이 콘텐츠는 선택한 언어로 제공되지 않습니다.

Chapter 3. AMD GPU Operator


AMD Instinct GPU accelerators combined with the AMD GPU Operator within your OpenShift Container Platform cluster lets you seamlessly harness computing capabilities for machine learning, Generative AI, and GPU-accelerated applications.

This documentation provides the information you need to enable, configure, and test the AMD GPU Operator. For more information, see AMD Instinct™ Accelerators.

3.1. About the AMD GPU Operator

The hardware acceleration capabilities of the AMD GPU Operator provide enhanced performance and cost efficiency for data scientists and developers using Red Hat OpenShift AI for creating artificial intelligence and machine learning (AI/ML) applications. Accelerating specific areas of GPU functions can minimize CPU processing and memory usage, improving overall application speed, memory consumption, and bandwidth restrictions.

3.2. Installing the AMD GPU Operator

As a cluster administrator, you can install the AMD GPU Operator by using the OpenShift CLI and the web console. This is a multi-step procedure that requires the installation of the Node Feature Discovery Operator, the Kernel Module Management Operator, and then the AMD GPU Operator. Use the following steps in succession to install the AMD community release of the Operator.

Next steps

  1. Install the Node Feature Discovery Operator.
  2. Install the Kernel Module Management Operator.
  3. Install and configure the AMD GPU Operator.

3.3. Testing the AMD GPU Operator

Use the following procedure to test the ROCmInfo installation and view the logs for the AMD MI210 GPU.

Procedure

  1. Create a YAML file that tests ROCmInfo:

    $ cat << EOF > rocminfo.yaml
    
    apiVersion: v1
    kind: Pod
    metadata:
     name: rocminfo
    spec:
     containers:
     - image: docker.io/rocm/pytorch:latest
       name: rocminfo
       command: ["/bin/sh","-c"]
       args: ["rocminfo"]
       resources:
        limits:
          amd.com/gpu: 1
        requests:
          amd.com/gpu: 1
     restartPolicy: Never
    EOF
  2. Create the rocminfo pod:

    $ oc create -f rocminfo.yaml

    Example output

    apiVersion: v1
    pod/rocminfo created

  3. Check the rocmnfo log with one MI210 GPU:

    $ oc logs rocminfo | grep -A5 "Agent"

    Example output

    HSA Agents
    ==========
    *******
    Agent 1
    *******
      Name:                    Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
      Uuid:                    CPU-XX
      Marketing Name:          Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
      Vendor Name:             CPU
    --
    Agent 2
    *******
      Name:                    Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
      Uuid:                    CPU-XX
      Marketing Name:          Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
      Vendor Name:             CPU
    --
    Agent 3
    *******
      Name:                    gfx90a
      Uuid:                    GPU-024b776f768a638b
      Marketing Name:          AMD Instinct MI210
      Vendor Name:             AMD

  4. Delete the pod:

    $ oc delete -f rocminfo.yaml

    Example output

    pod "rocminfo" deleted

Red Hat logoGithubRedditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다. 최신 업데이트를 확인하세요.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

© 2024 Red Hat, Inc.