch Logging | 推荐的 | Configurable6 | 不支持6 |
Loki Logging | 无法配置 | 无法配置 | 推荐的 |
Apps | 推荐的 | 推荐的 | Not configurable7 |
扩展的容器镜像仓库(registry)是一个 OpenShift 镜像 registry,它有两个或更多个 pod 运行副本。
9.1.2.1. 特定应用程序存储建议
测试显示在 Red Hat Enterprise Linux(RHEL) 中使用 NFS 服务器作为核心服务的存储后端的问题。这包括 OpenShift Container Registry 和 Quay,Prometheus 用于监控存储,以及 Elasticsearch 用于日志存储。因此,不建议使用 RHEL NFS 作为 PV 后端用于核心服务。
市场上的其他 NFS 实现可能没有这些问题。如需了解更多与此问题相关的信息,请联络相关的 NFS 厂商。
9.1.2.1.1. Registry
在非扩展的/高可用性 (HA) OpenShift 镜像 registry 集群部署中:
- 存储技术不需要支持 RWX 访问模式。
- 存储技术必须保证读写一致性。
- 首选存储技术是对象存储,然后是块存储。
- 对于应用于生产环境工作负载的 OpenShift 镜像 Registry 集群部署,我们不推荐使用文件存储。
9.1.2.1.2. 扩展的 registry
在扩展的/HA OpenShift 镜像 registry 集群部署中:
- 存储技术必须支持 RWX 访问模式。
- 存储技术必须保证读写一致性。
- 首选存储技术是对象存储。
- 支持 Red Hat OpenShift Data Foundation (ODF), Amazon Simple Storage Service (Amazon S3), Google Cloud Storage (GCS), Microsoft Azure Blob Storage, 和 OpenStack Swift。
- 对象存储应该兼容 S3 或 Swift。
- 对于非云平台,如 vSphere 和裸机安装,唯一可配置的技术是文件存储。
- 块存储是不可配置的。
- 支持将网络文件系统(NFS)存储与 OpenShift Container Platform 搭配使用。但是,将 NFS 存储与扩展 registry 搭配使用可能会导致已知问题。如需更多信息,请参阅红帽知识库解决方案,是否在生产阶段中对 OpenShift 集群内部组件支持 NFS?
9.1.2.1.3. 指标
在 OpenShift Container Platform 托管的 metrics 集群部署中:
- 首选存储技术是块存储。
- 对象存储是不可配置的。
在带有生产环境负载的托管 metrics 集群部署中不推荐使用文件存储。
9.1.2.1.4. 日志记录
在 OpenShift Container Platform 托管的日志集群部署中:
Loki Operator:
- 首选存储技术是 S3 兼容对象存储。
- 块存储是不可配置的。
OpenShift Elasticsearch Operator:
- 首选存储技术是块存储。
- 不支持对象存储。
自日志记录版本 5.4.3 起,OpenShift Elasticsearch Operator 已被弃用,计划在以后的发行版本中删除。红帽将在当前发行生命周期中提供对这个功能的程序漏洞修复和支持,但这个功能将不再获得改进,并将被删除。您可以使用 Loki Operator 作为 OpenShift Elasticsearch Operator 的替代方案来管理默认日志存储。
9.1.2.1.5. 应用程序
应用程序的用例会根据不同应用程序而不同,如下例所示:
- 支持动态 PV 部署的存储技术的挂载时间延迟较低,且不与节点绑定来支持一个健康的集群。
- 应用程序开发人员需要了解应用程序对存储的要求,以及如何与所需的存储一起工作以确保应用程序扩展或者与存储层交互时不会出现问题。
9.1.2.2. 其他特定的应用程序存储建议
不建议在 Write
密集型工作负载(如 etcd
)中使用 RAID 配置。如果您使用 RAID 配置运行 etcd
,您可能会遇到工作负载性能问题的风险。
- Red Hat OpenStack Platform(RHOSP)Cinder: RHOSP Cinder 倾向于在 ROX 访问模式用例中使用。
- 数据库:数据库(RDBMS 、nosql DBs 等等)倾向于使用专用块存储来获得最好的性能。
- etcd 数据库必须具有足够的存储和适当的性能容量才能启用大型集群。有关监控和基准测试工具的信息,以建立基本存储和高性能环境,请参阅 推荐 etcd 实践。
9.1.3. 数据存储管理
下表总结了 OpenShift Container Platform 组件写入数据的主要目录。
目录 | 备注 | 大小 | 预期增长 |
---|---|---|---|
/var/log | 所有组件的日志文件。 | 10 到 30 GB。 | 日志文件可能会快速增长 ; 大小可以通过增加磁盘或使用日志轮转来管理。 |
/var/lib/etcd | 用于存储数据库的 etcd 存储。 | 小于 20 GB。 数据库可增大到 8 GB。 | 随着环境增长会缓慢增长。只存储元数据。 每多加 8 GB 内存需要额外 20-25 GB。 |
/var/lib/containers | 这是 CRI-O 运行时的挂载点。用于活跃容器运行时的存储,包括 Pod 和本地镜像存储。不适用于 registry 存储。 | 有 16 GB 内存的节点需要 50 GB。请注意,这个大小不应该用于决定最小集群要求。 每多加 8 GB 内存需要额外 20-25 GB。 | 增长受运行容器容量的限制。 |
/var/lib/kubelet | pod 的临时卷(Ephemeral volume)存储。这包括在运行时挂载到容器的任何外部存储。包括环境变量、kube secret 和不受持久性卷支持的数据卷。 | 可变 | 如果需要存储的 pod 使用持久性卷,则最小。如果使用临时存储,可能会快速增长。 |
9.1.4. 为 Microsoft Azure 优化存储性能
OpenShift Container Platform 和 Kubernetes 对磁盘性能敏感,建议使用更快的存储,特别是 control plane 节点上的 etcd。
对于生产环境 Azure 集群和带有密集型工作负载的集群,control plane 机器的虚拟机操作系统磁盘应该可以保持经过测试和推荐的最小吞吐量 5000 IOPS / 200MBps。此吞吐量可以通过至少 1 TiB Premium SSD (P30) 提供。在 Azure 和 Azure Stack Hub 中,磁盘性能直接依赖于 SSD 磁盘大小。要达到 Standard_D8s_v3
虚拟机或者其它类似机器类型,目标为 5000 IOPS,至少需要 P30 磁盘。
在读取数据时,主机缓存必须设置为 ReadOnly
,以实现低延迟和高 IOPS 和吞吐量。从缓存中读取数据(在虚拟机内存或本地 SSD 磁盘上)比从磁盘读取速度要快得多,而这在 blob 存储中。