2.4. Horizontal Pod Autoscaler での Pod の自動スケーリング


開発者として、Horizontal Pod Autoscaler (HPA) を使用して、レプリケーションコントローラーに属する Pod から収集されるメトリクスまたはデプロイメント設定に基づき、OpenShift Container Platform がレプリケーションコントローラーまたはデプロイメント設定のスケールを自動的に増減する方法を指定できます。HPA は、任意のデプロイメント、デプロイメント設定、レプリカセット、レプリケーションコントローラー、またはステートフルセットに対して作成できます。

カスタムメトリクスに基づいて Pod をスケーリングする方法の詳細は、カスタムメトリクスに基づいて Pod を自動的にスケーリングする を参照してください。

注記

他のオブジェクトが提供する特定の機能や動作が必要な場合を除き、Deployment オブジェクトまたは ReplicaSet オブジェクトを使用することを推奨します。これらのオブジェクトの詳細は、デプロイメントについて を参照してください。

2.4.1. Horizontal Pod Autoscaler について

Horizontal Pod Autoscaler を作成することで、実行する Pod の最小数と最大数を指定するだけでなく、Pod がターゲットに設定する CPU の使用率またはメモリー使用率を指定することができます。

Horizontal Pod Autoscaler を作成すると、OpenShift Container Platform は Pod で CPU またはメモリーリソースのメトリックのクエリーを開始します。メトリックが利用可能になると、Horizontal Pod Autoscaler は必要なメトリックの使用率に対する現在のメトリックの使用率の割合を計算し、随時スケールアップまたはスケールダウンを実行します。クエリーとスケーリングは一定間隔で実行されますが、メトリックが利用可能になるでに 1 分から 2 分の時間がかかる場合があります。

レプリケーションコントローラーの場合、このスケーリングはレプリケーションコントローラーのレプリカに直接対応します。デプロイメント設定の場合、スケーリングはデプロイメント設定のレプリカ数に直接対応します。自動スケーリングは Complete フェーズの最新デプロイメントにのみ適用されることに注意してください。

OpenShift Container Platform はリソースに自動的に対応し、起動時などのリソースの使用が急増した場合など必要のない自動スケーリングを防ぎます。unready 状態の Pod には、スケールアップ時の使用率が 0 CPU と指定され、Autoscaler はスケールダウン時にはこれらの Pod を無視します。既知のメトリックのない Pod にはスケールアップ時の使用率が 0% CPU、スケールダウン時に 100% CPU となります。これにより、HPA の決定時に安定性が増します。この機能を使用するには、readiness チェックを設定して新規 Pod が使用可能であるかどうかを判別します。

Horizontal Pod Autoscaler を使用するには、クラスターの管理者はクラスターメトリックを適切に設定している必要があります。

2.4.1.1. サポートされるメトリック

以下のメトリックは Horizontal Pod Autoscaler でサポートされています。

表2.1 メトリクス
メトリック説明API バージョン

CPU の使用率

使用されている CPU コアの数。Pod の要求される CPU の割合の計算に使用されます。

autoscaling/v1autoscaling/v2

メモリーの使用率

使用されているメモリーの量。Pod の要求されるメモリーの割合の計算に使用されます。

autoscaling/v2

重要

メモリーベースの自動スケーリングでは、メモリー使用量がレプリカ数と比例して増減する必要があります。平均的には以下のようになります。

  • レプリカ数が増えると、Pod ごとのメモリー (作業セット) の使用量が全体的に減少します。
  • レプリカ数が減ると、Pod ごとのメモリー使用量が全体的に増加します。

OpenShift Container Platform Web コンソールを使用して、アプリケーションのメモリー動作を確認し、メモリーベースの自動スケーリングを使用する前にアプリケーションがそれらの要件を満たしていることを確認します。

以下の例は、image-registry Deployment オブジェクトの自動スケーリングを示しています。最初のデプロイメントでは 3 つの Pod が必要です。HPA オブジェクトは、最小値を 5 に増やします。Pod の CPU 使用率が 75% に達すると、Pod は 7 まで増加します。

$ oc autoscale deployment/image-registry --min=5 --max=7 --cpu-percent=75

出力例

horizontalpodautoscaler.autoscaling/image-registry autoscaled

minReplicas が 3 に設定された image-registry Deployment オブジェクトのサンプル HPA

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: image-registry
  namespace: default
spec:
  maxReplicas: 7
  minReplicas: 3
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: image-registry
  targetCPUUtilizationPercentage: 75
status:
  currentReplicas: 5
  desiredReplicas: 0

  1. デプロイメントの新しい状態を表示します。

    $ oc get deployment image-registry

    デプロイメントには 5 つの Pod があります。

    出力例

    NAME             REVISION   DESIRED   CURRENT   TRIGGERED BY
    image-registry   1          5         5         config

2.4.2. HPA はどのように機能するか

Horizontal Pod Autoscaler (HPA) は、Pod オートスケーリングの概念を拡張するものです。HPA を使用すると、負荷分散されたノードグループを作成および管理できます。HPA は、所定の CPU またはメモリーのしきい値を超えると、Pod 数を自動的に増減させます。

図2.1 HPA の高レベルのワークフロー

workflow

HPA は、Kubernetes 自動スケーリング API グループの API リソースです。オートスケーラは制御ループとして動作し、同期期間のデフォルトは 15 秒です。この期間中、コントローラーマネージャーは、HPA の YAML ファイルに定義されている CPU、メモリー使用率、またはその両方を照会します。コントローラーマネージャーは、HPA の対象となる Pod ごとに、CPU やメモリーなどの Pod 単位のリソースメトリックをリソースメトリック API から取得します。

使用率の目標値が設定されている場合、コントローラーは、各 Pod のコンテナーにおける同等のリソース要求のパーセンテージとして使用率の値を計算します。次に、コントローラーは、対象となるすべての Pod の使用率の平均を取り、必要なレプリカの数をスケーリングするために使用される比率を生成します。HPA は、メトリクスサーバーが提供する metrics.k8s.io からメトリクスを取得するよう設定されています。メトリック評価は動的な性質を持っているため、レプリカのグループに対するスケーリング中にレプリカの数が変動する可能性があります。

注記

HPA を実装するには、対象となるすべての Pod のコンテナーにリソース要求が設定されている必要があります。

2.4.3. 要求と制限について

スケジューラーは、Pod 内のコンテナーに対して指定したリソース要求をもとに、どのノードに Pod を配置するかを決定します。kubelet は、コンテナーに指定されたリソース制限を適用して、コンテナーが指定された制限を超えて使用できないようにします。kubelet は、そのコンテナーが使用するために、そのシステムリソースの要求量も予約します。

リソースメトリックの使用方法

Pod の仕様では、CPU やメモリーなどのリソース要求を指定する必要があります。HPA はこの仕様を使用してリソース使用率を決定し、ターゲットを増減させます。

たとえば、HPA オブジェクトは次のメトリックソースを使用します。

type: Resource
resource:
  name: cpu
  target:
    type: Utilization
    averageUtilization: 60

この例では、HPA はスケーリングターゲットの Pod の平均使用率を 60% に維持しています。使用率とは、Pod の要求リソースに対する現在のリソース使用量の比率です。

2.4.4. ベストプラクティス

すべての Pod にリソース要求が設定されていること

HPA は、OpenShift Container Platform クラスター内の Pod の CPU またはメモリー使用率の観測値に基づいてスケーリング判定を行います。使用率の値は、各 Pod のリソース要求のパーセンテージとして計算されます。リソース要求値が欠落していると、HPA の最適性能に影響を与える可能性があります。

クールダウン期間の設定

Horizontal Pod Autoscaler の実行中に、時間差なしにイベントが急速にスケーリングされる場合があります。頻繁なレプリカの変動を防ぐために、クールダウン期間を設定します。stabilizationWindowSeconds フィールドを設定することで、クールダウン期間を指定できます。安定化ウィンドウは、スケーリングに使用するメトリックが変動し続ける場合に、レプリカ数の変動を制限するために使用されます。自動スケーリングアルゴリズムは、このウィンドウを使用して、以前の望ましい状態を推測し、ワークロードスケールへの不要な変更を回避します。

たとえば、scaleDown フィールドに安定化ウィンドウが指定されています。

behavior:
  scaleDown:
    stabilizationWindowSeconds: 300

上記の例では、過去 5 分間のすべての望ましい状態が考慮されます。これはローリングの最大値に近似しており、スケーリングアルゴリズムが Pod を頻繁に削除して、すぐ後に同等の Pod の再作成をトリガーすることを回避します。

2.4.4.1. スケーリングポリシー

autoscaling/v2 API を使用すると、スケーリングポリシー を Horizontal Pod Autoscaler に追加できます。スケーリングポリシーは、OpenShift Container Platform の Horizontal Pod Autoscaler (HPA) が Pod をスケーリングする方法を制御します。スケーリングポリシーにより、特定の期間にスケーリングするように特定の数または特定のパーセンテージを設定して、HPA が Pod をスケールアップまたはスケールダウンするレートを制限できます。固定化ウィンドウ (stabilization window) を定義することもできます。これはメトリックが変動する場合に、先に計算される必要な状態を使用してスケーリングを制御します。同じスケーリングの方向に複数のポリシーを作成し、変更の量に応じて使用するポリシーを判別することができます。タイミングが調整された反復によりスケーリングを制限することもできます。HPA は反復時に Pod をスケーリングし、その後の反復で必要に応じてスケーリングを実行します。

スケーリングポリシーを適用するサンプル HPA オブジェクト

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: hpa-resource-metrics-memory
  namespace: default
spec:
  behavior:
    scaleDown: 1
      policies: 2
      - type: Pods 3
        value: 4 4
        periodSeconds: 60 5
      - type: Percent
        value: 10 6
        periodSeconds: 60
      selectPolicy: Min 7
      stabilizationWindowSeconds: 300 8
    scaleUp: 9
      policies:
      - type: Pods
        value: 5 10
        periodSeconds: 70
      - type: Percent
        value: 12 11
        periodSeconds: 80
      selectPolicy: Max
      stabilizationWindowSeconds: 0
...

1
scaleDown または scaleUp のいずれかのスケーリングポリシーの方向を指定します。この例では、スケールダウンのポリシーを作成します。
2
スケーリングポリシーを定義します。
3
ポリシーが反復時に特定の Pod の数または Pod のパーセンテージに基づいてスケーリングするかどうかを決定します。デフォルト値は pods です。
4
反復ごとに Pod の数または Pod のパーセンテージのいずれかでスケーリングの量を制限します。Pod 数でスケールダウンする際のデフォルト値はありません。
5
スケーリングの反復の長さを決定します。デフォルト値は 15 秒です。
6
パーセンテージでのスケールダウンのデフォルト値は 100% です。
7
複数のポリシーが定義されている場合は、最初に使用するポリシーを決定します。最大限の変更を許可するポリシーを使用するように Max を指定するか、最小限の変更を許可するポリシーを使用するように Min を指定するか、HPA がポリシーの方向でスケーリングしないように Disabled を指定します。デフォルト値は Max です。
8
HPA が必要とされる状態で遡る期間を決定します。デフォルト値は 0 です。
9
この例では、スケールアップのポリシーを作成します。
10
Pod 数によるスケールアップの量を制限します。Pod 数をスケールアップするためのデフォルト値は 4% です。
11
Pod のパーセンテージによるスケールアップの量を制限します。パーセンテージでスケールアップするためのデフォルト値は 100% です。

スケールダウンポリシーの例

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: hpa-resource-metrics-memory
  namespace: default
spec:
...
  minReplicas: 20
...
  behavior:
    scaleDown:
      stabilizationWindowSeconds: 300
      policies:
      - type: Pods
        value: 4
        periodSeconds: 30
      - type: Percent
        value: 10
        periodSeconds: 60
      selectPolicy: Max
    scaleUp:
      selectPolicy: Disabled

この例では、Pod の数が 40 より大きい場合、パーセントベースのポリシーがスケールダウンに使用されます。このポリシーでは、selectPolicy による要求により、より大きな変更が生じるためです。

80 の Pod レプリカがある場合、初回の反復で HPA は Pod を 8 Pod 減らします。これは、1 分間 (periodSeconds: 60) の (type: Percent および value: 10 パラメーターに基づく) 80 Pod の 10% に相当します。次回の反復では、Pod 数は 72 になります。HPA は、残りの Pod の 10% が 7.2 であると計算し、これを 8 に丸め、8 Pod をスケールダウンします。後続の反復ごとに、スケーリングされる Pod 数は残りの Pod 数に基づいて再計算されます。Pod の数が 40 未満の場合、Pod ベースの数がパーセントベースの数よりも大きくなるため、Pod ベースのポリシーが適用されます。HPA は、残りのレプリカ (minReplicas) が 20 になるまで、30 秒 (periodSeconds: 30) で一度に 4 Pod (type: Pods および value: 4) を減らします。

selectPolicy: Disabled パラメーターは HPA による Pod のスケールアップを防ぎます。必要な場合は、レプリカセットまたはデプロイメントセットでレプリカの数を調整して手動でスケールアップできます。

設定されている場合、oc edit コマンドを使用してスケーリングポリシーを表示できます。

$ oc edit hpa hpa-resource-metrics-memory

出力例

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  annotations:
    autoscaling.alpha.kubernetes.io/behavior:\
'{"ScaleUp":{"StabilizationWindowSeconds":0,"SelectPolicy":"Max","Policies":[{"Type":"Pods","Value":4,"PeriodSeconds":15},{"Type":"Percent","Value":100,"PeriodSeconds":15}]},\
"ScaleDown":{"StabilizationWindowSeconds":300,"SelectPolicy":"Min","Policies":[{"Type":"Pods","Value":4,"PeriodSeconds":60},{"Type":"Percent","Value":10,"PeriodSeconds":60}]}}'
...

2.4.5. Web コンソールを使用した Horizontal Pod Autoscaler の作成

Web コンソールから、Deployment または DeploymentConfig オブジェクトで実行する Pod の最小および最大数を指定する Horizontal Pod Autoscaler (HPA) を作成できます。Pod がターゲットに設定する CPU またはメモリー使用量を定義することもできます。

注記

HPA は、Operator がサポートするサービス、Knative サービス、または Helm チャートの一部であるデプロイメントに追加することはできません。

手順

Web コンソールで HPA を作成するには、以下を実行します。

  1. Topology ビューで、ノードをクリックしてサイドペインを表示します。
  2. Actions ドロップダウンリストから、Add HorizontalPodAutoscaler を選択して Add HorizontalPodAutoscaler フォームを開きます。

    図2.2 HorizontalPodAutoscaler の追加

    Add HorizontalPodAutoscaler フォーム
  3. Add HorizontalPodAutoscaler フォームから、名前、最小および最大の Pod 制限、CPU およびメモリーの使用状況を定義し、Save をクリックします。

    注記

    CPU およびメモリー使用量の値のいずれかが見つからない場合は、警告が表示されます。

Web コンソールで HPA を編集するには、以下を実行します。

  1. Topology ビューで、ノードをクリックしてサイドペインを表示します。
  2. Actions ドロップダウンリストから、Edit HorizontalPodAutoscaler を選択し、Horizontal Pod Autoscaler フォームを開きます。
  3. Edit Horizontal Pod Autoscaler フォームから、最小および最大の Pod 制限および CPU およびメモリー使用量を編集し、Save をクリックします。
注記

Web コンソールで Horizontal Pod Autoscaler を作成または編集する際に、Form view から YAML viewに切り替えることができます。

Web コンソールで HPA を削除するには、以下を実行します。

  1. Topology ビューで、ノードをクリックし、サイドパネルを表示します。
  2. Actions ドロップダウンリストから、Remove HorizontalPodAutoscaler を選択します。
  3. 確認のポップアップウィンドウで、Remove をクリックして HPA を削除します。

2.4.6. CLI を使用した CPU 使用率向けの Horizontal Pod Autoscaler の作成

OpenShift Container Platform CLI を使用して、既存のDeploymentDeploymentConfigReplicaSetReplicationController、または StatefulSet オブジェクトを自動的にスケールする Horizontal Pod Autoscaler (HPA) を作成することができます。HPA は、指定された CPU 使用率を維持するために、そのオブジェクトに関連する Pod をスケーリングします。

注記

他のオブジェクトが提供する特定の機能や動作が必要な場合を除き、Deployment オブジェクトまたは ReplicaSet オブジェクトを使用することを推奨します。

HPA は、すべての Pod で指定された CPU 使用率を維持するために、最小数と最大数の間でレプリカ数を増減します。

CPU 使用率について自動スケーリングを行う際に、oc autoscale コマンドを使用し、実行する必要のある Pod の最小数および最大数と Pod がターゲットとして設定する必要のある平均 CPU 使用率を指定することができます。最小値を指定しない場合、Pod には OpenShift Container Platform サーバーからのデフォルト値が付与されます。

特定の CPU 値について自動スケーリングを行うには、ターゲット CPU および Pod の制限のある HorizontalPodAutoscaler オブジェクトを作成します。

前提条件

Horizontal Pod Autoscaler を使用するには、クラスターの管理者はクラスターメトリックを適切に設定している必要があります。メトリクスが設定されているかどうかは、oc describe PodMetrics <pod-name> コマンドを使用して判断できます。メトリックが設定されている場合、出力は以下の Usage の下にある CpuMemory のように表示されます。

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

出力例

Name:         openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace:    openshift-kube-scheduler
Labels:       <none>
Annotations:  <none>
API Version:  metrics.k8s.io/v1beta1
Containers:
  Name:  wait-for-host-port
  Usage:
    Memory:  0
  Name:      scheduler
  Usage:
    Cpu:     8m
    Memory:  45440Ki
Kind:        PodMetrics
Metadata:
  Creation Timestamp:  2019-05-23T18:47:56Z
  Self Link:           /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp:             2019-05-23T18:47:56Z
Window:                1m0s
Events:                <none>

手順

CPU 使用率のための Horizontal Pod Autoscaler を作成するには、以下を実行します。

  1. 以下のいずれかを実行します。

    • CPU 使用率のパーセントに基づいてスケーリングするには、既存のオブジェクトとして HorizontalPodAutoscaler オブジェクトを作成します。

      $ oc autoscale <object_type>/<name> \1
        --min <number> \2
        --max <number> \3
        --cpu-percent=<percent> 4
      1
      自動スケーリングするオブジェクトのタイプと名前を指定します。オブジェクトが存在し、DeploymentDeploymentConfig/dcReplicaSet/rsReplicationController/rc、または StatefulSet である必要があります。
      2
      オプションで、スケールダウン時のレプリカの最小数を指定します。
      3
      スケールアップ時のレプリカの最大数を指定します。
      4
      要求された CPU のパーセントで表示された、すべての Pod に対する目標の平均 CPU 使用率を指定します。指定しない場合または負の値の場合、デフォルトの自動スケーリングポリシーが使用されます。

      たとえば、以下のコマンドは image-registry Deployment オブジェクトの自動スケーリングを示しています。最初のデプロイメントでは 3 つの Pod が必要です。HPA オブジェクトは、最小値を 5 に増やします。Pod の CPU 使用率が 75% に達すると、Pod は 7 まで増加します。

      $ oc autoscale deployment/image-registry --min=5 --max=7 --cpu-percent=75
    • 特定の CPU 値に合わせてスケーリングするには、既存のオブジェクトに対して次のような YAML ファイルを作成します。

      1. 以下のような YAML ファイルを作成します。

        apiVersion: autoscaling/v2 1
        kind: HorizontalPodAutoscaler
        metadata:
          name: cpu-autoscale 2
          namespace: default
        spec:
          scaleTargetRef:
            apiVersion: apps/v1 3
            kind: Deployment 4
            name: example 5
          minReplicas: 1 6
          maxReplicas: 10 7
          metrics: 8
          - type: Resource
            resource:
              name: cpu 9
              target:
                type: AverageValue 10
                averageValue: 500m 11
        1
        autoscaling/v2 API を使用します。
        2
        この Horizontal Pod Autoscaler オブジェクトの名前を指定します。
        3
        スケーリングするオブジェクトの API バージョンを指定します。
        • DeploymentReplicaSetStatefulset オブジェクトの場合は、apps/v1 を使用します。
        • ReplicationController の場合は、v1 を使用します。
        • DeploymentConfig の場合は、apps.openshift.io/v1 を使用します。
        4
        オブジェクトのタイプを指定します。オブジェクトは、DeploymentDeploymentConfig/dcReplicaSet/rsReplicationController/rc、または StatefulSet である必要があります。
        5
        スケーリングするオブジェクトの名前を指定します。オブジェクトが存在する必要があります。
        6
        スケールダウン時のレプリカの最小数を指定します。
        7
        スケールアップ時のレプリカの最大数を指定します。
        8
        メモリー使用率に metrics パラメーターを使用します。
        9
        CPU 使用率に cpu を指定します。
        10
        AverageValue に設定します。
        11
        ターゲットに設定された CPU 値で averageValue に設定します。
      2. Horizontal Pod Autoscaler を作成します。

        $ oc create -f <file-name>.yaml
  2. Horizontal Pod Autoscaler が作成されていることを確認します。

    $ oc get hpa cpu-autoscale

    出力例

    NAME            REFERENCE            TARGETS         MINPODS   MAXPODS   REPLICAS   AGE
    cpu-autoscale   Deployment/example   173m/500m       1         10        1          20m

2.4.7. CLI を使用したメモリー使用率向けの Horizontal Pod Autoscaler オブジェクトの作成

OpenShift Container Platform CLI を使用して、既存のDeploymentDeploymentConfigReplicaSetReplicationController、または StatefulSet オブジェクトを自動的にスケールする Horizontal Pod Autoscaler (HPA) を作成することができます。HPA は、指定した平均メモリー使用率 (直接値または要求メモリーに対する割合) を維持するように、そのオブジェクトに関連する Pod をスケーリングします。

注記

他のオブジェクトが提供する特定の機能や動作が必要な場合を除き、Deployment オブジェクトまたは ReplicaSet オブジェクトを使用することを推奨します。

HPA は、すべての Pod で指定のメモリー使用率を維持するために、最小数と最大数の間でレプリカ数を増減します。

メモリー使用率については、Pod の最小数および最大数と、Pod がターゲットとする平均のメモリー使用率を指定することができます。最小値を指定しない場合、Pod には OpenShift Container Platform サーバーからのデフォルト値が付与されます。

前提条件

Horizontal Pod Autoscaler を使用するには、クラスターの管理者はクラスターメトリックを適切に設定している必要があります。メトリクスが設定されているかどうかは、oc describe PodMetrics <pod-name> コマンドを使用して判断できます。メトリックが設定されている場合、出力は以下の Usage の下にある CpuMemory のように表示されます。

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-129-223.compute.internal -n openshift-kube-scheduler

出力例

Name:         openshift-kube-scheduler-ip-10-0-129-223.compute.internal
Namespace:    openshift-kube-scheduler
Labels:       <none>
Annotations:  <none>
API Version:  metrics.k8s.io/v1beta1
Containers:
  Name:  wait-for-host-port
  Usage:
    Cpu:     0
    Memory:  0
  Name:      scheduler
  Usage:
    Cpu:     8m
    Memory:  45440Ki
Kind:        PodMetrics
Metadata:
  Creation Timestamp:  2020-02-14T22:21:14Z
  Self Link:           /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-129-223.compute.internal
Timestamp:             2020-02-14T22:21:14Z
Window:                5m0s
Events:                <none>

手順

メモリー使用率の Horizontal Pod Autoscaler を作成するには、以下を実行します。

  1. 以下のいずれか 1 つを含む YAML ファイルを作成します。

    • 特定のメモリー値についてスケーリングするには、既存のオブジェクトについて以下のような HorizontalPodAutoscaler オブジェクトを作成します。

      apiVersion: autoscaling/v2 1
      kind: HorizontalPodAutoscaler
      metadata:
        name: hpa-resource-metrics-memory 2
        namespace: default
      spec:
        scaleTargetRef:
          apiVersion: apps/v1 3
          kind: Deployment 4
          name: example 5
        minReplicas: 1 6
        maxReplicas: 10 7
        metrics: 8
        - type: Resource
          resource:
            name: memory 9
            target:
              type: AverageValue 10
              averageValue: 500Mi 11
        behavior: 12
          scaleDown:
            stabilizationWindowSeconds: 300
            policies:
            - type: Pods
              value: 4
              periodSeconds: 60
            - type: Percent
              value: 10
              periodSeconds: 60
            selectPolicy: Max
      1
      autoscaling/v2 API を使用します。
      2
      この Horizontal Pod Autoscaler オブジェクトの名前を指定します。
      3
      スケーリングするオブジェクトの API バージョンを指定します。
      • DeploymentReplicaSet、または Statefulset オブジェクトの場合は、apps/v1 を使用します。
      • ReplicationController の場合は、v1 を使用します。
      • DeploymentConfig の場合は、apps.openshift.io/v1 を使用します。
      4
      オブジェクトのタイプを指定します。オブジェクトは、DeploymentDeploymentConfigReplicaSetReplicationController、またはStatefulSet である必要があります。
      5
      スケーリングするオブジェクトの名前を指定します。オブジェクトが存在する必要があります。
      6
      スケールダウン時のレプリカの最小数を指定します。
      7
      スケールアップ時のレプリカの最大数を指定します。
      8
      メモリー使用率に metrics パラメーターを使用します。
      9
      メモリー使用率の memory を指定します。
      10
      タイプを AverageValue に設定します。
      11
      averageValue および特定のメモリー値を指定します。
      12
      オプション: スケールアップまたはスケールダウンのレートを制御するスケーリングポリシーを指定します。
    • パーセンテージでスケーリングするには、既存のオブジェクトに対して、次のような HorizontalPodAutoscaler オブジェクトを作成します。

      apiVersion: autoscaling/v2 1
      kind: HorizontalPodAutoscaler
      metadata:
        name: memory-autoscale 2
        namespace: default
      spec:
        scaleTargetRef:
          apiVersion: apps/v1 3
          kind: Deployment 4
          name: example 5
        minReplicas: 1 6
        maxReplicas: 10 7
        metrics: 8
        - type: Resource
          resource:
            name: memory 9
            target:
              type: Utilization 10
              averageUtilization: 50 11
        behavior: 12
          scaleUp:
            stabilizationWindowSeconds: 180
            policies:
            - type: Pods
              value: 6
              periodSeconds: 120
            - type: Percent
              value: 10
              periodSeconds: 120
            selectPolicy: Max
      1
      autoscaling/v2 API を使用します。
      2
      この Horizontal Pod Autoscaler オブジェクトの名前を指定します。
      3
      スケーリングするオブジェクトの API バージョンを指定します。
      • ReplicationController の場合は、v1 を使用します。
      • DeploymentConfig については、apps.openshift.io/v1 を使用します。
      • Deployment、ReplicaSet、Statefulset オブジェクトの場合は、apps/v1 を使用します。
      4
      オブジェクトのタイプを指定します。オブジェクトは、DeploymentDeploymentConfigReplicaSetReplicationController、またはStatefulSet である必要があります。
      5
      スケーリングするオブジェクトの名前を指定します。オブジェクトが存在する必要があります。
      6
      スケールダウン時のレプリカの最小数を指定します。
      7
      スケールアップ時のレプリカの最大数を指定します。
      8
      メモリー使用率に metrics パラメーターを使用します。
      9
      メモリー使用率の memory を指定します。
      10
      Utilization に設定します。
      11
      averageUtilization およびターゲットに設定する平均メモリー使用率をすべての Pod に対して指定します (要求されるメモリーのパーセントで表す)。ターゲット Pod にはメモリー要求が設定されている必要があります。
      12
      オプション: スケールアップまたはスケールダウンのレートを制御するスケーリングポリシーを指定します。
  2. Horizontal Pod Autoscaler を作成します。

    $ oc create -f <file-name>.yaml

    以下に例を示します。

    $ oc create -f hpa.yaml

    出力例

    horizontalpodautoscaler.autoscaling/hpa-resource-metrics-memory created

  3. Horizontal Pod Autoscaler が作成されていることを確認します。

    $ oc get hpa hpa-resource-metrics-memory

    出力例

    NAME                          REFERENCE            TARGETS         MINPODS   MAXPODS   REPLICAS   AGE
    hpa-resource-metrics-memory   Deployment/example   2441216/500Mi   1         10        1          20m

    $ oc describe hpa hpa-resource-metrics-memory

    出力例

    Name:                        hpa-resource-metrics-memory
    Namespace:                   default
    Labels:                      <none>
    Annotations:                 <none>
    CreationTimestamp:           Wed, 04 Mar 2020 16:31:37 +0530
    Reference:                   Deployment/example
    Metrics:                     ( current / target )
      resource memory on pods:   2441216 / 500Mi
    Min replicas:                1
    Max replicas:                10
    ReplicationController pods:  1 current / 1 desired
    Conditions:
      Type            Status  Reason              Message
      ----            ------  ------              -------
      AbleToScale     True    ReadyForNewScale    recommended size matches current size
      ScalingActive   True    ValidMetricFound    the HPA was able to successfully calculate a replica count from memory resource
      ScalingLimited  False   DesiredWithinRange  the desired count is within the acceptable range
    Events:
      Type     Reason                   Age                 From                       Message
      ----     ------                   ----                ----                       -------
      Normal   SuccessfulRescale        6m34s               horizontal-pod-autoscaler  New size: 1; reason: All metrics below target

2.4.8. CLI を使用した Horizontal Pod Autoscaler の状態条件について

状態条件セットを使用して、Horizontal Pod Autoscaler (HPA) がスケーリングできるかどうかや、現時点でこれがいずれかの方法で制限されているかどうかを判別できます。

HPA の状態条件は、自動スケーリング API の v2 バージョンで利用できます。

HPA は、以下の状態条件で応答します。

  • AbleToScale 条件では、HPA がメトリックを取得して更新できるか、またバックオフ関連の条件によりスケーリングが回避されるかどうかを指定します。

    • True 条件はスケーリングが許可されることを示します。
    • False 条件は指定される理由によりスケーリングが許可されないことを示します。
  • ScalingActive 条件は、HPA が有効にされており (ターゲットのレプリカ数がゼロでない)、必要なメトリックを計算できるかどうかを示します。

    • True 条件はメトリックが適切に機能していることを示します。
    • False 条件は通常フェッチするメトリックに関する問題を示します。
  • ScalingLimited 条件は、必要とするスケールが Horizontal Pod Autoscaler の最大値または最小値によって制限されていたことを示します。

    • True 条件は、スケーリングするためにレプリカの最小または最大数を引き上げるか、引き下げる必要があることを示します。
    • False 条件は、要求されたスケーリングが許可されることを示します。

      $ oc describe hpa cm-test

      出力例

      Name:                           cm-test
      Namespace:                      prom
      Labels:                         <none>
      Annotations:                    <none>
      CreationTimestamp:              Fri, 16 Jun 2017 18:09:22 +0000
      Reference:                      ReplicationController/cm-test
      Metrics:                        ( current / target )
        "http_requests" on pods:      66m / 500m
      Min replicas:                   1
      Max replicas:                   4
      ReplicationController pods:     1 current / 1 desired
      Conditions: 1
        Type              Status    Reason              Message
        ----              ------    ------              -------
        AbleToScale       True      ReadyForNewScale    the last scale time was sufficiently old as to warrant a new scale
        ScalingActive     True      ValidMetricFound    the HPA was able to successfully calculate a replica count from pods metric http_request
        ScalingLimited    False     DesiredWithinRange  the desired replica count is within the acceptable range
      Events:

      1
      Horizontal Pod Autoscaler の状況メッセージです。

以下は、スケーリングできない Pod の例です。

出力例

Conditions:
  Type         Status  Reason          Message
  ----         ------  ------          -------
  AbleToScale  False   FailedGetScale  the HPA controller was unable to get the target's current scale: no matches for kind "ReplicationController" in group "apps"
Events:
  Type     Reason          Age               From                       Message
  ----     ------          ----              ----                       -------
  Warning  FailedGetScale  6s (x3 over 36s)  horizontal-pod-autoscaler  no matches for kind "ReplicationController" in group "apps"

以下は、スケーリングに必要なメトリックを取得できなかった Pod の例です。

出力例

Conditions:
  Type                  Status    Reason                    Message
  ----                  ------    ------                    -------
  AbleToScale           True     SucceededGetScale          the HPA controller was able to get the target's current scale
  ScalingActive         False    FailedGetResourceMetric    the HPA was unable to compute the replica count: failed to get cpu utilization: unable to get metrics for resource cpu: no metrics returned from resource metrics API

以下は、要求される自動スケーリングが要求される最小数よりも小さい場合の Pod の例です。

出力例

Conditions:
  Type              Status    Reason              Message
  ----              ------    ------              -------
  AbleToScale       True      ReadyForNewScale    the last scale time was sufficiently old as to warrant a new scale
  ScalingActive     True      ValidMetricFound    the HPA was able to successfully calculate a replica count from pods metric http_request
  ScalingLimited    False     DesiredWithinRange  the desired replica count is within the acceptable range

2.4.8.1. CLI を使用した Horizontal Pod Autoscaler の状態条件の表示

Pod に設定された状態条件は、Horizontal Pod Autoscaler (HPA) で表示することができます。

注記

Horizontal Pod Autoscaler の状態条件は、自動スケーリング API の v2 バージョンで利用できます。

前提条件

Horizontal Pod Autoscaler を使用するには、クラスターの管理者はクラスターメトリックを適切に設定している必要があります。メトリクスが設定されているかどうかは、oc describe PodMetrics <pod-name> コマンドを使用して判断できます。メトリックが設定されている場合、出力は以下の Usage の下にある CpuMemory のように表示されます。

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

出力例

Name:         openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace:    openshift-kube-scheduler
Labels:       <none>
Annotations:  <none>
API Version:  metrics.k8s.io/v1beta1
Containers:
  Name:  wait-for-host-port
  Usage:
    Memory:  0
  Name:      scheduler
  Usage:
    Cpu:     8m
    Memory:  45440Ki
Kind:        PodMetrics
Metadata:
  Creation Timestamp:  2019-05-23T18:47:56Z
  Self Link:           /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp:             2019-05-23T18:47:56Z
Window:                1m0s
Events:                <none>

手順

Pod の状態条件を表示するには、Pod の名前と共に以下のコマンドを使用します。

$ oc describe hpa <pod-name>

以下に例を示します。

$ oc describe hpa cm-test

条件は、出力の Conditions フィールドに表示されます。

出力例

Name:                           cm-test
Namespace:                      prom
Labels:                         <none>
Annotations:                    <none>
CreationTimestamp:              Fri, 16 Jun 2017 18:09:22 +0000
Reference:                      ReplicationController/cm-test
Metrics:                        ( current / target )
  "http_requests" on pods:      66m / 500m
Min replicas:                   1
Max replicas:                   4
ReplicationController pods:     1 current / 1 desired
Conditions: 1
  Type              Status    Reason              Message
  ----              ------    ------              -------
  AbleToScale       True      ReadyForNewScale    the last scale time was sufficiently old as to warrant a new scale
  ScalingActive     True      ValidMetricFound    the HPA was able to successfully calculate a replica count from pods metric http_request
  ScalingLimited    False     DesiredWithinRange  the desired replica count is within the acceptable range

2.4.9. 関連情報

Red Hat logoGithubRedditYoutubeTwitter

詳細情報

試用、購入および販売

コミュニティー

Red Hat ドキュメントについて

Red Hat をお使いのお客様が、信頼できるコンテンツが含まれている製品やサービスを活用することで、イノベーションを行い、目標を達成できるようにします。

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。このような変更は、段階的に実施される予定です。詳細情報: Red Hat ブログ.

会社概要

Red Hat は、企業がコアとなるデータセンターからネットワークエッジに至るまで、各種プラットフォームや環境全体で作業を簡素化できるように、強化されたソリューションを提供しています。

© 2024 Red Hat, Inc.