7.4. ログデータを保存し、整理するための Elasticsearch の設定
OpenShift Container Platform は Elasticsearch (ES) を使用してログデータを保存し、整理します。
ログストアに加えることのできる変更には、以下が含まれます。
- Elasticsearch クラスターのストレージ。
- シャードをクラスター内の複数のデータノードにレプリケートする方法 (完全なレプリケーションからレプリケーションなしを含む)。
- Elasticsearch データへの外部アクセスを許可する。
Elasticsearch ノードのスケールダウンはサポートされていません。スケールダウン時に Elasticsearch Pod が誤って削除される場合があり、その場合にはシャードが割り当てられず、レプリカシャードが失われる可能性があります。
Elasticsearch はメモリー集約型アプリケーションです。それぞれの Elasticsearch ノードには、ClusterLogging
カスタムリソースで指定しない限り、メモリー要求および制限の両方に 16G のメモリーが必要です。初期設定の OpenShift Container Platform ノードのセットは、Elasticsearch クラスターをサポートするのに十分な大きさではない場合があります。その場合、推奨されるサイズ以上のメモリーを使用して実行できるようにノードを OpenShift Container Platform クラスターに追加する必要があります。
各 Elasticsearch ノードはこれより低い値のメモリー設定でも動作しますが、これは実稼働環境には推奨されません。
Elasticsearch Operator (EO) を管理外の状態に設定し、Cluster Logging Operator (CLO) を管理対象のままにする場合、CLO は EO に加えた変更を元に戻します。EO は CLO によって管理されているためです。
7.4.1. Elasticsearch CPU およびメモリー要求の設定
それぞれのコンポーネント仕様は、CPU とメモリー要求の両方への調整を許可します。Elasticsearch Operator は環境に適した値を設定するため、これらの値を手動で調整する必要はありません。
各 Elasticsearch ノードはこれより低い値のメモリー設定でも動作しますが、これは実稼働環境でのデプロイメントには推奨 されていません。実稼働環境での使用の場合には、デフォルトの 16Gi よりも小さい値を各 Pod に割り当てることはできません。Pod ごとに割り当て可能な最大値は 64Gi であり、この範囲の中で、できるだけ多くのメモリーを割り当てることを推奨します。
前提条件
- クラスターロギングおよび Elasticsearch がインストールされている。
手順
openshift-logging
プロジェクトでClusterLogging
カスタムリソース (CR) を編集します。$ oc edit ClusterLogging instance
apiVersion: "logging.openshift.io/v1" kind: "ClusterLogging" metadata: name: "instance" .... spec: logStore: type: "elasticsearch" elasticsearch: resources: 1 limits: memory: 16Gi requests: cpu: 500m memory: 16Gi
- 1
- 必要に応じて CPU およびメモリー要求を指定します。これらの値を空のままにすると、Elasticsearch Operator はデフォルト値を設定します。これらのデフォルト値はほとんどのデプロイメントでは問題なく使用できるはずです。
Elasticsearch メモリーの容量を調整する場合、要求値と制限値の両方を変更する必要があります。
以下は例になります。
resources: limits: memory: "32Gi" requests: cpu: "8" memory: "32Gi"
Kubernetes は一般的にはノードの設定に従い、Elasticsearch が指定された制限を使用することを許可しません。
requests
とlimites
に同じ値を設定することにより、Elasticsearch は必要なメモリーを確実に使用できるようにします (利用可能な CPU およびメモリーがノードにあることを前提とします)。