17.6. PTP 장치 구성


PTP Operator는 NodePtpDevice.ptp.openshift.io CRD(custom resource definition)를 OpenShift Container Platform에 추가합니다.

PTP Operator가 설치되면 각 노드에서 PTP 가능 네트워크 장치를 클러스터에서 검색합니다. 호환되는 PTP 가능 네트워크 장치를 제공하는 각 노드에 대해 NodePtpDevice CR(사용자 정의 리소스) 오브젝트를 생성하고 업데이트합니다.

17.6.1. 클러스터에서 PTP 지원 네트워크 장치 검색

  • 클러스터에서 PTP 가능 네트워크 장치의 전체 목록을 반환하려면 다음 명령을 실행합니다.

    $ oc get NodePtpDevice -n openshift-ptp -o yaml

    출력 예

    apiVersion: v1
    items:
    - apiVersion: ptp.openshift.io/v1
      kind: NodePtpDevice
      metadata:
        creationTimestamp: "2022-01-27T15:16:28Z"
        generation: 1
        name: dev-worker-0 1
        namespace: openshift-ptp
        resourceVersion: "6538103"
        uid: d42fc9ad-bcbf-4590-b6d8-b676c642781a
      spec: {}
      status:
        devices: 2
        - name: eno1
        - name: eno2
        - name: eno3
        - name: eno4
        - name: enp5s0f0
        - name: enp5s0f1
    ...

    1
    name 매개변수의 값은 상위 노드의 이름과 동일합니다.
    2
    장치 컬렉션에는 PTP Operator가 노드에 대해 검색하는 PTP 가능 장치 목록이 포함됩니다.

17.6.2. linuxptp 서비스를 위주로 구성

호스트 NIC를 구성하는 PtpConfig CR(사용자 정의 리소스)을 생성하여 linuxptp 서비스(ptp4l,phc2sys,ts2phc)를 마스터 클록(T-GM)으로 구성할 수 있습니다.

ts2phc 유틸리티를 사용하면 노드가 PTP 일반 시계 및 경계 클럭을 다운스트림하기 위해 정확도 시계 신호를 스트리밍할 수 있도록 시스템 시계를 PTP 유예 시계 시계와 동기화할 수 있습니다.

참고

다음 예제 PtpConfig CR을 기반으로 사용하여 linuxptp 서비스를 특정 하드웨어 및 환경에 대한 그랜드마스터 시계로 구성합니다. 이 예제 CR에서는 PTP 빠른 이벤트를 구성하지 않습니다. PTP 빠른 이벤트를 구성하려면 ptp4lOpts,ptp4lConf, ptpClockThreshold 에 적절한 값을 설정합니다. ptpClockThreshold 는 이벤트가 활성화된 경우에만 사용됩니다. 자세한 내용은 " PTP 빠른 이벤트 알림 게시자 구성"을 참조하십시오.

사전 요구 사항

  • 프로덕션 환경의 T-GM 클록의 경우 베어 메탈 클러스터 호스트에 Intel E810 Westport 채널 NIC를 설치합니다.
  • OpenShift CLI(oc)를 설치합니다.
  • cluster-admin 권한이 있는 사용자로 로그인합니다.
  • PTP Operator를 설치합니다.

절차

  1. PtpConfig 리소스를 생성합니다. 예를 들면 다음과 같습니다.

    1. 요구 사항에 따라 배포에 다음 T-GM 구성 중 하나를 사용하십시오. YAML을 grandmaster-clock-ptp-config.yaml 파일에 저장합니다.

      예 17.1. PTP grandmaster 클럭 구성의 예

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: grandmaster-clock
        namespace: openshift-ptp
        annotations: {}
      spec:
        profile:
          - name: grandmaster-clock
            # The interface name is hardware-specific
            interface: $interface
            ptp4lOpts: "-2"
            phc2sysOpts: "-a -r -r -n 24"
            ptpSchedulingPolicy: SCHED_FIFO
            ptpSchedulingPriority: 10
            ptpSettings:
              logReduce: "true"
            ptp4lConf: |
              [global]
              #
              # Default Data Set
              #
              twoStepFlag 1
              slaveOnly 0
              priority1 128
              priority2 128
              domainNumber 24
              #utc_offset 37
              clockClass 255
              clockAccuracy 0xFE
              offsetScaledLogVariance 0xFFFF
              free_running 0
              freq_est_interval 1
              dscp_event 0
              dscp_general 0
              dataset_comparison G.8275.x
              G.8275.defaultDS.localPriority 128
              #
              # Port Data Set
              #
              logAnnounceInterval -3
              logSyncInterval -4
              logMinDelayReqInterval -4
              logMinPdelayReqInterval -4
              announceReceiptTimeout 3
              syncReceiptTimeout 0
              delayAsymmetry 0
              fault_reset_interval -4
              neighborPropDelayThresh 20000000
              masterOnly 0
              G.8275.portDS.localPriority 128
              #
              # Run time options
              #
              assume_two_step 0
              logging_level 6
              path_trace_enabled 0
              follow_up_info 0
              hybrid_e2e 0
              inhibit_multicast_service 0
              net_sync_monitor 0
              tc_spanning_tree 0
              tx_timestamp_timeout 50
              unicast_listen 0
              unicast_master_table 0
              unicast_req_duration 3600
              use_syslog 1
              verbose 0
              summary_interval 0
              kernel_leap 1
              check_fup_sync 0
              clock_class_threshold 7
              #
              # Servo Options
              #
              pi_proportional_const 0.0
              pi_integral_const 0.0
              pi_proportional_scale 0.0
              pi_proportional_exponent -0.3
              pi_proportional_norm_max 0.7
              pi_integral_scale 0.0
              pi_integral_exponent 0.4
              pi_integral_norm_max 0.3
              step_threshold 2.0
              first_step_threshold 0.00002
              max_frequency 900000000
              clock_servo pi
              sanity_freq_limit 200000000
              ntpshm_segment 0
              #
              # Transport options
              #
              transportSpecific 0x0
              ptp_dst_mac 01:1B:19:00:00:00
              p2p_dst_mac 01:80:C2:00:00:0E
              udp_ttl 1
              udp6_scope 0x0E
              uds_address /var/run/ptp4l
              #
              # Default interface options
              #
              clock_type OC
              network_transport L2
              delay_mechanism E2E
              time_stamping hardware
              tsproc_mode filter
              delay_filter moving_median
              delay_filter_length 10
              egressLatency 0
              ingressLatency 0
              boundary_clock_jbod 0
              #
              # Clock description
              #
              productDescription ;;
              revisionData ;;
              manufacturerIdentity 00:00:00
              userDescription ;
              timeSource 0xA0
        recommend:
          - profile: grandmaster-clock
            priority: 4
            match:
              - nodeLabel: "node-role.kubernetes.io/$mcp"
      참고

      예제 PTP 할 마스터 클록 구성은 테스트 목적으로만 사용되며 프로덕션을 위한 것은 아닙니다.

      예 17.2. E810 NIC의 PTP 마스터 클럭 구성

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: grandmaster
        namespace: openshift-ptp
        annotations:
          ran.openshift.io/ztp-deploy-wave: "10"
      spec:
        profile:
        - name: "grandmaster"
          ptp4lOpts: "-2 --summary_interval -4"
          phc2sysOpts: -r -u 0 -m -O -37 -N 8 -R 16 -s $iface_master -n 24
          ptpSchedulingPolicy: SCHED_FIFO
          ptpSchedulingPriority: 10
          ptpSettings:
            logReduce: "true"
          plugins:
            e810:
              enableDefaultConfig: true
          ts2phcOpts: " "
          ts2phcConf: |
            [nmea]
            ts2phc.master 1
            [global]
            use_syslog  0
            verbose 1
            logging_level 7
            ts2phc.pulsewidth 100000000
            ts2phc.nmea_serialport $gnss_serialport
            leapfile  /usr/share/zoneinfo/leap-seconds.list
            [$iface_master]
            ts2phc.extts_polarity rising
            ts2phc.extts_correction 0
          ptp4lConf: |
            [$iface_master]
            masterOnly 1
            [$iface_master_1]
            masterOnly 1
            [$iface_master_2]
            masterOnly 1
            [$iface_master_3]
            masterOnly 1
            [global]
            #
            # Default Data Set
            #
            twoStepFlag 1
            priority1 128
            priority2 128
            domainNumber 24
            #utc_offset 37
            clockClass 6
            clockAccuracy 0x27
            offsetScaledLogVariance 0xFFFF
            free_running 0
            freq_est_interval 1
            dscp_event 0
            dscp_general 0
            dataset_comparison G.8275.x
            G.8275.defaultDS.localPriority 128
            #
            # Port Data Set
            #
            logAnnounceInterval -3
            logSyncInterval -4
            logMinDelayReqInterval -4
            logMinPdelayReqInterval 0
            announceReceiptTimeout 3
            syncReceiptTimeout 0
            delayAsymmetry 0
            fault_reset_interval -4
            neighborPropDelayThresh 20000000
            masterOnly 0
            G.8275.portDS.localPriority 128
            #
            # Run time options
            #
            assume_two_step 0
            logging_level 6
            path_trace_enabled 0
            follow_up_info 0
            hybrid_e2e 0
            inhibit_multicast_service 0
            net_sync_monitor 0
            tc_spanning_tree 0
            tx_timestamp_timeout 50
            unicast_listen 0
            unicast_master_table 0
            unicast_req_duration 3600
            use_syslog 1
            verbose 0
            summary_interval -4
            kernel_leap 1
            check_fup_sync 0
            clock_class_threshold 7
            #
            # Servo Options
            #
            pi_proportional_const 0.0
            pi_integral_const 0.0
            pi_proportional_scale 0.0
            pi_proportional_exponent -0.3
            pi_proportional_norm_max 0.7
            pi_integral_scale 0.0
            pi_integral_exponent 0.4
            pi_integral_norm_max 0.3
            step_threshold 2.0
            first_step_threshold 0.00002
            clock_servo pi
            sanity_freq_limit  200000000
            ntpshm_segment 0
            #
            # Transport options
            #
            transportSpecific 0x0
            ptp_dst_mac 01:1B:19:00:00:00
            p2p_dst_mac 01:80:C2:00:00:0E
            udp_ttl 1
            udp6_scope 0x0E
            uds_address /var/run/ptp4l
            #
            # Default interface options
            #
            clock_type BC
            network_transport L2
            delay_mechanism E2E
            time_stamping hardware
            tsproc_mode filter
            delay_filter moving_median
            delay_filter_length 10
            egressLatency 0
            ingressLatency 0
            boundary_clock_jbod 0
            #
            # Clock description
            #
            productDescription ;;
            revisionData ;;
            manufacturerIdentity 00:00:00
            userDescription ;
            timeSource 0x20
        recommend:
        - profile: "grandmaster"
          priority: 4
          match:
          - nodeLabel: "node-role.kubernetes.io/$mcp"
    2. 다음 명령을 실행하여 CR을 생성합니다.

      $ oc create -f grandmaster-clock-ptp-config.yaml

검증

  1. PtpConfig 프로필이 노드에 적용되는지 확인합니다.

    1. 다음 명령을 실행하여 openshift-ptp 네임스페이스에서 Pod 목록을 가져옵니다.

      $ oc get pods -n openshift-ptp -o wide

      출력 예

      NAME                          READY   STATUS    RESTARTS   AGE     IP             NODE
      linuxptp-daemon-74m2g         3/3     Running   3          4d15h   10.16.230.7    compute-1.example.com
      ptp-operator-5f4f48d7c-x7zkf  1/1     Running   1          4d15h   10.128.1.145   compute-1.example.com

    2. 프로필이 올바른지 확인합니다. PtpConfig 프로필에 지정한 노드에 해당하는 linuxptp 데몬의 로그를 검사합니다. 다음 명령을 실행합니다.

      $ oc logs linuxptp-daemon-74m2g -n openshift-ptp -c linuxptp-daemon-container

      출력 예

      ts2phc[94980.334]: [ts2phc.0.config] nmea delay: 98690975 ns
      ts2phc[94980.334]: [ts2phc.0.config] ens3f0 extts index 0 at 1676577329.999999999 corr 0 src 1676577330.901342528 diff -1
      ts2phc[94980.334]: [ts2phc.0.config] ens3f0 master offset         -1 s2 freq      -1
      ts2phc[94980.441]: [ts2phc.0.config] nmea sentence: GNRMC,195453.00,A,4233.24427,N,07126.64420,W,0.008,,160223,,,A,V
      phc2sys[94980.450]: [ptp4l.0.config] CLOCK_REALTIME phc offset       943 s2 freq  -89604 delay    504
      phc2sys[94980.512]: [ptp4l.0.config] CLOCK_REALTIME phc offset      1000 s2 freq  -89264 delay    474

17.6.2.1. ovnmaster 클럭 PtpConfig 구성 참조

다음 참조 정보는 linuxptp 서비스(ptp4l,phc2sys,ts2phc)를 마스터 클록으로 구성하는 PtpConfig CR(사용자 정의 리소스)의 구성 옵션을 설명합니다.

표 17.1. PTP>-<master 클럭에 대한 PtpConfig 구성 옵션
PtpConfig CR 필드설명

plugins

.exec.cmdline 옵션의 배열을 지정하여 그랜드 마스터 클럭 작업에 대한 NIC를 구성합니다. ovnmaster 클럭 구성을 사용하려면 특정 PTP 핀을 비활성화해야 합니다.

플러그인 메커니즘을 사용하면 PTP Operator가 자동화된 하드웨어 구성을 수행할 수 있습니다. Intel Westport Channel NIC의 경우 enableDefaultConfig 가 true인 경우 PTP Operator는 하드 코딩된 스크립트를 실행하여 NIC에 필요한 구성을 수행합니다.

ptp4lOpts

ptp4l 서비스에 대한 시스템 구성 옵션을 지정합니다. 옵션은 네트워크 인터페이스 이름과 서비스 구성 파일이 자동으로 추가되므로 네트워크 인터페이스 이름 -i <interface> 및 서비스 구성 파일 -f /etc/ptp4l.conf를 포함하지 않아야 합니다.

ptp4lConf

ptp4l 을 할 마스터 클록으로 시작하는 데 필요한 구성을 지정합니다. 예를 들어 ens2f1 인터페이스는 다운스트림 연결된 장치를 동기화합니다. 마스터 시계의 경우 clockClass6 으로 설정하고 clockAccuracy0x27 로 설정합니다. GNSS(Global navigation satellite system)에서 타이밍 신호를 수신할 때 timeSource0x20 으로 설정합니다.

tx_timestamp_timeout

데이터를 삭제하기 전에 발신자의 전송 (TX) 타임 스탬프를 기다릴 최대 시간을 지정합니다.

boundary_clock_jbod

JBOD 경계 클럭 지연 값을 지정합니다. 이 값은 네트워크 시간 장치 간에 전달되는 시간 값을 수정하는 데 사용됩니다.

phc2sysOpts

phc2sys 서비스에 대한 시스템 구성 옵션을 지정합니다. 이 필드가 비어 있으면 PTP Operator에서 phc2sys 서비스를 시작하지 않습니다.

참고

여기에 나열된 네트워크 인터페이스가 그랜드 마스터로 구성되어 있으며 ts2phcConfptp4lConf 필드에서 필요에 따라 참조되는지 확인합니다.

ptpSchedulingPolicy

ptp4lphc2sys 프로세스에 대한 스케줄링 정책을 구성합니다. 기본값은ECDHE _OTHER 입니다. FIFO 스케줄링을 지원하는 시스템에서ECDHE_ FIFO를 사용합니다.

ptpSchedulingPriority

ptpSchedulingPolicy 가 10.0.0.1 _FIFO로 설정된 경우 ptpSchedulingPolicy의 FIFO 우선 순위를 1-65에서 설정하여 ptp4lphc2sys 프로세스의 FIFO 우선 순위를 구성합니다. ptpSchedulingPriority 필드는 ptpSchedulingPolicy 가ECDHE _OTHER 로 설정된 경우 사용되지 않습니다.

ptpClockThreshold

선택 사항: ptpClockThreshold 스탠자가 없으면 기본값이 ptpClockThreshold 필드에 사용됩니다. 스탠자는 기본 ptpClockThreshold 값을 표시합니다. ptpClockThreshold 값은 PTP 이벤트가 트리거되기 전에 PTP 마스터 클럭이 연결 해제된 후의 기간을 구성합니다. holdOverTimeout 은 PTP 마스터 클럭의 연결이 끊어지면 PTP 클럭 이벤트 상태가 FREERUN 로 변경되기 전 시간(초)입니다. maxOffsetThresholdminOffsetThreshold 설정은 CLOCK_REALTIME (phc2sys) 또는 마스터 오프셋(ptp4l)의 값과 비교되는 나노초에 오프셋 값을 구성합니다. ptp4l 또는 phc2sys 오프셋 값이 이 범위를 벗어나는 경우 PTP 클럭 상태가 FREERUN 로 설정됩니다. 오프셋 값이 이 범위 내에 있으면 PTP 클럭 상태가 LOCKED 로 설정됩니다.

ts2phcConf

ts2phc 명령의 구성을 설정합니다.

leapfile 은 PTP Operator 컨테이너 이미지의 현재 윤초 정의 파일에 대한 기본 경로입니다.

ts2phc.nmea_serialport 는 NMEA GPS 클럭 소스에 연결된 직렬 포트 장치입니다. 구성되면 /dev/gnss<id> 에서 GNSS 수신기에 액세스할 수 있습니다. 호스트에 여러 GNSS 수신자가 있는 경우 다음 장치 중 하나를 사용하여 올바른 장치를 찾을 수 있습니다.

  • /sys/class/net/<eth_port>/device/gnss/
  • /sys/class/gnss/gnss<id>/device/

ts2phcOpts

ts2phc 명령에 대한 옵션을 설정합니다.

권장

프로필을 노드에 적용하는 방법에 대한 규칙을 정의하는 하나 이상의 recommend 오브젝트 배열을 지정합니다.

.recommend.profile

profile 섹션에 정의된 .recommend. profile 오브젝트 이름을 지정합니다.

.recommend.priority

0에서 99 사이의 정수 값으로 priority를 지정합니다. 숫자가 클수록 우선순위가 낮으므로 우선순위 99는 우선순위 10보다 낮습니다. match 필드에 정의된 규칙에 따라 여러 프로필과 노드를 일치시킬 수 있는 경우 우선 순위가 높은 프로필이 해당 노드에 적용됩니다.

.recommend.match

nodeLabel 또는 nodeName 값을 사용하여 .recommend.match 규칙을 지정합니다.

.recommend.match.nodeLabel

oc get nodes --show-labels 명령을 사용하여 노드 오브젝트에서 node.Labels 필드의 키로 nodeLabel 을 설정합니다. 예: node-role.kubernetes.io/worker.

.recommend.match.nodeName

oc get nodes 명령을 사용하여 노드 오브젝트의 node.Name 필드 값으로 nodeName 을 설정합니다. 예를 들면 compute-1.example.com 입니다.

17.6.3. linuxptp 서비스를 일반 시계로 구성

PtpConfig CR(사용자 정의 리소스) 오브젝트를 생성하여 linuxptp 서비스(ptp4l,phc2sys)를 일반 클럭으로 구성할 수 있습니다.

참고

다음 예제 PtpConfig CR을 기반으로 사용하여 linuxptp 서비스를 특정 하드웨어 및 환경에 대한 일반 클럭으로 구성합니다. 이 예제 CR에서는 PTP 빠른 이벤트를 구성하지 않습니다. PTP 빠른 이벤트를 구성하려면 ptp4lOpts,ptp4lConf, ptpClockThreshold 에 적절한 값을 설정합니다. ptpClockThreshold 는 이벤트가 활성화된 경우에만 필요합니다. 자세한 내용은 " PTP 빠른 이벤트 알림 게시자 구성"을 참조하십시오.

사전 요구 사항

  • OpenShift CLI(oc)를 설치합니다.
  • cluster-admin 권한이 있는 사용자로 로그인합니다.
  • PTP Operator를 설치합니다.

절차

  1. 다음 PtpConfig CR을 생성한 다음 YAML을 ordinary-clock-ptp-config.yaml 파일에 저장합니다.

    PTP 일반 클럭 구성의 예

    apiVersion: ptp.openshift.io/v1
    kind: PtpConfig
    metadata:
      name: ordinary-clock
      namespace: openshift-ptp
      annotations: {}
    spec:
      profile:
        - name: ordinary-clock
          # The interface name is hardware-specific
          interface: $interface
          ptp4lOpts: "-2 -s"
          phc2sysOpts: "-a -r -n 24"
          ptpSchedulingPolicy: SCHED_FIFO
          ptpSchedulingPriority: 10
          ptpSettings:
            logReduce: "true"
          ptp4lConf: |
            [global]
            #
            # Default Data Set
            #
            twoStepFlag 1
            slaveOnly 1
            priority1 128
            priority2 128
            domainNumber 24
            #utc_offset 37
            clockClass 255
            clockAccuracy 0xFE
            offsetScaledLogVariance 0xFFFF
            free_running 0
            freq_est_interval 1
            dscp_event 0
            dscp_general 0
            dataset_comparison G.8275.x
            G.8275.defaultDS.localPriority 128
            #
            # Port Data Set
            #
            logAnnounceInterval -3
            logSyncInterval -4
            logMinDelayReqInterval -4
            logMinPdelayReqInterval -4
            announceReceiptTimeout 3
            syncReceiptTimeout 0
            delayAsymmetry 0
            fault_reset_interval -4
            neighborPropDelayThresh 20000000
            masterOnly 0
            G.8275.portDS.localPriority 128
            #
            # Run time options
            #
            assume_two_step 0
            logging_level 6
            path_trace_enabled 0
            follow_up_info 0
            hybrid_e2e 0
            inhibit_multicast_service 0
            net_sync_monitor 0
            tc_spanning_tree 0
            tx_timestamp_timeout 50
            unicast_listen 0
            unicast_master_table 0
            unicast_req_duration 3600
            use_syslog 1
            verbose 0
            summary_interval 0
            kernel_leap 1
            check_fup_sync 0
            clock_class_threshold 7
            #
            # Servo Options
            #
            pi_proportional_const 0.0
            pi_integral_const 0.0
            pi_proportional_scale 0.0
            pi_proportional_exponent -0.3
            pi_proportional_norm_max 0.7
            pi_integral_scale 0.0
            pi_integral_exponent 0.4
            pi_integral_norm_max 0.3
            step_threshold 2.0
            first_step_threshold 0.00002
            max_frequency 900000000
            clock_servo pi
            sanity_freq_limit 200000000
            ntpshm_segment 0
            #
            # Transport options
            #
            transportSpecific 0x0
            ptp_dst_mac 01:1B:19:00:00:00
            p2p_dst_mac 01:80:C2:00:00:0E
            udp_ttl 1
            udp6_scope 0x0E
            uds_address /var/run/ptp4l
            #
            # Default interface options
            #
            clock_type OC
            network_transport L2
            delay_mechanism E2E
            time_stamping hardware
            tsproc_mode filter
            delay_filter moving_median
            delay_filter_length 10
            egressLatency 0
            ingressLatency 0
            boundary_clock_jbod 0
            #
            # Clock description
            #
            productDescription ;;
            revisionData ;;
            manufacturerIdentity 00:00:00
            userDescription ;
            timeSource 0xA0
      recommend:
        - profile: ordinary-clock
          priority: 4
          match:
            - nodeLabel: "node-role.kubernetes.io/$mcp"

    표 17.2. PTP 일반 클럭 CR 구성 옵션
    사용자 정의 리소스 필드설명

    name

    PtpConfig CR의 이름입니다.

    profile

    하나 이상의 profile 오브젝트의 배열을 지정합니다. 각 프로필은 고유하게 이름을 지정해야 합니다.

    인터페이스

    ptp4l 서비스에서 사용할 네트워크 인터페이스를 지정합니다(예: ens787f1 ).

    ptp4lOpts

    ptp4l 서비스에 대한 시스템 구성 옵션을 지정합니다. 예를 들면 -2 에서 IEEE 802.3 네트워크 전송을 선택합니다. 옵션은 네트워크 인터페이스 이름과 서비스 구성 파일이 자동으로 추가되므로 네트워크 인터페이스 이름 -i <interface> 및 서비스 구성 파일 -f /etc/ptp4l.conf를 포함하지 않아야 합니다. 이 인터페이스에서 PTP 빠른 이벤트를 사용하려면 --summary_interval -4 를 추가합니다.

    phc2sysOpts

    phc2sys 서비스에 대한 시스템 구성 옵션을 지정합니다. 이 필드가 비어 있으면 PTP Operator에서 phc2sys 서비스를 시작하지 않습니다. Intel Columbiaville 800 시리즈 NIC의 경우 phc2sysOpts 옵션을 -a -r -m -n 24 -N 8 -R 16 으로 설정합니다. -m 에서 stdout 에 메시지를 출력합니다. linuxptp-daemon DaemonSet 은 로그를 구문 분석하고 Prometheus 지표를 생성합니다.

    ptp4lConf

    기본 /etc/ptp4l.conf 파일을 대체할 구성이 포함된 문자열을 지정합니다. 기본 구성을 사용하려면 필드를 비워 둡니다.

    tx_timestamp_timeout

    Intel Columbiaville 800 시리즈 NIC의 경우 tx_timestamp_timeout50 으로 설정합니다.

    boundary_clock_jbod

    Intel Columbiaville 800 시리즈 NIC의 경우 boundary_clock_jbod0 으로 설정합니다.

    ptpSchedulingPolicy

    ptp4lphc2sys 프로세스에 대한 스케줄링 정책입니다. 기본값은ECDHE _OTHER 입니다. FIFO 스케줄링을 지원하는 시스템에서ECDHE_ FIFO를 사용합니다.

    ptpSchedulingPriority

    ptpSchedulingPolicy 가ECDHE _FIFO로 설정된 경우 ptp4lphc2sys 프로세스의 FIFO 우선 순위를 설정하는 데 사용되는 1-65의 정수 값입니다. ptpSchedulingPriority 필드는 ptpSchedulingPolicy 가ECDHE _OTHER 로 설정된 경우 사용되지 않습니다.

    ptpClockThreshold

    선택 사항: ptpClockThreshold 가 없으면 기본값이 ptpClockThreshold 필드에 사용됩니다. ptpClockThreshold 는 PTP 이벤트가 트리거되기 전에 PTP 마스터 시계가 연결이 끊긴 후의 기간을 구성합니다. holdOverTimeout 은 PTP 마스터 클럭이 연결 해제되면 PTP 클럭 이벤트 상태가 Free RUN 로 변경되는 시간 값(초)입니다. maxOffsetThresholdminOffsetThreshold 설정은 CLOCK_REALTIME (phc2sys) 또는 마스터 오프셋(ptp4l)의 값과 비교하여 나노초 단위로 오프셋 값을 구성합니다. ptp4l 또는 phc2sys 오프셋 값이 이 범위를 벗어나면 PTP 클럭 상태가 FREERUN 로 설정됩니다. 오프셋 값이 이 범위 내에 있으면 PTP 클럭 상태가 LOCKED 로 설정됩니다.

    권장

    프로필을 노드에 적용하는 방법에 대한 규칙을 정의하는 하나 이상의 recommend 오브젝트 배열을 지정합니다.

    .recommend.profile

    profile 섹션에 정의된 .recommend. profile 오브젝트 이름을 지정합니다.

    .recommend.priority

    일반 시계의 경우 .recommend.priority0 으로 설정합니다.

    .recommend.match

    nodeLabel 또는 nodeName 값을 사용하여 .recommend.match 규칙을 지정합니다.

    .recommend.match.nodeLabel

    oc get nodes --show-labels 명령을 사용하여 노드 오브젝트에서 node.Labels 필드의 키로 nodeLabel 을 설정합니다. 예: node-role.kubernetes.io/worker.

    .recommend.match.nodeName

    oc get nodes 명령을 사용하여 노드 오브젝트의 node.Name 필드 값으로 nodeName 을 설정합니다. 예를 들면 compute-1.example.com 입니다.

  2. 다음 명령을 실행하여 PtpConfig CR을 생성합니다.

    $ oc create -f ordinary-clock-ptp-config.yaml

검증

  1. PtpConfig 프로필이 노드에 적용되는지 확인합니다.

    1. 다음 명령을 실행하여 openshift-ptp 네임스페이스에서 Pod 목록을 가져옵니다.

      $ oc get pods -n openshift-ptp -o wide

      출력 예

      NAME                            READY   STATUS    RESTARTS   AGE   IP               NODE
      linuxptp-daemon-4xkbb           1/1     Running   0          43m   10.1.196.24      compute-0.example.com
      linuxptp-daemon-tdspf           1/1     Running   0          43m   10.1.196.25      compute-1.example.com
      ptp-operator-657bbb64c8-2f8sj   1/1     Running   0          43m   10.129.0.61      control-plane-1.example.com

    2. 프로필이 올바른지 확인합니다. PtpConfig 프로필에 지정한 노드에 해당하는 linuxptp 데몬의 로그를 검사합니다. 다음 명령을 실행합니다.

      $ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

      출력 예

      I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
      I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
      I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
      I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
      I1115 09:41:17.117616 4143292 daemon.go:102] Interface: ens787f1
      I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2 -s
      I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
      I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

추가 리소스

17.6.4. linuxptp 서비스를 경계 클럭으로 구성

PtpConfig CR(사용자 정의 리소스) 오브젝트를 생성하여 linuxptp 서비스(ptp4l,phc2sys)를 경계 클럭으로 구성할 수 있습니다.

참고

다음 예제 PtpConfig CR을 기반으로 linuxptp 서비스를 특정 하드웨어 및 환경에 대한 경계 클럭으로 구성합니다. 이 예제 CR에서는 PTP 빠른 이벤트를 구성하지 않습니다. PTP 빠른 이벤트를 구성하려면 ptp4lOpts,ptp4lConf, ptpClockThreshold 에 적절한 값을 설정합니다. ptpClockThreshold 는 이벤트가 활성화된 경우에만 사용됩니다. 자세한 내용은 " PTP 빠른 이벤트 알림 게시자 구성"을 참조하십시오.

사전 요구 사항

  • OpenShift CLI(oc)를 설치합니다.
  • cluster-admin 권한이 있는 사용자로 로그인합니다.
  • PTP Operator를 설치합니다.

절차

  1. 다음 PtpConfig CR을 만든 다음 YAML을 boundary-clock-ptp-config.yaml 파일에 저장합니다.

    PTP 경계 클럭 구성의 예

    apiVersion: ptp.openshift.io/v1
    kind: PtpConfig
    metadata:
      name: boundary-clock
      namespace: openshift-ptp
      annotations: {}
    spec:
      profile:
        - name: boundary-clock
          ptp4lOpts: "-2"
          phc2sysOpts: "-a -r -n 24"
          ptpSchedulingPolicy: SCHED_FIFO
          ptpSchedulingPriority: 10
          ptpSettings:
            logReduce: "true"
          ptp4lConf: |
            # The interface name is hardware-specific
            [$iface_slave]
            masterOnly 0
            [$iface_master_1]
            masterOnly 1
            [$iface_master_2]
            masterOnly 1
            [$iface_master_3]
            masterOnly 1
            [global]
            #
            # Default Data Set
            #
            twoStepFlag 1
            slaveOnly 0
            priority1 128
            priority2 128
            domainNumber 24
            #utc_offset 37
            clockClass 248
            clockAccuracy 0xFE
            offsetScaledLogVariance 0xFFFF
            free_running 0
            freq_est_interval 1
            dscp_event 0
            dscp_general 0
            dataset_comparison G.8275.x
            G.8275.defaultDS.localPriority 128
            #
            # Port Data Set
            #
            logAnnounceInterval -3
            logSyncInterval -4
            logMinDelayReqInterval -4
            logMinPdelayReqInterval -4
            announceReceiptTimeout 3
            syncReceiptTimeout 0
            delayAsymmetry 0
            fault_reset_interval -4
            neighborPropDelayThresh 20000000
            masterOnly 0
            G.8275.portDS.localPriority 128
            #
            # Run time options
            #
            assume_two_step 0
            logging_level 6
            path_trace_enabled 0
            follow_up_info 0
            hybrid_e2e 0
            inhibit_multicast_service 0
            net_sync_monitor 0
            tc_spanning_tree 0
            tx_timestamp_timeout 50
            unicast_listen 0
            unicast_master_table 0
            unicast_req_duration 3600
            use_syslog 1
            verbose 0
            summary_interval 0
            kernel_leap 1
            check_fup_sync 0
            clock_class_threshold 135
            #
            # Servo Options
            #
            pi_proportional_const 0.0
            pi_integral_const 0.0
            pi_proportional_scale 0.0
            pi_proportional_exponent -0.3
            pi_proportional_norm_max 0.7
            pi_integral_scale 0.0
            pi_integral_exponent 0.4
            pi_integral_norm_max 0.3
            step_threshold 2.0
            first_step_threshold 0.00002
            max_frequency 900000000
            clock_servo pi
            sanity_freq_limit 200000000
            ntpshm_segment 0
            #
            # Transport options
            #
            transportSpecific 0x0
            ptp_dst_mac 01:1B:19:00:00:00
            p2p_dst_mac 01:80:C2:00:00:0E
            udp_ttl 1
            udp6_scope 0x0E
            uds_address /var/run/ptp4l
            #
            # Default interface options
            #
            clock_type BC
            network_transport L2
            delay_mechanism E2E
            time_stamping hardware
            tsproc_mode filter
            delay_filter moving_median
            delay_filter_length 10
            egressLatency 0
            ingressLatency 0
            boundary_clock_jbod 0
            #
            # Clock description
            #
            productDescription ;;
            revisionData ;;
            manufacturerIdentity 00:00:00
            userDescription ;
            timeSource 0xA0
      recommend:
        - profile: boundary-clock
          priority: 4
          match:
            - nodeLabel: "node-role.kubernetes.io/$mcp"

    표 17.3. PTP 경계 클럭 CR 구성 옵션
    사용자 정의 리소스 필드설명

    name

    PtpConfig CR의 이름입니다.

    profile

    하나 이상의 profile 오브젝트의 배열을 지정합니다.

    name

    프로파일 오브젝트를 고유하게 식별하는 프로파일 오브젝트의 이름을 지정합니다.

    ptp4lOpts

    ptp4l 서비스에 대한 시스템 구성 옵션을 지정합니다. 옵션은 네트워크 인터페이스 이름과 서비스 구성 파일이 자동으로 추가되므로 네트워크 인터페이스 이름 -i <interface> 및 서비스 구성 파일 -f /etc/ptp4l.conf를 포함하지 않아야 합니다.

    ptp4lConf

    ptp4l 을 경계 클럭으로 시작하는 데 필요한 구성을 지정합니다. 예를 들어 ens1f0 은 그랜드 마스터 클록에서 동기화되고 ens1f3은 연결된 장치를 동기화합니다.

    <interface_1>

    동기화 시계를 수신하는 인터페이스입니다.

    <interface_2>

    동기화 클럭을 전송하는 인터페이스입니다.

    tx_timestamp_timeout

    Intel Columbiaville 800 시리즈 NIC의 경우 tx_timestamp_timeout50 으로 설정합니다.

    boundary_clock_jbod

    Intel Columbiaville 800 시리즈 NIC의 경우 boundary_clock_jbod0 으로 설정되어 있는지 확인합니다. Intel Fortville X710 시리즈 NIC의 경우 boundary_clock_jbod1 로 설정되어 있는지 확인합니다.

    phc2sysOpts

    phc2sys 서비스에 대한 시스템 구성 옵션을 지정합니다. 이 필드가 비어 있으면 PTP Operator에서 phc2sys 서비스를 시작하지 않습니다.

    ptpSchedulingPolicy

    ptp4l 및 phc2sys 프로세스에 대한 스케줄링 정책입니다. 기본값은ECDHE _OTHER 입니다. FIFO 스케줄링을 지원하는 시스템에서ECDHE_ FIFO를 사용합니다.

    ptpSchedulingPriority

    ptpSchedulingPolicy 가ECDHE _FIFO로 설정된 경우 ptp4lphc2sys 프로세스의 FIFO 우선 순위를 설정하는 데 사용되는 1-65의 정수 값입니다. ptpSchedulingPriority 필드는 ptpSchedulingPolicy 가ECDHE _OTHER 로 설정된 경우 사용되지 않습니다.

    ptpClockThreshold

    선택 사항: ptpClockThreshold 가 없으면 기본값이 ptpClockThreshold 필드에 사용됩니다. ptpClockThreshold 는 PTP 이벤트가 트리거되기 전에 PTP 마스터 시계가 연결이 끊긴 후의 기간을 구성합니다. holdOverTimeout 은 PTP 마스터 클럭이 연결 해제되면 PTP 클럭 이벤트 상태가 Free RUN 로 변경되는 시간 값(초)입니다. maxOffsetThresholdminOffsetThreshold 설정은 CLOCK_REALTIME (phc2sys) 또는 마스터 오프셋(ptp4l)의 값과 비교하여 나노초 단위로 오프셋 값을 구성합니다. ptp4l 또는 phc2sys 오프셋 값이 이 범위를 벗어나면 PTP 클럭 상태가 FREERUN 로 설정됩니다. 오프셋 값이 이 범위 내에 있으면 PTP 클럭 상태가 LOCKED 로 설정됩니다.

    권장

    프로필을 노드에 적용하는 방법에 대한 규칙을 정의하는 하나 이상의 recommend 오브젝트 배열을 지정합니다.

    .recommend.profile

    profile 섹션에 정의된 .recommend. profile 오브젝트 이름을 지정합니다.

    .recommend.priority

    0에서 99 사이의 정수 값으로 priority를 지정합니다. 숫자가 클수록 우선순위가 낮으므로 우선순위 99는 우선순위 10보다 낮습니다. match 필드에 정의된 규칙에 따라 여러 프로필과 노드를 일치시킬 수 있는 경우 우선 순위가 높은 프로필이 해당 노드에 적용됩니다.

    .recommend.match

    nodeLabel 또는 nodeName 값을 사용하여 .recommend.match 규칙을 지정합니다.

    .recommend.match.nodeLabel

    oc get nodes --show-labels 명령을 사용하여 노드 오브젝트에서 node.Labels 필드의 키로 nodeLabel 을 설정합니다. 예: node-role.kubernetes.io/worker.

    .recommend.match.nodeName

    oc get nodes 명령을 사용하여 노드 오브젝트의 node.Name 필드 값으로 nodeName 을 설정합니다. 예를 들면 compute-1.example.com 입니다.

  2. 다음 명령을 실행하여 CR을 생성합니다.

    $ oc create -f boundary-clock-ptp-config.yaml

검증

  1. PtpConfig 프로필이 노드에 적용되는지 확인합니다.

    1. 다음 명령을 실행하여 openshift-ptp 네임스페이스에서 Pod 목록을 가져옵니다.

      $ oc get pods -n openshift-ptp -o wide

      출력 예

      NAME                            READY   STATUS    RESTARTS   AGE   IP               NODE
      linuxptp-daemon-4xkbb           1/1     Running   0          43m   10.1.196.24      compute-0.example.com
      linuxptp-daemon-tdspf           1/1     Running   0          43m   10.1.196.25      compute-1.example.com
      ptp-operator-657bbb64c8-2f8sj   1/1     Running   0          43m   10.129.0.61      control-plane-1.example.com

    2. 프로필이 올바른지 확인합니다. PtpConfig 프로필에 지정한 노드에 해당하는 linuxptp 데몬의 로그를 검사합니다. 다음 명령을 실행합니다.

      $ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container

      출력 예

      I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
      I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
      I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
      I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
      I1115 09:41:17.117616 4143292 daemon.go:102] Interface:
      I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2
      I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
      I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------

추가 리소스

17.6.5. Linuxptp 서비스를 듀얼 NIC 하드웨어의 경계 클럭으로 구성

각 NIC에 대해 PtpConfig CR(사용자 정의 리소스) 오브젝트를 생성하여 linuxptp 서비스(ptp4l,phc2sys)를 듀얼 NIC 하드웨어의 경계 클록으로 구성할 수 있습니다.

듀얼 NIC 하드웨어를 사용하면 각 NIC가 다운스트림 클럭을 공급하는 각 NIC에 대해 별도의 ptp4l 인스턴스를 사용하여 각 NIC를 동일한 업스트림 리더 클럭에 연결할 수 있습니다.

사전 요구 사항

  • OpenShift CLI(oc)를 설치합니다.
  • cluster-admin 권한이 있는 사용자로 로그인합니다.
  • PTP Operator를 설치합니다.

절차

  1. 각 CR의 기반으로 linuxptp 서비스를 경계 클럭으로 구성"의 참조 CR을 사용하여 각 NIC에 대해 별도의 PtpConfig CR을 생성합니다. 예를 들면 다음과 같습니다.

    1. boundary-clock-ptp-config-nic1.yaml 을 생성하여 phc2sysOpts 값을 지정합니다.

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: boundary-clock-ptp-config-nic1
        namespace: openshift-ptp
      spec:
        profile:
        - name: "profile1"
          ptp4lOpts: "-2 --summary_interval -4"
          ptp4lConf: | 1
            [ens5f1]
            masterOnly 1
            [ens5f0]
            masterOnly 0
          ...
          phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16" 2
      1
      ptp4l 을 경계 클럭으로 시작하는 데 필요한 인터페이스를 지정합니다. 예를 들어 ens5f0 은 모달 마스터 클럭의 동기화와 ens5f1 이 연결된 장치를 동기화합니다.
      2
      필수 phc2sysOpts 값. -m 에서 stdout 에 메시지를 출력합니다. linuxptp-daemon DaemonSet 은 로그를 구문 분석하고 Prometheus 지표를 생성합니다.
    2. boundary-clock-ptp-config-nic2.yaml 을 생성하여 phc2sysOpts 필드를 완전히 제거하여 두 번째 NIC의 phc2sys 서비스를 비활성화합니다.

      apiVersion: ptp.openshift.io/v1
      kind: PtpConfig
      metadata:
        name: boundary-clock-ptp-config-nic2
        namespace: openshift-ptp
      spec:
        profile:
        - name: "profile2"
          ptp4lOpts: "-2 --summary_interval -4"
          ptp4lConf: | 1
            [ens7f1]
            masterOnly 1
            [ens7f0]
            masterOnly 0
      ...
      1
      두 번째 NIC에서 ptp4l 을 경계 클럭으로 시작하는 데 필요한 인터페이스를 지정합니다.
      참고

      두 번째 NIC에서 phc2sysOpts 필드를 완전히 제거하려면 두 번째 PtpConfig CR에서 phc2sys 서비스를 비활성화해야 합니다.

  2. 다음 명령을 실행하여 듀얼 NIC PtpConfig CR을 생성합니다.

    1. 첫 번째 NIC에 대해 PTP를 구성하는 CR을 생성합니다.

      $ oc create -f boundary-clock-ptp-config-nic1.yaml
    2. 두 번째 NIC에 대해 PTP를 구성하는 CR을 생성합니다.

      $ oc create -f boundary-clock-ptp-config-nic2.yaml

검증

  • PTP Operator가 두 NIC 모두에 PtpConfig CR을 적용했는지 확인합니다. 듀얼 NIC 하드웨어가 설치된 노드에 해당하는 linuxptp 데몬의 로그를 검사합니다. 예를 들어 다음 명령을 실행합니다.

    $ oc logs linuxptp-daemon-cvgr6 -n openshift-ptp -c linuxptp-daemon-container

    출력 예

    ptp4l[80828.335]: [ptp4l.1.config] master offset          5 s2 freq   -5727 path delay       519
    ptp4l[80828.343]: [ptp4l.0.config] master offset         -5 s2 freq  -10607 path delay       533
    phc2sys[80828.390]: [ptp4l.0.config] CLOCK_REALTIME phc offset         1 s2 freq  -87239 delay    539

17.6.6. Intel Columbiaville E800 시리즈 NIC as PTP 일반 클럭 참조

다음 표에서는 Intel Columbiaville E800 시리즈 NIC를 일반 시계로 사용하기 위해 참조 PTP 구성에 대한 변경 사항을 설명합니다. 클러스터에 적용하는 PtpConfig CR(사용자 정의 리소스)을 변경합니다.

표 17.4. Intel Columbiaville NIC에 권장되는 PTP 설정
PTP 구성권장 설정

phc2sysOpts

-a -r -m -n 24 -N 8 -R 16

tx_timestamp_timeout

50

boundary_clock_jbod

0

참고

phc2sysOpts 의 경우-m 은 메시지를 stdout 에 인쇄합니다. linuxptp-daemon DaemonSet 은 로그를 구문 분석하고 Prometheus 지표를 생성합니다.

추가 리소스

17.6.7. PTP 하드웨어에 대한 FIFO 우선 순위 스케줄링 구성

대기 시간이 짧은 배포 구성 또는 기타 배포 구성에서 PTP 데몬 스레드는 나머지 인프라 구성 요소와 함께 제한된 CPU 풋프린트에서 실행됩니다. 기본적으로 PTP 스레드는ECDHE _OTHER 정책과 함께 실행됩니다. 로드가 많은 경우 이러한 스레드는 오류가 없는 작업에 필요한 스케줄링 대기 시간을 얻지 못할 수 있습니다.

잠재적인 스케줄링 대기 시간 오류를 완화하려면 PTP Operator linuxptp 서비스를 구성하여 스레드가ECDHE _FIFO 정책으로 실행될 수 있도록 할 수 있습니다. dotnet _FIFOPtpConfig CR에 대해 설정된 경우 PtpConfig CR의 ptpSchedulingPriority 필드에 의해 설정된 우선 순위로 ptp4lphc2sys 가 부모 컨테이너에서 실행됩니다.

참고

ptpSchedulingPolicy 설정은 선택 사항이며 대기 시간 오류가 발생하는 경우에만 필요합니다.

절차

  1. PtpConfig CR 프로필을 편집합니다.

    $ oc edit PtpConfig -n openshift-ptp
  2. ptpSchedulingPolicyptpSchedulingPriority 필드를 변경합니다.

    apiVersion: ptp.openshift.io/v1
    kind: PtpConfig
    metadata:
      name: <ptp_config_name>
      namespace: openshift-ptp
    ...
    spec:
      profile:
      - name: "profile1"
    ...
        ptpSchedulingPolicy: SCHED_FIFO 1
        ptpSchedulingPriority: 10 2
    1
    ptp4lphc2sys 프로세스에 대한 스케줄링 정책입니다. FIFO 스케줄링을 지원하는 시스템에서ECDHE_ FIFO를 사용합니다.
    2
    필수 항목입니다. ptp4lphc2sys 프로세스에 대한 FIFO 우선 순위를 구성하는 데 사용되는 정수 값 1-65를 설정합니다.
  3. 저장 후 종료하여 PtpConfig CR에 변경 사항을 적용합니다.

검증

  1. linuxptp-daemon Pod의 이름과 PtpConfig CR이 적용된 해당 노드를 가져옵니다.

    $ oc get pods -n openshift-ptp -o wide

    출력 예

    NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
    linuxptp-daemon-gmv2n           3/3     Running   0          1d17h   10.1.196.24   compute-0.example.com
    linuxptp-daemon-lgm55           3/3     Running   0          1d17h   10.1.196.25   compute-1.example.com
    ptp-operator-3r4dcvf7f4-zndk7   1/1     Running   0          1d7h    10.129.0.61   control-plane-1.example.com

  2. 업데이트된 chrt FIFO 우선 순위로 ptp4l 프로세스가 실행 중인지 확인합니다.

    $ oc -n openshift-ptp logs linuxptp-daemon-lgm55 -c linuxptp-daemon-container|grep chrt

    출력 예

    I1216 19:24:57.091872 1600715 daemon.go:285] /bin/chrt -f 65 /usr/sbin/ptp4l -f /var/run/ptp4l.0.config -2  --summary_interval -4 -m

17.6.8. linuxptp 서비스에 대한 로그 필터링 구성

linuxptp 데몬은 디버깅 목적으로 사용할 수 있는 로그를 생성합니다. 제한된 스토리지 용량을 갖춘 telco 또는 기타 배포 구성에서 이러한 로그는 스토리지 수요에 추가할 수 있습니다.

로그 메시지를 줄이기 위해 마스터 오프셋 값을 보고하는 로그 메시지를 제외하도록 PtpConfig CR(사용자 정의 리소스)을 구성할 수 있습니다. 마스터 오프셋 로그 메시지는 현재 노드의 클럭과 마스터 클럭의 나노초 단위의 차이를 보고합니다.

사전 요구 사항

  • OpenShift CLI(oc)를 설치합니다.
  • cluster-admin 권한이 있는 사용자로 로그인합니다.
  • PTP Operator를 설치합니다.

절차

  1. PtpConfig CR을 편집합니다.

    $ oc edit PtpConfig -n openshift-ptp
  2. spec.profile 에서 ptpECDHE.logReduce 사양을 추가하고 해당 값을 true 로 설정합니다.

    apiVersion: ptp.openshift.io/v1
    kind: PtpConfig
    metadata:
      name: <ptp_config_name>
      namespace: openshift-ptp
    ...
    spec:
      profile:
      - name: "profile1"
    ...
        ptpSettings:
          logReduce: "true"
    참고

    디버깅을 위해 마스터 오프셋 메시지를 포함하도록 이 사양을 False 로 되돌릴 수 있습니다.

  3. 저장 후 종료하여 PtpConfig CR에 변경 사항을 적용합니다.

검증

  1. linuxptp-daemon Pod의 이름과 PtpConfig CR이 적용된 해당 노드를 가져옵니다.

    $ oc get pods -n openshift-ptp -o wide

    출력 예

    NAME                            READY   STATUS    RESTARTS   AGE     IP            NODE
    linuxptp-daemon-gmv2n           3/3     Running   0          1d17h   10.1.196.24   compute-0.example.com
    linuxptp-daemon-lgm55           3/3     Running   0          1d17h   10.1.196.25   compute-1.example.com
    ptp-operator-3r4dcvf7f4-zndk7   1/1     Running   0          1d7h    10.129.0.61   control-plane-1.example.com

  2. 다음 명령을 실행하여 마스터 오프셋 메시지가 로그에서 제외되었는지 확인합니다.

    $ oc -n openshift-ptp logs <linux_daemon_container> -c linuxptp-daemon-container | grep "master offset" 1
    1
    <linux_daemon_container>는 linuxptp-daemon Pod의 이름입니다(예: linuxptp-daemon-gmv2n ).

    logReduce 사양을 구성하면 이 명령에서 linuxptp 데몬의 로그에 마스터 오프셋 의 인스턴스를 보고하지 않습니다.

Red Hat logoGithubRedditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

© 2024 Red Hat, Inc.