第3章 Custom Metrics Autoscaler Operator を使用した Pod の自動スケーリング
3.1. Custom Metrics Autoscaler Operator の概要
開発者は、Red Hat OpenShift の Custom Metrics Autoscaler Operator を使用して、OpenShift Container Platform が CPU またはメモリーのみに基づくものではないカスタメトリクスに基づきデプロイメント、ステートフルセット、カスタムリソース、またはジョブの Pod 数を自動的に増減する方法を指定できます。
ustom Metrics Autoscaler Operator は、Kubernetes Event Driven Autoscaler (KEDA) に基づくオプションの Operator であり、Pod メトリクス以外の追加のメトリクスソースを使用してワークロードをスケーリングできます。
カスタムメトリクスオートスケーラーは現在、Prometheus、CPU、メモリー、および Apache Kafka メトリクスのみをサポートしています。
Custom Metrics Autoscaler Operator は、特定のアプリケーションからのカスタムの外部メトリクスに基づいて、Pod をスケールアップおよびスケールダウンします。他のアプリケーションは引き続き他のスケーリング方法を使用します。スケーラーとも呼ばれる トリガー を設定します。これは、カスタムメトリックオートスケーラーがスケーリング方法を決定するために使用するイベントとメトリックのソースです。カスタムメトリックオートスケーラーはメトリック API を使用して、外部メトリックを OpenShift Container Platform が使用できる形式に変換します。カスタムメトリクスオートスケーラーは、実際のスケーリングを実行する Horizontal Pod Autoscaler (HPA) を作成します。
カスタムメトリクスオートスケーラーを使用するには、スケーリングメタデータを定義するカスタムリソース (CR) である ScaledObject
または ScaledJob
オブジェクトを作成します。スケーリングするデプロイメントまたはジョブ、スケーリングするメトリクスのソース (トリガー)、許可される最小および最大レプリカ数などのその他のパラメーターを指定します。
スケーリングするワークロードごとに、スケーリングされたオブジェクトまたはスケーリングされたジョブを 1 つだけ作成できます。また、スケーリングされたオブジェクトまたはスケーリングされたジョブと Horizontal Pod Autoscaler (HPA) を同じワークロードで使用することはできません。
カスタムメトリクスオートスケーラーは、HPA とは異なり、ゼロにスケーリングできます。カスタムメトリクスオートスケーラー CR の minReplicaCount
値を 0
に設定すると、カスタムメトリクスオートスケーラーはワークロードを 1 レプリカから 0 レプリカにスケールダウンするか、0 レプリカから 1 にスケールアップします。これは、アクティベーションフェーズ として知られています。1 つのレプリカにスケールアップした後、HPA はスケーリングを制御します。これは スケーリングフェーズ として知られています。
一部のトリガーにより、クラスターメトリクスオートスケーラーによってスケーリングされるレプリカの数を変更できます。いずれの場合も、アクティベーションフェーズを設定するパラメーターは、activation で始まる同じフレーズを常に使用します。たとえば、threshold
パラメーターがスケーリングを設定する場合、activationThreshold
はアクティベーションを設定します。アクティベーションフェーズとスケーリングフェーズを設定すると、スケーリングポリシーの柔軟性が向上します。たとえば、アクティベーションフェーズをより高く設定することで、メトリクスが特に低い場合にスケールアップまたはスケールダウンを防ぐことができます。
それぞれ異なる決定を行う場合は、スケーリングの値よりもアクティベーションの値が優先されます。たとえば、threshold
が 10
に設定されていて、activationThreshold
が 50
である場合にメトリクスが 40
を報告した場合、スケーラーはアクティブにならず、HPA が 4 つのインスタンスを必要とする場合でも Pod はゼロにスケーリングされます。
カスタムリソース内の Pod の数を確認するか、Custom Metrics Autoscaler Operator ログで次のようなメッセージを確認することで、自動スケーリングが行われたことを確認できます。
Successfully set ScaleTarget replica count
Successfully updated ScaleTarget
必要に応じて、ワークロードオブジェクトの自動スケーリングを一時停止できます。たとえば、クラスターのメンテナンスを実行する前に自動スケーリングを一時停止できます。