7.5. 巨页


了解并配置巨页。

7.5.1. 巨页的作用

内存在块(称为页)中进行管理。在大多数系统中,页的大小为 4Ki。1Mi 内存相当于 256 个页,1Gi 内存相当于 256,000 个页。CPU 有内置的内存管理单元,可在硬件中管理这些页的列表。Translation Lookaside Buffer (TLB) 是虚拟页到物理页映射的小型硬件缓存。如果在硬件指令中包括的虚拟地址可以在 TLB 中找到,则其映射信息可以被快速获得。如果没有包括在 TLN 中,则称为 TLB miss。系统将会使用基于软件的,速度较慢的地址转换机制,从而出现性能降低的问题。因为 TLB 的大小是固定的,因此降低 TLB miss 的唯一方法是增加页的大小。

巨页指一个大于 4Ki 的内存页。在 x86_64 构架中,有两个常见的巨页大小: 2Mi 和 1Gi。在其它构架上的大小会有所不同。要使用巨页,必须写相应的代码以便应用程序了解它们。Transparent Huge Pages(THP)试图在应用程序不需要了解的情况下自动管理巨页,但这个技术有一定的限制。特别是,它的页大小会被限为 2Mi。当有较高的内存使用率时,THP 可能会导致节点性能下降,或出现大量内存碎片(因为 THP 的碎片处理)导致内存页被锁定。因此,有些应用程序可能更适用于(或推荐)使用预先分配的巨页,而不是 THP。

7.5.2. 应用程序如何使用巨页

节点必须预先分配巨页以便节点报告其巨页容量。一个节点只能预先分配一个固定大小的巨页。

巨页可以使用名为 hugepages-<size> 的容器一级的资源需求被消耗。其中 size 是特定节点上支持的整数值的最精简的二进制标记。例如:如果某个节点支持 2048KiB 页大小,它将会有一个可调度的资源 hugepages-2Mi。与 CPU 或者内存不同,巨页不支持过量分配。

apiVersion: v1
kind: Pod
metadata:
  generateName: hugepages-volume-
spec:
  containers:
  - securityContext:
      privileged: true
    image: rhel7:latest
    command:
    - sleep
    - inf
    name: example
    volumeMounts:
    - mountPath: /dev/hugepages
      name: hugepage
    resources:
      limits:
        hugepages-2Mi: 100Mi 1
        memory: "1Gi"
        cpu: "1"
  volumes:
  - name: hugepage
    emptyDir:
      medium: HugePages
1
巨页指定要分配的准确内存数量。不要将这个值指定为巨页内存大小乘以页的大小。例如,巨页的大小为 2MB,如果应用程序需要使用由巨页组成的 100MB 的内存,则需要分配 50 个巨页。OpenShift Container Platform 会进行相应的计算。如上例所示,您可以直接指定 100MB

分配特定大小的巨页

有些平台支持多个巨页大小。要分配指定大小的巨页,在巨页引导命令参数前使用巨页大小选择参数hugepagesz=<size><size> 的值必须以字节为单位,并可以使用一个可选的后缀 [kKmMgG]。默认的巨页大小可使用 default_hugepagesz=<size> 引导参数定义。

巨页要求

  • 巨页面请求必须等于限制。如果指定了限制,则它是默认的,但请求不是。
  • 巨页在 pod 范围内被隔离。容器隔离功能计划在以后的版本中推出。
  • 后端为巨页的 EmptyDir 卷不能消耗大于 pod 请求的巨页内存。
  • 通过带有 SHM_HUGETLBshmget() 来使用巨页的应用程序,需要运行一个匹配 proc/sys/vm/hugetlb_shm_group 的 supplemental 组。

7.5.3. 在引导时配置巨页

节点必须预先分配在 OpenShift Container Platform 集群中使用的巨页。保留巨页的方法有两种: 在引导时和在运行时。在引导时进行保留会增加成功的可能性,因为内存还没有很大的碎片。Node Tuning Operator 目前支持在特定节点上分配巨页。

流程

要减少节点重启的情况,请按照以下步骤顺序进行操作:

  1. 通过标签标记所有需要相同巨页设置的节点。

    $ oc label node <node_using_hugepages> node-role.kubernetes.io/worker-hp=
  2. 创建一个包含以下内容的文件,并把它命名为 hugepages_tuning.yaml

    apiVersion: tuned.openshift.io/v1
    kind: Tuned
    metadata:
      name: hugepages 1
      namespace: openshift-cluster-node-tuning-operator
    spec:
      profile: 2
      - data: |
          [main]
          summary=Boot time configuration for hugepages
          include=openshift-node
          [bootloader]
          cmdline_openshift_node_hugepages=hugepagesz=2M hugepages=50 3
        name: openshift-node-hugepages
    
      recommend:
      - machineConfigLabels: 4
          machineconfiguration.openshift.io/role: "worker-hp"
        priority: 30
        profile: openshift-node-hugepages
    1
    将 Tuned 资源的 name 设置为 hugepages
    2
    profile 部分设置为分配巨页。
    3
    请注意,参数顺序是非常重要的,因为有些平台支持各种大小的巨页。
    4
    启用基于机器配置池的匹配。
  3. 创建 Tuned hugepages 对象

    $ oc create -f hugepages-tuned-boottime.yaml
  4. 创建一个带有以下内容的文件,并把它命名为 hugepages-mcp.yaml

    apiVersion: machineconfiguration.openshift.io/v1
    kind: MachineConfigPool
    metadata:
      name: worker-hp
      labels:
        worker-hp: ""
    spec:
      machineConfigSelector:
        matchExpressions:
          - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,worker-hp]}
      nodeSelector:
        matchLabels:
          node-role.kubernetes.io/worker-hp: ""
  5. 创建机器配置池:

    $ oc create -f hugepages-mcp.yaml

因为有足够的非碎片内存,worker-hp 机器配置池中的所有节点现在都应分配 50 个 2Mi 巨页。

$ oc get node <node_using_hugepages> -o jsonpath="{.status.allocatable.hugepages-2Mi}"
100Mi
注意

TuneD bootloader 插件只支持 Red Hat Enterprise Linux CoreOS (RHCOS) worker 节点。

Red Hat logoGithubRedditYoutubeTwitter

学习

尝试、购买和销售

社区

关于红帽文档

通过我们的产品和服务,以及可以信赖的内容,帮助红帽用户创新并实现他们的目标。

让开源更具包容性

红帽致力于替换我们的代码、文档和 Web 属性中存在问题的语言。欲了解更多详情,请参阅红帽博客.

關於紅帽

我们提供强化的解决方案,使企业能够更轻松地跨平台和环境(从核心数据中心到网络边缘)工作。

© 2024 Red Hat, Inc.