検索

第7章 NUMA 対応ワークロードのスケジューリング

download PDF

NUMA 対応のスケジューリングと、それを使用して OpenShift Container Platform クラスターに高パフォーマンスのワークロードをデプロイする方法について学びます。

NUMA Resources Operator を使用すると、同じ NUMA ゾーンで高パフォーマンスのワークロードをスケジュールすることができます。これは、利用可能なクラスターノードの NUMA リソースを報告するノードリソースエクスポートエージェントと、ワークロードを管理するセカンダリースケジューラーをデプロイします。

7.1. NUMA 対応のスケジューリングについて

NUMA の概要

Non-Uniform Memory Access (NUMA) は、異なる CPU が異なるメモリー領域に異なる速度でアクセスできるようにするコンピュートプラットフォームアーキテクチャーです。NUMA リソーストポロジーは、コンピュートノード内の相互に関連する CPU、メモリー、および PCI デバイスの位置を指しています。共同配置されたリソースは、同じ NUMA ゾーン にあるとされています。高性能アプリケーションの場合、クラスターは単一の NUMA ゾーンで Pod ワークロードを処理する必要があります。

パフォーマンスに関する考慮事項

NUMA アーキテクチャーにより、複数のメモリーコントローラーを備えた CPU は、メモリーが配置されている場所に関係なく、CPU コンプレックス全体で使用可能なメモリーを使用できます。これにより、パフォーマンスを犠牲にして柔軟性を高めることができます。NUMA ゾーン外のメモリーを使用してワークロードを処理する CPU は、単一の NUMA ゾーンで処理されるワークロードよりも遅くなります。また、I/O に制約のあるワークロードの場合、離れた NUMA ゾーンのネットワークインターフェイスにより、情報がアプリケーションに到達する速度が低下します。通信ワークロードなどの高性能ワークロードは、これらの条件下では仕様どおりに動作できません。

NUMA 対応のスケジューリング

NUMA 対応のスケジューリングは、要求されたクラスターコンピュートリソース (CPU、メモリー、デバイス) を同じ NUMA ゾーンに配置して、レイテンシーの影響を受けやすいワークロードや高性能なワークロードを効率的に処理します。また、NUMA 対応のスケジューリングにより、コンピュートノードあたりの Pod 密度を向上させ、リソース効率を高めています。

Node Tuning Operator との統合

Node Tuning Operator のパフォーマンスプロファイルを NUMA 対応スケジューリングと統合することで、CPU アフィニティーをさらに設定し、レイテンシーの影響を受けやすいワークロードのパフォーマンスを最適化できます。

デフォルトのスケジューリングロジック

デフォルトの OpenShift Container Platform Pod スケジューラーのスケジューリングロジックは、個々の NUMA ゾーンではなく、コンピュートノード全体の利用可能なリソースを考慮します。kubelet トポロジーマネージャーで最も制限的なリソースアライメントが要求された場合、Pod をノードに許可するときにエラー状態が発生する可能性があります。逆に、最も制限的なリソース調整が要求されていない場合、Pod は適切なリソース調整なしでノードに許可され、パフォーマンスが低下したり予測不能になったりする可能性があります。たとえば、Pod スケジューラーが Pod の要求されたリソースが利用可能かどうか把握せずに保証された Pod ワークロードに対して次善のスケジューリング決定を行うと、Topology Affinity Error ステータスを伴う Pod 作成の暴走が発生する可能性があります。スケジュールの不一致の決定により、Pod の起動が無期限に遅延する可能性があります。また、クラスターの状態とリソースの割り当てによっては、Pod のスケジューリングの決定が適切でないと、起動の試行が失敗するためにクラスターに余分な負荷がかかる可能性があります。

NUMA 対応の Pod スケジューリングの図

NUMA Resources Operator は、カスタム NUMA リソースのセカンダリースケジューラーおよびその他のリソースをデプロイして、デフォルトの OpenShift Container Platform Pod スケジューラーの欠点を軽減します。次の図は、NUMA 対応 Pod スケジューリングの俯瞰的な概要を示しています。

図7.1 NUMA 対応スケジューリングの概要

クラスター内でさまざまなコンポーネントがどのように相互作用するかを示す NUMA 対応スケジューリングの図
NodeResourceTopology API
NodeResourceTopology API は、各コンピュートノードで使用可能な NUMA ゾーンリソースを記述します。
NUMA 対応スケジューラー
NUMA 対応のセカンダリースケジューラーは、利用可能な NUMA ゾーンに関する情報を NodeResourceTopology API から受け取り、最適に処理できるノードで高パフォーマンスのワークロードをスケジュールします。
ノードトポロジーエクスポーター
ノードトポロジーエクスポーターは、各コンピュートノードで使用可能な NUMA ゾーンリソースを NodeResourceTopology API に公開します。ノードトポロジーエクスポーターデーモンは、PodResources API を使用して、kubelet からのリソース割り当てを追跡します。
PodResources API

PodResources API は各ノードに対してローカルであり、リソーストポロジーと利用可能なリソースを kubelet に公開します。

注記

PodResources API の List エンドポイントは、特定のコンテナーに割り当てられた排他的な CPU を公開します。API は、共有プールに属する CPU は公開しません。

GetAllocatableResources エンドポイントは、ノード上で使用できる割り当て可能なリソースを公開します。

関連情報

Red Hat logoGithubRedditYoutubeTwitter

詳細情報

試用、購入および販売

コミュニティー

Red Hat ドキュメントについて

Red Hat をお使いのお客様が、信頼できるコンテンツが含まれている製品やサービスを活用することで、イノベーションを行い、目標を達成できるようにします。

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。このような変更は、段階的に実施される予定です。詳細情報: Red Hat ブログ.

会社概要

Red Hat は、企業がコアとなるデータセンターからネットワークエッジに至るまで、各種プラットフォームや環境全体で作業を簡素化できるように、強化されたソリューションを提供しています。

© 2024 Red Hat, Inc.