4.3. クラスターでのノードの自動スケーリングについて


重要

自動スケーリングは、Google Cloud Marketplace および Red Hat Marketplace を通じて購入したクラスターでのみ利用できます。

自動スケーリングオプションは、クラスター内のマシンの数を自動的にスケーリングするように設定できます。

Cluster Autoscaler は、リソース不足のために現在のノードのいずれにも Pod をスケジュールできない場合、またはデプロイメントのニーズを満たすために別のノードが必要な場合に、クラスターのサイズを拡大します。Cluster Autoscaler は、指定の制限を超えてクラスターリソースを拡大することはありません。

さらに、Cluster Autoscaler は、リソースの使用量が少なく、重要な Pod すべてが他のノードに適合する場合など、一部のノードが長い期間にわたって不要な状態が続く場合にクラスターのサイズを縮小します。

自動スケーリングを有効にする場合は、ワーカーノードの最小数および最大数も設定する必要があります。

注記

クラスターの所有者と組織管理者のみがクラスターのスケーリングまたは削除が可能です。

4.3.1. クラスターでの自動スケーリングノードの有効化

ワーカーノードで自動スケーリングを有効にし、既存クラスターのマシンプール定義を編集して利用可能なノード数を増減できます。

Red Hat OpenShift Cluster Manager を使用した既存のクラスターでの自動スケーリングノードの有効化

OpenShift Cluster Manager コンソールからマシンプール定義でワーカーノードの自動スケーリングを有効にします。

手順

  1. OpenShift Cluster Manager で、Cluster List ページに移動し、自動スケーリングを有効にするクラスターを選択します。
  2. 選択したクラスターで、Machine pools タブを選択します。
  3. 自動スケーリングを有効にするマシンプールの最後にある Options メニュー kebab をクリックし、Edit を選択します。
  4. Edit machine pool ダイアログで、Enable autoscaling チェックボックスをオンにします。
  5. Save を選択してこれらの変更を保存し、マシンプールの自動スケーリングを有効にします。

4.3.2. クラスターでの自動スケーリングノードの無効化

ワーカーノードで自動スケーリングを無効にし、既存クラスターのマシンプール定義を編集して利用可能なノード数を増減できます。

OpenShift Cluster Manager コンソールを使用して、クラスターでの自動スケーリングを無効にできます。

Red Hat OpenShift Cluster Manager を使用した既存のクラスターでの自動スケーリングノードの無効化

OpenShift Cluster Manager からマシンプール定義でワーカーノードの自動スケーリングを無効にします。

手順

  1. OpenShift Cluster Manager で、Cluster List ページに移動し、無効にする必要のある自動スケーリングでクラスターを選択します。
  2. 選択したクラスターで、Machine pools タブを選択します。
  3. 自動スケーリングのあるマシンプールの最後にある Options メニュー kebab をクリックし、Edit を選択します。
  4. Edit machine pool ダイアログで、Enable autoscaling チェックボックスをオフにします。
  5. Save を選択してこれらの変更を保存し、マシンプールの自動スケーリングを無効にします。

自動スケーリングの OpenShift Dedicated クラスターへの適用には、クラスターへの Cluster Autoscaler のデプロイと各マシンタイプの Machine Autoscaler のデプロイが必要です。

重要

Cluster Autoscaler は、マシン API が機能しているクラスターでのみ設定できます。

4.3.3. Cluster Autoscaler について

Cluster Autoscaler は、現行のデプロイメントのニーズに合わせて OpenShift Dedicated クラスターのサイズを調整します。これは、Kubernetes 形式の宣言引数を使用して、特定のクラウドプロバイダーのオブジェクトに依存しないインフラストラクチャー管理を提供します。Cluster Autoscaler には cluster スコープがあり、特定の namespace には関連付けられていません。

Cluster Autoscaler は、リソース不足のために現在のワーカーノードのいずれにもスケジュールできない Pod がある場合や、デプロイメントのニーズを満たすために別のノードが必要な場合に、クラスターのサイズを拡大します。Cluster Autoscaler は、指定の制限を超えてクラスターリソースを拡大することはありません。

Cluster Autoscaler は、コントロールプレーンノードを管理しない場合でも、クラスター内のすべてのノードのメモリー、CPU の合計を計算します。これらの値は、単一マシン指向ではありません。これらは、クラスター全体での全リソースの集約です。たとえば、最大メモリーリソースの制限を設定する場合、Cluster Autoscaler は現在のメモリー使用量を計算する際にクラスター内のすべてのノードを含めます。この計算は、Cluster Autoscaler にワーカーリソースを追加する容量があるかどうかを判別するために使用されます。

重要

作成する ClusterAutoscaler リソース定義の maxNodesTotal 値が、クラスター内のマシンの想定される合計数に対応するのに十分な大きさの値であることを確認します。この値は、コントロールプレーンマシンの数とスケーリングする可能性のあるコンピュートマシンの数に対応できる値である必要があります。

ノードの自動削除

Cluster Autoscaler は 10 秒ごとに、クラスターで不要なノードをチェックし、それらを削除します。Cluster Autoscaler は、以下の条件が適用される場合に、ノードを削除すべきと考えます。

  • ノードの使用率はクラスターの ノード使用率レベル のしきい値よりも低い場合。ノード使用率レベルとは、要求されたリソースの合計をノードに割り当てられたリソースで除算したものです。ClusterAutoscaler カスタムリソースで値を指定しない場合、Cluster Autoscaler は 50% の使用率に対応するデフォルト値 0.5 を使用します。
  • Cluster Autoscaler がノードで実行されているすべての Pod を他のノードに移動できる。Kubernetes スケジューラーは、ノード上の Pod のスケジュールを担当します。
  • Cluster Autoscaler で、スケールダウンが無効にされたアノテーションがない。

以下のタイプの Pod がノードにある場合、Cluster Autoscaler はそのノードを削除しません。

  • 制限のある Pod の Disruption Budget (停止状態の予算、PDB) を持つ Pod。
  • デフォルトでノードで実行されない Kube システム Pod。
  • PDB を持たないか、制限が厳しい PDB を持つ Kuber システム Pod。
  • デプロイメント、レプリカセット、またはステートフルセットなどのコントローラーオブジェクトによってサポートされない Pod。
  • ローカルストレージを持つ Pod。
  • リソース不足、互換性のないノードセレクターまたはアフィニティー、一致する非アフィニティーなどにより他の場所に移動できない Pod。
  • それらに "cluster-autoscaler.kubernetes.io/safe-to-evict": "true" アノテーションがない場合、"cluster-autoscaler.kubernetes.io/safe-to-evict": "false" アノテーションを持つ Pod。

たとえば、CPU の上限を 64 コアに設定し、それぞれ 8 コアを持つマシンのみを作成するように Cluster Autoscaler を設定したとします。クラスターが 30 コアで起動する場合、Cluster Autoscaler は最大で 4 つのノード (合計 32 コア) を追加できます。この場合、総計は 62 コアになります。

制限

Cluster Autoscaler を設定する場合、使用に関する追加の制限が適用されます。

  • 自動スケーリングされたノードグループにあるノードを直接変更しないようにしてください。同じノードグループ内のすべてのノードには同じ容量およびラベルがあり、同じシステム Pod を実行します。
  • Pod の要求を指定します。
  • Pod がすぐに削除されるのを防ぐ必要がある場合、適切な PDB を設定します。
  • クラウドプロバイダーのクォータが、設定する最大のノードプールに対応できる十分な大きさであることを確認します。
  • クラウドプロバイダーで提供されるものなどの、追加のノードグループの Autoscaler を実行しないようにしてください。
注記

Cluster Autoscaler は、自動スケーリングされたノードグループのノードのみを追加します。これにより、Pod がスケジュール可能になります。利用可能なノードタイプが Pod 要求の要件を満たさない場合、またはこれらの要件を満たすことができるノードグループが最大サイズである場合、Cluster Autoscaler はスケールアップできません。

他のスケジューリング機能との対話

Horizontal Pod Autoscaler (HPA) および Cluster Autoscaler は複数の異なる方法でクラスターリソースを変更します。HPA は、現在の CPU 負荷に基づいてデプロイメント、またはレプリカセットのレプリカ数を変更します。負荷が増大すると、HPA はクラスターで利用できるリソース量に関係なく、新規レプリカを作成します。十分なリソースがない場合、Cluster Autoscaler はリソースを追加し、HPA で作成された Pod が実行できるようにします。負荷が減少する場合、HPA は一部のレプリカを停止します。この動作によって一部のノードの使用率が低くなるか、完全に空になる場合、Cluster Autoscaler は不必要なノードを削除します。

Cluster Autoscaler は Pod の優先順位を考慮に入れます。Pod の優先順位とプリエンプション機能により、クラスターに十分なリソースがない場合に優先順位に基づいて Pod のスケジューリングを有効にできますが、Cluster Autoscaler はクラスターがすべての Pod を実行するのに必要なリソースを確保できます。これら両方の機能の意図を反映するべく、Cluster Autoscaler には優先順位のカットオフ機能が含まれています。このカットオフを使用して "Best Effort" の Pod をスケジュールできますが、これにより Cluster Autoscaler がリソースを増やすことはなく、余分なリソースがある場合にのみ実行されます。

カットオフ値よりも低い優先順位を持つ Pod は、クラスターをスケールアップせず、クラスターのスケールダウンを防ぐこともありません。これらの Pod を実行するために新規ノードは追加されず、これらの Pod を実行しているノードはリソースを解放するために削除される可能性があります。

4.3.4. 関連情報

Red Hat logoGithubRedditYoutubeTwitter

詳細情報

試用、購入および販売

コミュニティー

Red Hat ドキュメントについて

Red Hat をお使いのお客様が、信頼できるコンテンツが含まれている製品やサービスを活用することで、イノベーションを行い、目標を達成できるようにします。

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。このような変更は、段階的に実施される予定です。詳細情報: Red Hat ブログ.

会社概要

Red Hat は、企業がコアとなるデータセンターからネットワークエッジに至るまで、各種プラットフォームや環境全体で作業を簡素化できるように、強化されたソリューションを提供しています。

© 2024 Red Hat, Inc.