1.2. Creating a machine set on Azure


You can create a different machine set to serve a specific purpose in your OpenShift Container Platform cluster on Microsoft Azure. For example, you might create infrastructure machine sets and related machines so that you can move supporting workloads to the new machines.

1.2.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning management actions after the cluster installation finishes. Because of this system, OpenShift Container Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud infrastructure.

The two primary resources are:

Machines
A fundamental unit that describes the host for a Node. A machine has a providerSpec specification, which describes the types of compute nodes that are offered for different cloud platforms. For example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific machine type and required metadata.
Machine sets
MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to pods. If you need more machines or must scale them down, you change the replicas field on the machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler
The MachineAutoscaler resource automatically scales machines in a cloud. You can set the minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are made available by the ClusterAutoscalerOperator object.
Cluster autoscaler
This resource is based on the upstream cluster autoscaler project. In the OpenShift Container Platform implementation, it is integrated with the Machine API by extending the machine set API. You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on. You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online for less important pods. You can also set the scaling policy so that you can scale up nodes but not scale them down.
Machine health check
The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation program sends out machine sets across availability zones on your behalf. And then because your compute is dynamic, and in the face of a zone failure, you always have a zone for when you must rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.2.2. Sample YAML for a machine set custom resource on Azure

This sample YAML defines a machine set that runs in the 1 Microsoft Azure zone in the centralus region and creates nodes that are labeled with node-role.kubernetes.io/<role>: ""

In this sample, <infrastructureID> is the infrastructure ID label that is based on the cluster ID that you set when you provisioned the cluster, and <role> is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructureID> 1
    machine.openshift.io/cluster-api-machine-role: <role> 2
    machine.openshift.io/cluster-api-machine-type: <role> 3
  name: <infrastructureID>-<role>-<region> 4
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructureID> 5
      machine.openshift.io/cluster-api-machineset: <infrastructureID>-<role>-<region> 6
  template:
    metadata:
      creationTimestamp: null
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructureID> 7
        machine.openshift.io/cluster-api-machine-role: <role> 8
        machine.openshift.io/cluster-api-machine-type: <role> 9
        machine.openshift.io/cluster-api-machineset: <infrastructureID>-<role>-<region> 10
    spec:
      metadata:
        creationTimestamp: null
        labels:
          node-role.kubernetes.io/<role>: "" 11
      providerSpec:
        value:
          apiVersion: azureproviderconfig.openshift.io/v1beta1
          credentialsSecret:
            name: azure-cloud-credentials
            namespace: openshift-machine-api
          image:
            offer: ""
            publisher: ""
            resourceID: /resourceGroups/<infrastructureID>-rg/providers/Microsoft.Compute/images/<infrastructureID>
            sku: ""
            version: ""
          internalLoadBalancer: ""
          kind: AzureMachineProviderSpec
          location: centralus
          managedIdentity: <infrastructureID>-identity 12
          metadata:
            creationTimestamp: null
          natRule: null
          networkResourceGroup: ""
          osDisk:
            diskSizeGB: 128
            managedDisk:
              storageAccountType: Premium_LRS
            osType: Linux
          publicIP: false
          publicLoadBalancer: ""
          resourceGroup: <infrastructureID>-rg 13
          sshPrivateKey: ""
          sshPublicKey: ""
          subnet: <infrastructureID>-<role>-subnet 14 15
          userDataSecret:
            name: <role>-user-data 16
          vmSize: Standard_D2s_v3
          vnet: <infrastructureID>-vnet 17
          zone: "1" 18
1 5 7 12 13 14 17
Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned the cluster. If you have the OpenShift CLI installed, you can obtain the infrastructure ID by running the following command:
$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster
2 3 8 9 11 15 16
Specify the node label to add.
4 6 10
Specify the infrastructure ID, node label, and region.
18
Specify the zone within your region to place Machines on. Be sure that your region supports the zone that you specify.

1.2.3. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

  • Deploy an OpenShift Container Platform cluster.
  • Install the OpenShift CLI (oc).
  • Log in to oc as a user with cluster-admin permission.

Procedure

  1. Create a new YAML file that contains the machine set custom resource (CR) sample, as shown, and is named <file_name>.yaml.

    Ensure that you set the <clusterID> and <role> parameter values.

    1. If you are not sure about which value to set for a specific field, you can check an existing machine set from your cluster.

      $ oc get machinesets -n openshift-machine-api

      Example output

      NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
      agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
      agl030519-vplxk-worker-us-east-1d   0         0                             55m
      agl030519-vplxk-worker-us-east-1e   0         0                             55m
      agl030519-vplxk-worker-us-east-1f   0         0                             55m

    2. Check values of a specific machine set:

      $ oc get machineset <machineset_name> -n \
           openshift-machine-api -o yaml

      Example output

      ...
      template:
          metadata:
            labels:
              machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
              machine.openshift.io/cluster-api-machine-role: worker 2
              machine.openshift.io/cluster-api-machine-type: worker
              machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

      1
      The cluster ID.
      2
      A default node label.
  2. Create the new MachineSet CR:

    $ oc create -f <file_name>.yaml
  3. View the list of machine sets:

    $ oc get machineset -n openshift-machine-api

    Example output

    NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
    agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
    agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
    agl030519-vplxk-worker-us-east-1d   0         0                             55m
    agl030519-vplxk-worker-us-east-1e   0         0                             55m
    agl030519-vplxk-worker-us-east-1f   0         0                             55m

    When the new machine set is available, the DESIRED and CURRENT values match. If the machine set is not available, wait a few minutes and run the command again.

  4. After the new machine set is available, check status of the machine and the node that it references:

    $ oc describe machine <name> -n openshift-machine-api

    For example:

    $ oc describe machine agl030519-vplxk-infra-us-east-1a -n openshift-machine-api

    Example output

    status:
      addresses:
      - address: 10.0.133.18
        type: InternalIP
      - address: ""
        type: ExternalDNS
      - address: ip-10-0-133-18.ec2.internal
        type: InternalDNS
      lastUpdated: "2019-05-03T10:38:17Z"
      nodeRef:
        kind: Node
        name: ip-10-0-133-18.ec2.internal
        uid: 71fb8d75-6d8f-11e9-9ff3-0e3f103c7cd8
      providerStatus:
        apiVersion: awsproviderconfig.openshift.io/v1beta1
        conditions:
        - lastProbeTime: "2019-05-03T10:34:31Z"
          lastTransitionTime: "2019-05-03T10:34:31Z"
          message: machine successfully created
          reason: MachineCreationSucceeded
          status: "True"
          type: MachineCreation
        instanceId: i-09ca0701454124294
        instanceState: running
        kind: AWSMachineProviderStatus

  5. View the new node and confirm that the new node has the label that you specified:

    $ oc get node <node_name> --show-labels

    Review the command output and confirm that node-role.kubernetes.io/<your_label> is in the LABELS list.

注意

Any change to a machine set is not applied to existing machines owned by the machine set. For example, labels edited or added to an existing machine set are not propagated to existing machines and nodes associated with the machine set.

Red Hat logoGithubRedditYoutubeTwitter

学习

尝试、购买和销售

社区

关于红帽文档

通过我们的产品和服务,以及可以信赖的内容,帮助红帽用户创新并实现他们的目标。

让开源更具包容性

红帽致力于替换我们的代码、文档和 Web 属性中存在问题的语言。欲了解更多详情,请参阅红帽博客.

關於紅帽

我们提供强化的解决方案,使企业能够更轻松地跨平台和环境(从核心数据中心到网络边缘)工作。

© 2024 Red Hat, Inc.